U.S. Food and Drug Administration Approves Opdivo® + Yervoy® as the First and Only Immunotherapy Treatment for Previously Untreated Unresectable Malignant Pleural Mesothelioma

Biotech Investing
Opdivo + Yervoy is the first new systemic therapy in over 15 years to be approved by the FDA in this setting 1,2 Approval is based on CheckMate -743 in which Opdivo + Yervoy demonstrated superior overall survival vs. standard of care chemotherapy 1 Approval marks third indication for Opdivo + Yervoy -based treatments in thoracic cancers and seventh indication overall Bristol Myers Squibb today announced that Opdivo ...

Opdivo + Yervoy is the first new systemic therapy in over 15 years to be approved by the FDA in this setting 1,2

Approval is based on CheckMate -743 in which Opdivo + Yervoy demonstrated superior overall survival vs. standard of care chemotherapy 1

Approval marks third indication for Opdivo + Yervoy -based treatments in thoracic cancers and seventh indication overall

Bristol Myers Squibb (NYSE: BMY) today announced that Opdivo (nivolumab) 360 mg every three weeks plus Yervoy (ipilimumab) 1 mg/kg every six weeks (injections for intravenous use) was approved by the U.S. Food and Drug Administration (FDA) for the first-line treatment of adult patients with unresectable malignant pleural mesothelioma (MPM). 1 This approval is based on a pre-specified interim analysis from the Phase 3 CheckMate -743 trial in which Opdivo + Yervoy (n=303) demonstrated superior overall survival (OS) versus the platinum-based standard of care chemotherapy (n=302) (Hazard Ratio [HR]: 0.74 [95% Confidence Interval [CI]: 0.61 to 0.89]; P =0.002), with a median OS (mOS) of 18.1 months (95% CI: 16.8 to 21.5) versus 14.1 months (95% CI: 12.5 to 16.2), respectively. 1 These results were observed after 22.1 months of minimum follow-up. 3 At two years, 41% of patients treated with Opdivo + Yervoy were alive and 27% with chemotherapy. 1,3

"Malignant pleural mesothelioma is a rare cancer with limited treatment options. When it is diagnosed in advanced stages, the five-year survival rate is approximately 10 percent," said study investigator Anne S. Tsao, M.D., professor and Section Chief Thoracic Medical Oncology and Director of the Mesothelioma Program at The University of Texas M.D. Anderson Cancer Center. 2,4 "The survival results from the CheckMate -743 trial show that the combination of nivolumab and ipilimumab could become a new front-line standard of care option. This is exciting news, instilling hope for patients with this devastating disease and for the healthcare providers who care for them." 1,3

Opdivo and Yervoy are associated with Warnings and Precautions including immune-mediated: pneumonitis, colitis, hepatitis, endocrinopathies, nephritis and renal dysfunction, skin adverse reactions, encephalitis, other adverse reactions; infusion reactions; complications of stem-cell transplant that uses donor stem cells (allogeneic); embryo-fetal toxicity; and increased mortality in patients with multiple myeloma when Opdivo is added to a thalidomide analogue and dexamethasone, which is not recommended outside of controlled clinical trials. 1 Yervoy is associated with the following Warnings and Precautions: severe and fatal immune-mediated adverse reactions, infusion-related reactions, complications of allogeneic hematopoietic stem cell transplant after Yervoy , embryo-fetal toxicity and risks associated when administered in combination with Opdivo . 5 Please see the Important Safety Information section below.

This is the third indication for an Opdivo + Yervoy -based combination in the first-line treatment of a form of thoracic cancer. 1 Opdivo + Yervoy is approved by the FDA as a first-line treatment for patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L1≥1% as determined by an FDA-approved test, and without EGFR or ALK genomic tumor aberrations. 1 It is also approved in combination with limited chemotherapy for the first-line treatment of adult patients with metastatic or recurrent NSCLC with no EGFR or ALK genomic tumor aberrations regardless of PD-L1 expression. 1

"Thoracic cancers can be complex and difficult to treat, and we are focused on developing immunotherapy options that may have the potential to extend patients' lives," said Adam Lenkowsky, general manager and head, U.S., Oncology, Immunology, Cardiovascular, Bristol Myers Squibb. 2,6 "Just a few months ago, Opdivo + Yervoy -based combinations received two first-line indications for certain patients with non-small cell lung cancer. Now, Opdivo + Yervoy is approved for use in another type of thoracic cancer, previously untreated unresectable MPM. With today's announcement, Opdivo + Yervoy becomes the first new systemic therapy approved in more than 15 years in this setting, and may offer these patients a chance for a longer life." 1

Opdivo + Yervoy is a unique combination of two immune checkpoint inhibitors that features a potentially synergistic mechanism of action, targeting two different checkpoints (PD-1 and CTLA-4) to help destroy tumor cells: Yervoy helps activate and proliferate T cells, while Opdivo helps existing T cells discover the tumor. 1,7 Some of the T cells stimulated by Yervoy can become memory T cells, which may allow for a long-term immune response. 7,8,9,10,11,12 Targeting of normal cells can also occur and result in immune-mediated adverse reactions, which can be severe and potentially fatal. 1 Please see the Important Safety Information section below.

