- AustraliaNorth AmericaWorld
Investing News NetworkYour trusted source for investing success
Silver47 Exploration
Purpose Bitcoin ETF
Jindalee Lithium
Black Swan Graphene
- Lithium Outlook
- Oil and Gas Outlook
- Gold Outlook Report
- Uranium Outlook
- Rare Earths Outlook
- All Outlook Reports
- Top Generative AI Stocks
- Top EV Stocks
- Biggest AI Companies
- Biggest Blockchain Stocks
- Biggest Cryptocurrency-mining Stocks
- Biggest Cybersecurity Companies
- Biggest Robotics Companies
- Biggest Social Media Companies
- Biggest Technology ETFs
- Artificial Intellgience ETFs
- Robotics ETFs
- Canadian Cryptocurrency ETFs
- Artificial Intelligence Outlook
- EV Outlook
- Cleantech Outlook
- Crypto Outlook
- Tech Outlook
- All Market Outlook Reports
- Cannabis Weekly Round-Up
- Top Alzheimer's Treatment Stocks
- Top Biotech Stocks
- Top Plant-based Food Stocks
- Biggest Cannabis Stocks
- Biggest Pharma Stocks
- Longevity Stocks to Watch
- Psychedelics Stocks to Watch
- Top Cobalt Stocks
- Small Biotech ETFs to Watch
- Top Life Science ETFs
- Biggest Pharmaceutical ETFs
- Life Science Outlook
- Biotech Outlook
- Cannabis Outlook
- Pharma Outlook
- Psychedelics Outlook
- All Market Outlook Reports
Supercomputing Leader Cray Introduces First Exascale-class Supercomputer
Cray (NASDAQ:CRAY), a company that is engaged in supercomputers released a new supercomputing system code-named “Shasta”. The company said that Shasta is an entirely new design and is set to be technology that frames the next generation of supercomputing. As quoted in the press release: With sweeping hardware and software innovations, Shasta incorporates next-generation Cray …
Cray (NASDAQ:CRAY), a company that is engaged in supercomputers released a new supercomputing system code-named “Shasta”.
The company said that Shasta is an entirely new design and is set to be technology that frames the next generation of supercomputing.
As quoted in the press release:
With sweeping hardware and software innovations, Shasta incorporates next-generation Cray system software to enable modularity and extensibility, a new Cray-designed system interconnect, unparalleled flexibility in processing choice within a system, and a software environment that provides for seamless scalability. The U.S. Department of Energy (DOE) also announced today that NERSC, the National Energy Research Scientific Computing Center, has chosen a Cray “Shasta” supercomputer for its NERSC-9 system, named “Perlmutter,” in 2020. The program contract is valued at $146 million, one of the largest in Cray’s history, and will feature a Shasta system with Cray® ClusterStor™ storage.
“Shasta will usher in a new era of supercomputing and represents a true game-changer at a time when artificial intelligence and analytics are being brought to bear on increasingly large and complex problems, including classic HPC modeling and simulation challenges, across an ever-broadening set of companies and industries,” said Peter Ungaro, president and CEO of Cray. “It is also very exciting to announce that one of the largest contracts in the history of our company was just signed with NERSC. We are honored to continue our partnership with NERSC and put Shasta to work in support of their broad mission to enable computational and data science at scale.”
With Shasta, Cray is also announcing Slingshot, a new high-speed, purpose-built supercomputing interconnect. Slingshot advances Cray’s industry leadership in scalable network performance and adds capabilities that broaden Cray’s market reach. The Cray-developed Slingshot interconnect will have up to 5x more bandwidth per node and is designed for data-centric computing. Slingshot will feature Ethernet compatibility, advanced adaptive routing, first-of-a-kind congestion control, and sophisticated quality-of-service capabilities. Support for both IP-routed and remote memory operations will broaden the range of applications beyond traditional modeling and simulation. Quality-of-service and novel congestion management features will limit the impact to critical workloads from system services, I/O traffic, and co-tenant workloads, to increase realized performance and limit performance variation. Reduction in the network diameter from five hops (in the current Cray® XC™ generation) to three will reduce latency and power while improving sustained bandwidth and reliability.
Latest News
Investing News Network websites or approved third-party tools use cookies. Please refer to the cookie policy for collected data, privacy and GDPR compliance. By continuing to browse the site, you agree to our use of cookies.