- AustraliaNorth AmericaWorld
Investing News NetworkYour trusted source for investing success
- Lithium Outlook
- Oil and Gas Outlook
- Gold Outlook Report
- Uranium Outlook
- Rare Earths Outlook
- All Outlook Reports
- Top Generative AI Stocks
- Top EV Stocks
- Biggest AI Companies
- Biggest Blockchain Stocks
- Biggest Cryptocurrency-mining Stocks
- Biggest Cybersecurity Companies
- Biggest Robotics Companies
- Biggest Social Media Companies
- Biggest Technology ETFs
- Artificial Intellgience ETFs
- Robotics ETFs
- Canadian Cryptocurrency ETFs
- Artificial Intelligence Outlook
- EV Outlook
- Cleantech Outlook
- Crypto Outlook
- Tech Outlook
- All Market Outlook Reports
- Cannabis Weekly Round-Up
- Top Alzheimer's Treatment Stocks
- Top Biotech Stocks
- Top Plant-based Food Stocks
- Biggest Cannabis Stocks
- Biggest Pharma Stocks
- Longevity Stocks to Watch
- Psychedelics Stocks to Watch
- Top Cobalt Stocks
- Small Biotech ETFs to Watch
- Top Life Science ETFs
- Biggest Pharmaceutical ETFs
- Life Science Outlook
- Biotech Outlook
- Cannabis Outlook
- Pharma Outlook
- Psychedelics Outlook
- All Market Outlook Reports
Researchers Use Tantalum Crystals to Discover Massless Particle
Gizmag reported that students at Princeton University have discovered the Weyl Fermion, a particle that could create massless electrons that could allow for rapidly accelerated electronics. Tantalum played a key part in the discovery.
Gizmag reported that students at Princeton University have discovered the Weyl Fermion, a particle that could create massless electrons that could allow for rapidly accelerated electronics. Tantalum played a key part in the discovery.
As quoted in the publication:
The international team led by Princeton University scientists used the Princeton Institute for the Science and Technology of Materials (PRISM) and Laboratory for Topological Quantum Matter and Spectroscopy to look into many dozens of crystal arrangements before alighting upon the asymmetrical tantalum arsenide crystal (a semi-metal that has the properties of both a conductor and an insulator) as a prime candidate in the hunt for the theorized particle.
Over-sized crystals of the tantalum arsenide were first placed in a scanning tunneling spectromicroscope cooled to near absolute zero to determine if they matched the hypothetical specifications for accommodating a Weyl fermion. Then, once the crystals had passed that test, the team took them to the Lawrence Berkeley National Laboratory in California where high-energy photon beams fired from a particle accelerator were shone through them. This test finally confirmed the presence of the existence of the long sought after Weyl fermion.
Latest News
Investing News Network websites or approved third-party tools use cookies. Please refer to the cookie policy for collected data, privacy and GDPR compliance. By continuing to browse the site, you agree to our use of cookies.