This approval was granted less than six weeks following the submission of a new supplemental Biologics License Application (sBLA), which was reviewed under the FDA's Real-Time Oncology Review (RTOR) pilot program. The RTOR program aims to ensure that safe and effective treatments are available to patients as early as possible. 13 The review was also conducted under the FDA's Project Orbis initiative, enabling concurrent review by the health authorities in Australia, Brazil, Canada and Switzerland.

About CheckMate -743

CheckMate -743 is an open-label, multi-center, randomized Phase 3 trial evaluating Opdivo plus Yervoy compared to chemotherapy (pemetrexed and cisplatin or carboplatin) in patients with histologically confirmed unresectable malignant pleural mesothelioma and no prior systemic therapy or palliative radiotherapy within 14 days of initiation of therapy (n=605). 1 Patients with interstitial lung disease, active autoimmune disease, medical conditions requiring systemic immunosuppression, or active brain metastasis were excluded from the trial. 1 In the trial, 303 patients were randomized to receive Opdivo 3 mg/kg every two weeks and Yervoy 1 mg/kg every six weeks; 302 patients were randomized to receive cisplatin 75 mg/m 2 or carboplatin AUC 5 plus pemetrexed 500 mg/m 2 in 3-week cycles for six cycles. 1 Treatment in both arms continued until disease progression or unacceptable toxicity or, in the Opdivo + Yervoy arm, up to 24 months. 1 The primary endpoint of the trial was OS in all randomized patients. 1 Additional efficacy outcome measures included progression-free survival (PFS), objective response rate (ORR) and duration of response (DOR), as assessed by BICR utilizing modified RECIST criteria. 1

Select Safety Profile from CheckMate -743 Study

Treatment was permanently discontinued for adverse reactions in 23% of patients treated with Opdivo + Yervoy , and 52% had at least one dose withheld for an adverse reaction. 1 An additional 4.7% of patients permanently discontinued Yervoy alone due to adverse reactions. Serious adverse reactions occurred in 54% of patients receiving Opdivo + Yervoy . 1 The most frequent (≥2%) serious adverse reactions in patients receiving Opdivo + Yervoy were pneumonia, pyrexia, diarrhea, pneumonitis, pleural effusion, dyspnea, acute kidney injury, infusion-related reaction, musculoskeletal pain, and pulmonary embolism. 1 Fatal adverse reactions occurred in 4 (1.3%) patients and included pneumonitis, acute heart failure, sepsis, and encephalitis. 1 The most common (≥20%) adverse reactions were fatigue (43%), musculoskeletal pain (38%), rash (34%), diarrhea (32%), dyspnea (27%), nausea (24%), decreased appetite (24%), cough (23%) and pruritus (21%). 1 The median number of doses was 12 for Opdivo and 4 for Yervoy . 3

About Malignant Pleural Mesothelioma

Mesothelioma is a rare but aggressive form of cancer that often forms in the lining of the lungs. 2,14 There are approximately 3,000 cases diagnosed in the United States each year. 14 Malignant pleural mesothelioma is the most common type of the disease. 2 It is most frequently caused by exposure to asbestos and diagnosis is often delayed, with the majority of patients presenting with advanced disease. 2,15 Prognosis is generally poor: in patients with advanced malignant pleural mesothelioma, median survival is approximately one year and the five-year survival rate is approximately 10%. 2

INDICATIONS

OPDIVO ® (nivolumab), in combination with YERVOY ® (ipilimumab), is indicated for the treatment of patients with unresectable or metastatic melanoma.

OPDIVO ® (nivolumab), in combination with YERVOY ® (ipilimumab), is indicated for the first-line treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L1 (≥1%) as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations.

OPDIVO ® (nivolumab), in combination with YERVOY ® (ipilimumab) and 2 cycles of platinum-doublet chemotherapy, is indicated for the first-line treatment of adult patients with metastatic or recurrent non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

OPDIVO ® (nivolumab), in combination with YERVOY ® (ipilimumab), is indicated for the first-line treatment of adult patients with unresectable malignant pleural mesothelioma.

OPDIVO ® (nivolumab), in combination with YERVOY ® (ipilimumab), is indicated for the treatment of patients with intermediate or poor risk, previously untreated advanced renal cell carcinoma (RCC).

