- AustraliaNorth AmericaWorld
Investing News NetworkYour trusted source for investing success
Purpose Bitcoin ETF
Silver47 Exploration
Syntheia
Black Swan Graphene
- Lithium Outlook
- Oil and Gas Outlook
- Gold Outlook Report
- Uranium Outlook
- Rare Earths Outlook
- All Outlook Reports
- Top Generative AI Stocks
- Top EV Stocks
- Biggest AI Companies
- Biggest Blockchain Stocks
- Biggest Cryptocurrency-mining Stocks
- Biggest Cybersecurity Companies
- Biggest Robotics Companies
- Biggest Social Media Companies
- Biggest Technology ETFs
- Artificial Intellgience ETFs
- Robotics ETFs
- Canadian Cryptocurrency ETFs
- Artificial Intelligence Outlook
- EV Outlook
- Cleantech Outlook
- Crypto Outlook
- Tech Outlook
- All Market Outlook Reports
- Cannabis Weekly Round-Up
- Top Alzheimer's Treatment Stocks
- Top Biotech Stocks
- Top Plant-based Food Stocks
- Biggest Cannabis Stocks
- Biggest Pharma Stocks
- Longevity Stocks to Watch
- Psychedelics Stocks to Watch
- Top Cobalt Stocks
- Small Biotech ETFs to Watch
- Top Life Science ETFs
- Biggest Pharmaceutical ETFs
- Life Science Outlook
- Biotech Outlook
- Cannabis Outlook
- Pharma Outlook
- Psychedelics Outlook
- All Market Outlook Reports
NXP Launches Deep Learning for Automotives at 30X Performance
With functions such as sensor fusion and driver replacement NXP’s deep learning toolkit can be embedded into automotives with less friction.
NXP Semiconductors (NASDAQ:NXPI) has announced that its eIQ Auto deep learning toolkit has broadened its functionalities to include enhanced driver monitoring, sensor fusion and driver replacement. The company says that its deep learning framework has 30 times higher performance than other deep learning models, reducing the friction involved in installation.
As quoted in the press release:
Deep Learning holds the promise of delivering better accuracy and better maintainability in object detection and classification over “traditional” computer vision algorithms, but the barriers to full automotive implementation bring complexity and steep costs.
The eIQ Auto toolkit aims to help customers reduce time to market by lowering the investment costs required to select and program embedded compute engines for each layer of a deep learning algorithm. The automated selection process leads to 30 times higher performance for given models compared to other embedded deep learning frameworks. This performance is achieved by optimizing the use of available resources and reducing time and development effort1. These dividends allow developers to evaluate, fine tune and deploy their applications for maximized overall performance.
Compliance with automotive-grade development standards and Functional Safety requirements are key benefits of eIQ Auto and S32V integration. eIQ Auto’s inference engine was developed in accordance with stringent requirements and is Automotive SPICE® compliant. The S32V processors offer the highest levels of functional safety supporting ISO 26262 up to ASIL-C, IEC 61508, and DO 178.
Latest News
Investing News Network websites or approved third-party tools use cookies. Please refer to the cookie policy for collected data, privacy and GDPR compliance. By continuing to browse the site, you agree to our use of cookies.