- AustraliaNorth AmericaWorld
Investing News NetworkYour trusted source for investing success
First Helium
Radiopharm Theranostics
Purpose Bitcoin ETF
Black Swan Graphene
- Lithium Outlook
- Oil and Gas Outlook
- Gold Outlook Report
- Uranium Outlook
- Rare Earths Outlook
- All Outlook Reports
- Top Generative AI Stocks
- Top EV Stocks
- Biggest AI Companies
- Biggest Blockchain Stocks
- Biggest Cryptocurrency-mining Stocks
- Biggest Cybersecurity Companies
- Biggest Robotics Companies
- Biggest Social Media Companies
- Biggest Technology ETFs
- Artificial Intellgience ETFs
- Robotics ETFs
- Canadian Cryptocurrency ETFs
- Artificial Intelligence Outlook
- EV Outlook
- Cleantech Outlook
- Crypto Outlook
- Tech Outlook
- All Market Outlook Reports
- Cannabis Weekly Round-Up
- Top Alzheimer's Treatment Stocks
- Top Biotech Stocks
- Top Plant-based Food Stocks
- Biggest Cannabis Stocks
- Biggest Pharma Stocks
- Longevity Stocks to Watch
- Psychedelics Stocks to Watch
- Top Cobalt Stocks
- Small Biotech ETFs to Watch
- Top Life Science ETFs
- Biggest Pharmaceutical ETFs
- Life Science Outlook
- Biotech Outlook
- Cannabis Outlook
- Pharma Outlook
- Psychedelics Outlook
- All Market Outlook Reports
New Study Shows Potential for Drug Developed to treat Major Depressive Disorder
A new study showed NSI-189, researched by Neuralstem (Nasdaq: CUR) improved the recovery for stroke-induced rats during 12 weeks and even showed signs of improvement after the animal stopped receiving the drug.
A new study showed NSI-189, researched by Neuralstem (Nasdaq: CUR) improved the recovery for stroke-induced rats during 12 weeks and even showed signs of improvement after the animal stopped receiving the drug.
As quoted in the press release:
The study entitled, “NSI-189, a Small Molecule with Neurogenic Properties, Exerts Behavioral and Neurostructural Benefits in Stroke Rats,” was led by Cesar V. Borlongan, Ph.D., at the Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, in collaboration with Neuralstem.
In the study, adult rats were surgically induced to have an acute, severe ischemic stroke by manually occluding the middle cerebral artery. The stroke animals (n=24/group) were treated from 6 hours post-stroke for 12 weeks with daily oral administration of either NSI-189 (30mg/kg) or the vehicle. Half of each group was sacrificed at 12 weeks and the remaining half was observed for additional 12 weeks without any further drug treatment. The study demonstrated that the animals treated with NSI-189 for 12 weeks performed significantly better than the placebo animals in neurologic and motor deficit tests (p<0.05). Moreover, the animals treated with NSI-189 continued to improve during the second 12-week period even in the absence of drug treatment.
“The improvements in behavioral function recovery observed in the NSI-189-treated stroke-induced rats suggest NSI-189 could be a recovery therapy for stroke patients and deserves further exploration,” said Dr. Cesar Borlongan, Professor and Vice Chairman for Research, University of South Florida Morsani College of Medicine, Department of Neurosurgery and Brain Repair. “We believe that NSI-189 enhanced cell proliferation in the peri-infarct area and neurogenesis in the hippocampus, due to upregulating growth factors and increasing neurite outgrowth. It is exciting to consider the possibility of a treatment that induces active synaptic remodeling in the brain after stroke for self-repair toward better and faster recovery of function.”
Histological assessment of stroke-induced brains from NSI-189-treated rodents revealed enhanced cell proliferation in the peri-infarct area and neurite outgrowth in the hippocampus and partially in the cortex. These results suggest NSI-189 actively stimulated endogenous remodeling of the stroke-induced brain. Parallel in vitro studies further supported evidence for this remodeling process by upregulation of neurogenic factors such as brain-derived neurotrophic factor (BDNF) and stem cell factor (SCF).
“These data add to the growing body of evidence demonstrating NSI-189’s ability to promote neurogenic, synaptogenic plasticity in various disease models. Our data also indicate temporary treatment with NSI-189 can lead to long-lasting structural repair and suggest continued durability of functional improvements by NSI-189, even after NSI-189 treatment had ceased,” said Karl Johe, Ph.D., Chief Scientific Officer, Neuralstem. “We look forward to continuing to investigate the potential therapeutic benefits of NSI-189.”
NSI-189 is a proprietary, new chemical entity, being developed for treatment of major depressive disorder (MDD). In preclinical models, NSI-189 stimulated neurogenesis, synaptogenesis and increased hippocampal volume, all of which may be effective in potentially reversing depression, enhancing cognition, and promoting neuroregeneration. The Phase 1b safety study with MDD patients showed unusually high anti-depressant effect sizes in various clinical scales. The company expects results from the ongoing Phase 2 efficacy trial in MDD in the third quarter of 2017, and results from the subsequent, 6-month observational study to assess NSI-189’s durability effect in the first half of 2018.
About Neuralstem
Neuralstem’s patented technology enables the commercial-scale production of multiple types of central nervous system stem cells, which are being developed as potential therapies for multiple central nervous system diseases and conditions.
Neuralstem’s technology enables the discovery of small molecule compounds by systematic screening chemical compounds against its proprietary human hippocampal stem cell line. The screening process has led to the discovery and patenting of molecules that Neuralstem believes may stimulate the brain’s capacity to generate new neurons, potentially reversing pathophysiologies associated with certain central nervous system (CNS) conditions.
The company has completed Phase 1a and 1b trials evaluating NSI-189, a novel neurogenic small molecule product candidate, for the treatment of major depressive disorder or MDD, and is currently conducting a Phase 2 efficacy study for MDD.
Neuralstem’s stem cell therapy product candidate, NSI-566, is a spinal cord-derived neural stem cell line. Neuralstem is currently evaluating NSI-566 in three indications: stroke, chronic spinal cord injury (cSCI), and Amyotrophic Lateral Sclerosis (ALS).
Neuralstem is conducting a Phase 1 safety study for the treatment of paralysis from chronic motor stroke at the BaYi Brain Hospital in Beijing, China. In addition, NSI-566 was evaluated in a Phase 1 safety study to treat paralysis due to chronic spinal cord injury as well as a Phase 1 and Phase 2a risk escalation, safety trials for ALS. Subjects from all three indications are currently in long-term observational follow-up periods to continue to monitor safety and possible therapeutic benefits.
Click here for full press release.
Latest News
Investing News Network websites or approved third-party tools use cookies. Please refer to the cookie policy for collected data, privacy and GDPR compliance. By continuing to browse the site, you agree to our use of cookies.