OPDIVO ® (nivolumab), in combination with YERVOY ® (ipilimumab), is indicated for the treatment of adults and pediatric patients 12 years and older with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC) that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

OPDIVO ® (nivolumab), in combination with YERVOY ® (ipilimumab), is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

IMPORTANT SAFETY INFORMATION

Severe and Fatal Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions listed herein may not be inclusive of all possible severe and fatal immune-mediated adverse reactions.

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue. While immune-mediated adverse reactions usually manifest during treatment, they can also occur at any time after starting or discontinuing YERVOY. Early identification and management are essential to ensure safe use of YERVOY. Monitor for signs and symptoms that may be clinical manifestations of underlying immune-mediated adverse reactions. Evaluate clinical chemistries including liver enzymes, creatinine, adrenocorticotropic hormone (ACTH) level, and thyroid function at baseline and before each dose. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue YERVOY depending on severity. In general, if YERVOY requires interruption or discontinuation, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less followed by corticosteroid taper for at least 1 month. Consider administration of other systemic immunosuppressants in patients whose immune-mediated adverse reaction is not controlled with corticosteroid therapy. Institute hormone replacement therapy for endocrinopathies as warranted.

Immune-Mediated Pneumonitis

OPDIVO can cause immune-mediated pneumonitis. Fatal cases have been reported. Monitor patients for signs with radiographic imaging and for symptoms of pneumonitis. Administer corticosteroids for Grade 2 or more severe pneumonitis. Permanently discontinue for Grade 3 or 4 and withhold until resolution for Grade 2. In patients receiving OPDIVO monotherapy, fatal cases of immune-mediated pneumonitis have occurred. Immune-mediated pneumonitis occurred in 3.1% (61/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated pneumonitis occurred in 6% (25/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated pneumonitis occurred in 10% (5/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated pneumonitis occurred in 4.4% (24/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated pneumonitis occurred in 1.7% (2/119) of patients. In NSCLC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated pneumonitis occurred in 9% (50/576) of patients, including Grade 4 (0.5%), Grade 3 (3.5%), and Grade 2 (4.0%) immune-mediated pneumonitis. Four patients (0.7%) died due to pneumonitis. The incidence and severity of immune-mediated pneumonitis in patients with NSCLC treated with OPDIVO 360 mg every 3 weeks in combination with YERVOY 1 mg/kg every 6 weeks and 2 cycles of platinum-doublet chemotherapy were comparable to treatment with OPDIVO in combination with YERVOY only. The incidence and severity of immune-mediated pneumonitis in patients with malignant pleural mesothelioma treated with OPDIVO 3 mg/kg every 2 weeks with YERVOY 1 mg/kg every 6 weeks were similar to those occurring in NSCLC.

Immune-Mediated Colitis

OPDIVO can cause immune-mediated colitis. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 (of more than 5 days duration), 3, or 4 colitis. Withhold OPDIVO monotherapy for Grade 2 or 3 and permanently discontinue for Grade 4 or recurrent colitis upon re-initiation of OPDIVO. When administered with YERVOY, withhold OPDIVO and YERVOY for Grade 2 and permanently discontinue for Grade 3 or 4 or recurrent colitis. In patients receiving OPDIVO monotherapy, immune-mediated colitis occurred in 2.9% (58/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated colitis occurred in 26% (107/407) of patients including three fatal cases. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated colitis occurred in 10% (5/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated colitis occurred in 10% (52/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated colitis occurred in 7% (8/119) of patients.

In a separate Phase 3 trial of YERVOY 3 mg/kg, immune-mediated diarrhea/colitis occurred in 12% (62/511) of patients, including Grade 3-5 (7%).

Cytomegalovirus (CMV) infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Addition of an alternative immunosuppressive agent to the corticosteroid therapy, or replacement of the corticosteroid therapy, should be considered in corticosteroid-refractory immune-mediated colitis if other causes are excluded.

Immune-Mediated Hepatitis

OPDIVO can cause immune-mediated hepatitis. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater transaminase elevations. For patients without HCC, withhold OPDIVO for Grade 2 and permanently discontinue OPDIVO for Grade 3 or 4. For patients with HCC, withhold OPDIVO and administer corticosteroids if AST/ALT is within normal limits at baseline and increases to >3 and up to 5 times the upper limit of normal (ULN), if AST/ALT is >1 and up to 3 times ULN at baseline and increases to >5 and up to 10 times the ULN, and if AST/ALT is >3 and up to 5 times ULN at baseline and increases to >8 and up to 10 times the ULN. Permanently discontinue OPDIVO and administer corticosteroids if AST or ALT increases to >10 times the ULN or total bilirubin increases >3 times the ULN. In patients receiving OPDIVO monotherapy, immune-mediated hepatitis occurred in 1.8% (35/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated hepatitis occurred in 13% (51/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated hepatitis occurred in 20% (10/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hepatitis occurred in 7% (38/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hepatitis occurred in 8% (10/119) of patients.

In a separate Phase 3 trial of YERVOY 3 mg/kg, immune-mediated hepatitis occurred in 4.1% (21/511) of patients, including Grade 3-5 (1.6%).

Immune-Mediated Endocrinopathies

OPDIVO can cause immune-mediated hypophysitis, immune-mediated adrenal insufficiency, autoimmune thyroid disorders, and Type 1 diabetes mellitus. Monitor patients for signs and symptoms of hypophysitis, signs and symptoms of adrenal insufficiency, thyroid function prior to and periodically during treatment, and hyperglycemia. Withhold for Grades 2, 3, or 4 endocrinopathies if not clinically stable. Administer hormone replacement as clinically indicated and corticosteroids for Grade 2 or greater hypophysitis. Withhold for Grade 2 or 3 and permanently discontinue for Grade 4 hypophysitis. Administer corticosteroids for Grade 3 or 4 adrenal insufficiency. Withhold for Grade 2 and permanently discontinue for Grade 3 or 4 adrenal insufficiency. Administer hormone-replacement therapy for hypothyroidism. Initiate medical management for control of hyperthyroidism. Withhold OPDIVO for Grade 3 and permanently discontinue for Grade 4 hyperglycemia.

In patients receiving OPDIVO monotherapy, hypophysitis occurred in 0.6% (12/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypophysitis occurred in 9% (36/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypophysitis occurred in 4% (2/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypophysitis occurred in 4.6% (25/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated hypophysitis occurred in 3.4% (4/119) of patients. In patients receiving OPDIVO monotherapy, adrenal insufficiency occurred in 1% (20/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, adrenal insufficiency occurred in 5% (21/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, adrenal insufficiency occurred in 18% (9/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, adrenal insufficiency occurred in 7% (41/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, adrenal insufficiency occurred in 5.9% (7/119) of patients. In patients receiving OPDIVO monotherapy, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 9% (171/1994) of patients. Hyperthyroidism occurred in 2.7% (54/1994) of patients receiving OPDIVO monotherapy. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (89/407) of patients. Hyperthyroidism occurred in 8% (34/407) of patients receiving this dose of OPDIVO with YERVOY. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (11/49) of patients. Hyperthyroidism occurred in 10% (5/49) of patients receiving this dose of OPDIVO with YERVOY. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 22% (119/547) of patients. Hyperthyroidism occurred in 12% (66/547) of patients receiving this dose of OPDIVO with YERVOY. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, hypothyroidism or thyroiditis resulting in hypothyroidism occurred in 15% (18/119) of patients. Hyperthyroidism occurred in 12% (14/119) of patients. In patients receiving OPDIVO monotherapy, diabetes occurred in 0.9% (17/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, diabetes occurred in 1.5% (6/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, diabetes occurred in 2.7% (15/547) of patients.

In a separate Phase 3 trial of YERVOY 3 mg/kg, severe to life-threatening endocrinopathies occurred in 9 (1.8%) patients. All 9 patients had hypopituitarism, and some had additional concomitant endocrinopathies such as adrenal insufficiency, hypogonadism, and hypothyroidism. Six of the 9 patients were hospitalized for severe endocrinopathies.

Immune-Mediated Nephritis and Renal Dysfunction

OPDIVO can cause immune-mediated nephritis. Monitor patients for elevated serum creatinine prior to and periodically during treatment. Administer corticosteroids for Grades 2-4 increased serum creatinine. Withhold OPDIVO for Grade 2 or 3 and permanently discontinue for Grade 4 increased serum creatinine. In patients receiving OPDIVO monotherapy, immune-mediated nephritis and renal dysfunction occurred in 1.2% (23/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 2.2% (9/407) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 4.6% (25/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated nephritis and renal dysfunction occurred in 1.7% (2/119) of patients.

Immune-Mediated Skin and Dermatologic Adverse Reactions

OPDIVO can cause immune-mediated rash, including Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), some cases with fatal outcome. Administer corticosteroids for Grade 3 or 4 rash. Withhold for Grade 3 and permanently discontinue for Grade 4 rash. For symptoms or signs of SJS or TEN, withhold OPDIVO and refer the patient for specialized care for assessment and treatment; if confirmed, permanently discontinue. In patients receiving OPDIVO monotherapy, immune-mediated rash occurred in 9% (171/1994) of patients. In melanoma patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated rash occurred in 22.6% (92/407) of patients. In HCC patients receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg, immune-mediated rash occurred in 35% (17/49) of patients. In RCC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated rash occurred in 16% (90/547) of patients. In MSI-H/dMMR mCRC patients receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg, immune-mediated rash occurred in 14% (17/119) of patients.

YERVOY can cause immune-mediated rash or dermatitis, including bullous and exfoliative dermatitis, Stevens Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate non-bullous exfoliative rashes. Withhold YERVOY until specialist assessment for Grade 2 and permanently discontinue for Grade 3 or 4 exfoliative or bullous dermatologic conditions.

In a separate Phase 3 trial of YERVOY 3 mg/kg, immune-mediated rash occurred in 15% (76/511) of patients, including Grade 3-5 (2.5%).

Immune-Mediated Encephalitis

OPDIVO can cause immune-mediated encephalitis. Fatal cases have been reported. Evaluation of patients with neurologic symptoms may include, but not be limited to, consultation with a neurologist, brain MRI, and lumbar puncture. Withhold OPDIVO in patients with new-onset moderate to severe neurologic signs or symptoms and evaluate to rule out other causes. If other etiologies are ruled out, administer corticosteroids and permanently discontinue OPDIVO for immune-mediated encephalitis. In patients receiving OPDIVO monotherapy, encephalitis occurred in 0.2% (3/1994) of patients. Fatal limbic encephalitis occurred in one patient after 7.2 months of exposure despite discontinuation of OPDIVO and administration of corticosteroids. Encephalitis occurred in one melanoma patient receiving OPDIVO 1 mg/kg with YERVOY 3 mg/kg (0.2%) after 1.7 months of exposure. Encephalitis occurred in one RCC patient receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg (0.2%) after approximately 4 months of exposure. Encephalitis occurred in one MSI-H/dMMR mCRC patient (0.8%) receiving OPDIVO 3 mg/kg with YERVOY 1 mg/kg after 15 days of exposure.

Other Immune-Mediated Adverse Reactions

Based on the severity of the adverse reaction, permanently discontinue or withhold OPDIVO, administer high-dose corticosteroids, and, if appropriate, initiate hormone-replacement therapy. Dose modifications for YERVOY for adverse reactions that require management different from these general guidelines are summarized as follows. Withhold for Grade 2 and permanently discontinue YERVOY for Grade 3 or 4 neurological toxicities. Withhold for Grade 2 and permanently discontinue YERVOY for Grade 3 or 4 myocarditis. Permanently discontinue YERVOY for Grade 2, 3, or 4 ophthalmologic adverse reactions that do not improve to Grade 1 within 2 weeks while receiving topical therapy OR that require systemic therapy. Across clinical trials of OPDIVO monotherapy or in combination with YERVOY, the following clinically significant immune-mediated adverse reactions, some with fatal outcome, occurred in

If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, which has been observed in patients receiving OPDIVO and YERVOY and YERVOY and may require treatment with systemic steroids to reduce the risk of permanent vision loss.

Infusion-Related Reactions

OPDIVO can cause severe infusion-related reactions, which have been reported in

In separate Phase 3 trials of YERVOY 3 mg/kg and 10 mg/kg, infusion-related reactions occurred in 2.9% (28/982).

Complications of Allogeneic Hematopoietic Stem Cell Transplantation

Fatal and other serious complications can occur in patients who receive allogeneic hematopoietic stem cell transplantation (HSCT) before or after being treated with a PD-1 receptor blocking antibody or YERVOY. Transplant-related complications include hyperacute graft-versus-host-disease (GVHD), acute GVHD, chronic GVHD, hepatic veno-occlusive disease (VOD) after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between PD-1 or CTLA-4 receptor blockade and allogeneic HSCT.

Follow patients closely for evidence of transplant-related complications and intervene promptly. Consider the benefit versus risks of treatment with a PD-1 receptor blocking antibody or YERVOY prior to or after an allogeneic HSCT.

Embryo-Fetal Toxicity

Based on mechanism of action, OPDIVO and YERVOY can cause fetal harm when administered to a pregnant woman. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use effective contraception during treatment with OPDIVO or YERVOY and for at least 5 months after the last dose.

Increased Mortality in Patients with Multiple Myeloma when OPDIVO is Added to a Thalidomide Analogue and Dexamethasone

In clinical trials in patients with multiple myeloma, the addition of OPDIVO to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of patients with multiple myeloma with a PD-1 or PD-L1 blocking antibody in combination with a thalidomide analogue plus dexamethasone is not recommended outside of controlled clinical trials.

Lactation

It is not known whether OPDIVO or YERVOY is present in human milk. Because many drugs, including antibodies, are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from OPDIVO or YERVOY, advise women not to breastfeed during treatment and for at least 5 months after the last dose.

Serious Adverse Reactions

In Checkmate 067, serious adverse reactions (74% and 44%), adverse reactions leading to permanent discontinuation (47% and 18%) or to dosing delays (58% and 36%), and Grade 3 or 4 adverse reactions (72% and 51%) all occurred more frequently in the OPDIVO plus YERVOY arm (n=313) relative to the OPDIVO arm (n=313). The most frequent (≥10%) serious adverse reactions in the OPDIVO plus YERVOY arm and the OPDIVO arm, respectively, were diarrhea (13% and 2.2%), colitis (10% and 1.9%), and pyrexia (10% and 1.0%). In Checkmate 227, serious adverse reactions occurred in 58% of patients (n=576). The most frequent (≥2%) serious adverse reactions were pneumonia, diarrhea/colitis, pneumonitis, hepatitis, pulmonary embolism, adrenal insufficiency, and hypophysitis. Fatal adverse reactions occurred in 1.7% of patients; these included events of pneumonitis (4 patients), myocarditis, acute kidney injury, shock, hyperglycemia, multi-system organ failure, and renal failure. In Checkmate 9LA, serious adverse reactions occurred in 57% of patients (n=358). The most frequent (>2%) serious adverse reactions were pneumonia, diarrhea, febrile neutropenia, anemia, acute kidney injury, musculoskeletal pain, dyspnea, pneumonitis, and respiratory failure. Fatal adverse reactions occurred in 7 (2%) patients, and included hepatic toxicity, acute renal failure, sepsis, pneumonitis, diarrhea with hypokalemia, and massive hemoptysis in the setting of thrombocytopenia. In Checkmate 743, serious adverse reactions occurred in 54% of patients receiving OPDIVO plus YERVOY. The most frequent serious adverse reactions reported in ≥2% of patients were pyrexia, diarrhea, pneumonia, pneumonitis, pleural effusion, dyspnea, acute kidney injury, infusion-related reaction, musculoskeletal pain, and pulmonary embolism. Fatal adverse reactions occurred in 3 (1%) patients and included pneumonitis, acute heart failure, and encephalitis. In Checkmate 214, serious adverse reactions occurred in 59% of patients receiving OPDIVO plus YERVOY. The most frequent serious adverse reactions reported in ≥2% of patients were diarrhea, pyrexia, pneumonia, pneumonitis, hypophysitis, acute kidney injury, dyspnea, adrenal insufficiency, and colitis. In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY, serious adverse reactions occurred in 47% of patients. The most frequent serious adverse reactions reported in ≥2% of patients were colitis/diarrhea, hepatic events, abdominal pain, acute kidney injury, pyrexia, and dehydration. In Checkmate 040, serious adverse reactions occurred in 59% of patients receiving OPDIVO with YERVOY (n=49). Serious adverse reactions reported in ≥4% of patients were pyrexia, diarrhea, anemia, increased AST, adrenal insufficiency, ascites, esophageal varices hemorrhage, hyponatremia, increased blood bilirubin, and pneumonitis.

Common Adverse Reactions

In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO plus YERVOY arm (n=313) were fatigue (62%), diarrhea (54%), rash (53%), nausea (44%), pyrexia (40%), pruritus (39%), musculoskeletal pain (32%), vomiting (31%), decreased appetite (29%), cough (27%), headache (26%), dyspnea (24%), upper respiratory tract infection (23%), arthralgia (21%), and increased transaminases (25%). In Checkmate 067, the most common (≥20%) adverse reactions in the OPDIVO arm (n=313) were fatigue (59%), rash (40%), musculoskeletal pain (42%), diarrhea (36%), nausea (30%), cough (28%), pruritus (27%), upper respiratory tract infection (22%), decreased appetite (22%), headache (22%), constipation (21%), arthralgia (21%), and vomiting (20%). In Checkmate 227, the most common (≥20%) adverse reactions were fatigue (44%), rash (34%), decreased appetite (31%), musculoskeletal pain (27%), diarrhea/colitis (26%), dyspnea (26%), cough (23%), hepatitis (21%), nausea (21%), and pruritus (21%). In Checkmate 9LA, the most common (>20%) adverse reactions were fatigue (49%), musculoskeletal pain (39%), nausea (32%), diarrhea (31%), rash (30%), decreased appetite (28%), constipation (21%), and pruritus (21%). In Checkmate 743, the most common adverse reactions (>20%) in patients receiving OPDIVO and YERVOY were fatigue (43%), musculoskeletal pain (38%), rash (34%), diarrhea (32%), dyspnea (27%), nausea (24%), decreased appetite (24%), cough (23%), and pruritus (21%). In Checkmate 214, the most common adverse reactions (≥20%) reported in patients treated with OPDIVO plus YERVOY (n=547) were fatigue (58%), rash (39%), diarrhea (38%), musculoskeletal pain (37%), pruritus (33%), nausea (30%), cough (28%), pyrexia (25%), arthralgia (23%), decreased appetite (21%), dyspnea (20%), and vomiting (20%). In Checkmate 142 in MSI-H/dMMR mCRC patients receiving OPDIVO with YERVOY, the most common adverse reactions (≥20%) were fatigue (49%), diarrhea (45%), pyrexia (36%), musculoskeletal pain (36%), abdominal pain (30%), pruritus (28%), nausea (26%), rash (25%), decreased appetite (20%), and vomiting (20%). In Checkmate 040, the most common adverse reactions (≥20%) in patients receiving OPDIVO with YERVOY (n=49), were rash (53%), pruritus (53%), musculoskeletal pain (41%), diarrhea (39%), cough (37%), decreased appetite (35%), fatigue (27%), pyrexia (27%), abdominal pain (22%), headache (22%), nausea (20%), dizziness (20%), hypothyroidism (20%), and weight decreased (20%).

In a separate Phase 3 trial of YERVOY 3 mg/kg, the most common adverse reactions (≥5%) in patients who received YERVOY at 3 mg/kg were fatigue (41%), diarrhea (32%), pruritus (31%), rash (29%), and colitis (8%).

Please see U.S. Full Prescribing Information for OPDIVO and YERVOY .

Bristol Myers Squibb: Advancing Cancer Research

At Bristol Myers Squibb, patients are at the center of everything we do. The goal of our cancer research is to increase patients' quality of life, long-term survival and make cure a possibility. We harness our deep scientific experience, cutting-edge technologies and discovery platforms to discover, develop and deliver novel treatments for patients.

Building upon our transformative work and legacy in hematology and Immuno-Oncology that has changed survival expectations for many cancers, our researchers are advancing a deep and diverse pipeline across multiple modalities. In the field of immune cell therapy, this includes registrational CAR T cell agents for numerous diseases, and a growing early-stage pipeline that expands cell and gene therapy targets, and technologies. We are developing cancer treatments directed at key biological pathways using our protein homeostasis platform, a research capability that has been the basis of our approved therapies for multiple myeloma and several promising compounds in early- to mid-stage development. Our scientists are targeting different immune system pathways to address interactions between tumors, the microenvironment and the immune system to further expand upon the progress we have made and help more patients respond to treatment. Combining these approaches is key to delivering potential new options for the treatment of cancer and addressing the growing issue of resistance to immunotherapy. We source innovation internally, and in collaboration with academia, government, advocacy groups and biotechnology companies, to help make the promise of transformational medicines a reality for patients.

About Bristol Myers Squibb's Patient Access Support

Bristol Myers Squibb remains committed to providing assistance so that cancer patients who need our medicines can access them and expedite time to therapy.

BMS Access Support ® , the Bristol Myers Squibb patient access and reimbursement program, is designed to help appropriate patients initiate and maintain access to BMS medicines during their treatment journey. BMS Access Support offers benefit investigation, prior authorization assistance, as well as co-pay assistance for eligible, commercially insured patients. More information about our access and reimbursement support can be obtained by calling BMS Access Support at 1-800-861-0048 or by visiting www.bmsaccesssupport.com .

About the Bristol Myers Squibb and Ono Pharmaceutical Collaboration

In 2011, through a collaboration agreement with Ono Pharmaceutical Co., Bristol Myers Squibb expanded its territorial rights to develop and commercialize Opdivo globally, except in Japan, South Korea and Taiwan, where Ono had retained all rights to the compound at the time. On July 23, 2014, Ono and Bristol Myers Squibb further expanded the companies' strategic collaboration agreement to jointly develop and commercialize multiple immunotherapies – as single agents and combination regimens – for patients with cancer in Japan, South Korea and Taiwan.

About Bristol Myers Squibb

Bristol Myers Squibb is a global biopharmaceutical company whose mission is to discover, develop and deliver innovative medicines that help patients prevail over serious diseases. For more information about Bristol Myers Squibb, visit us at BMS.com or follow us on LinkedIn , Twitter , YouTube , Facebook and Instagram .

Celgene and Juno Therapeutics are wholly owned subsidiaries of Bristol-Myers Squibb Company. In certain countries outside the U.S., due to local laws, Celgene and Juno Therapeutics are referred to as, Celgene, a Bristol Myers Squibb company and Juno Therapeutics, a Bristol Myers Squibb company.

Cautionary Statement Regarding Forward-Looking Statements

This press release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995 regarding, among other things, the research, development and commercialization of pharmaceutical products. All statements that are not statements of historical facts are, or may be deemed to be, forward-looking statements. Such forward-looking statements are based on historical performance and current expectations and projections about our future financial results, goals, plans and objectives and involve inherent risks, assumptions and uncertainties, including internal or external factors that could delay, divert or change any of them in the next several years, that are difficult to predict, may be beyond our control and could cause our future financial results, goals, plans and objectives to differ materially from those expressed in, or implied by, the statements. These risks, assumptions, uncertainties and other factors include, among others whether Opdivo plus Yervoy for the additional indication described in this release will be commercially successful and that continued approval of such combination treatment for such additional indication described in this release may be contingent upon verification and description of clinical benefit in confirmatory trials. No forward-looking statement can be guaranteed. Forward-looking statements in this press release should be evaluated together with the many risks and uncertainties that affect Bristol Myers Squibb's business and market, particularly those identified in the cautionary statement and risk factors discussion in Bristol Myers Squibb's Annual Report on Form 10-K for the year ended December 31, 2019, as updated by our subsequent Quarterly Reports on Form 10-Q, Current Reports on Form 8-K and other filings with the Securities and Exchange Commission. The forward-looking statements included in this document are made only as of the date of this document and except as otherwise required by applicable law, Bristol Myers Squibb undertakes no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events, changed circumstances or otherwise.

References

  1. Opdivo Prescribing Information. Opdivo U.S. Product Information. Last updated: October, 2020. Princeton, NJ: Bristol-Myers Squibb Company.
  2. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines: Malignant Pleural Mesothelioma. https://www.nccn.org/professionals/physician_gls/pdf/mpm.pdf . Updated November 27, 2019. Accessed September 11, 2020.
  3. Baas P, Scherpereel A, Nowak A, et al. First-line nivolumuab + ipilimumab vs chemotherapy in unresectable malignant pleural mesothelioma: CheckMate 743. Lecture presented at: World Conference on Lung Cancer (WCLC) Virtual Presidential Synposium. August 8, 2020.
  4. SEER. Mesothelioma, CSR 1975-2016. https://seer.cancer.gov/csr/1975_2017/results_merged/sect_17_mesothelioma.pdf . Accessed September 11, 2020
  5. Yervoy Prescribing Information. Yervoy U.S. Product Information. Last updated: October, 2020. Princeton, NJ: Bristol-Myers Squibb Company.
  6. National Cancer Institute. Non-Small Cell Lung Cancer Treatment (PDQ®) – Health Professional Version. https://www.cancer.gov/types/lung/hp/non-small-cell-lung-treatment-pdq . Updated May 7, 2020. Accessed September 11, 2020.
  7. Weber J, Hamid Omid, Chasalow S, et al. Ipilimumab increases activated T cells and enhances humoral immunity in patients with advanced melanoma. J Immunother. 2012;35(1):89-97.
  8. Pico de Coana Y, Wolodarski M, Poschke I, et al. Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget. 2017;8(13):21539-21553.
  9. Pedicord V, Montalvo W, Leiner I, et al. Single dose of anti-CTLA-4 enhances CD8 + T-cell memory formation, function, and maintenance. Proc Natl Acad Sci USA. 2011;8(1):266-271.
  10. Felix J, Lambert J, Roelens M, et al. Ipilimumab reshapes T cell memory subsets in melanoma patients with clinical response. Oncoimmunology. 2016;5(7):1-10.
  11. Ansell S, Hurvitz S, Keonig P, et al. Phase I study of ipilimumab, an anti–CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non–Hodgkin lymphoma. Clin Cancer Res. 2009;15(20):6446-6453.
  12. Farber D, Yudanin N, Restifo N. Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol. 2014;14(1):24-35.
  13. U.S. Food & Drug Administration. Real-Time Oncology Review Pilot Program. https://www.fda.gov/about-fda/oncology-center-excellence/real-time-oncology-review-pilot-program . Accessed September 11, 2019.
  14. American Cancer Society. Key Statistics for Mesothelioma. https://www.cancer.org/cancer/malignant-mesothelioma/about/key-statistics.html . Updated January 9, 2020. Accessed September 11, 2020.
  15. American Cancer Society. Risk Factors for Mesothelioma. https://www.cancer.org/cancer/malignant-mesothelioma/causes-risks-prevention/risk-factors.html . Updated January 9, 2020. Accessed September 11, 2020.

corporatefinancial-news

Bristol Myers Squibb  

Media Inquiries:  
609-252-3345
Media@BMS.com

Investors:  
Tim Power
609-252-7509
Timothy.Power@BMS.com

News Provided by Business Wire via QuoteMedia

The Conversation (0)
×