- AustraliaNorth AmericaWorld
Investing News NetworkYour trusted source for investing success
- Lithium Outlook
- Oil and Gas Outlook
- Gold Outlook Report
- Uranium Outlook
- Rare Earths Outlook
- All Outlook Reports
- Top Generative AI Stocks
- Top EV Stocks
- Biggest AI Companies
- Biggest Blockchain Stocks
- Biggest Cryptocurrency-mining Stocks
- Biggest Cybersecurity Companies
- Biggest Robotics Companies
- Biggest Social Media Companies
- Biggest Technology ETFs
- Artificial Intellgience ETFs
- Robotics ETFs
- Canadian Cryptocurrency ETFs
- Artificial Intelligence Outlook
- EV Outlook
- Cleantech Outlook
- Crypto Outlook
- Tech Outlook
- All Market Outlook Reports
- Cannabis Weekly Round-Up
- Top Alzheimer's Treatment Stocks
- Top Biotech Stocks
- Top Plant-based Food Stocks
- Biggest Cannabis Stocks
- Biggest Pharma Stocks
- Longevity Stocks to Watch
- Psychedelics Stocks to Watch
- Top Cobalt Stocks
- Small Biotech ETFs to Watch
- Top Life Science ETFs
- Biggest Pharmaceutical ETFs
- Life Science Outlook
- Biotech Outlook
- Cannabis Outlook
- Pharma Outlook
- Psychedelics Outlook
- All Market Outlook Reports
Rice University Discovers New Moly Disulfide Applications
IEEE Spectrum reported that researchers at Rice University have found a way to manipulate molybdenum disulfide (MoS2) so that it can be used as an improved catalyst for fuel cells and also as an electrode for supercapacitors.
IEEE Spectrum reported that researchers at Rice University have found a way to manipulate molybdenum disulfide (MoS2) so that it can be used as an improved catalyst for fuel cells and also as an electrode for supercapacitors.
As quoted in the market news:
In research published in the journal Advanced Materials, the Rice team, led by James Tour, developed a simple method for producing flexible films made from MoS2 that orients the material on its sides. In other words, they made the material in such a way that the maxiumum amount of its edges are exposed.
The researchers showed that when oriented in this manner, the MoS2 can serve as an effective catalyst in the hydrogen evolution reaction (HER), a process used in fuel cells to pull hydrogen from water.
The news outlet also states:
Other research has attempted to take advantage of MoS2 as a catalyst for fuel cells by standing them up on their sides. The Rice team took a different approach. First, they grew a porous molybdenum oxide film onto a molybdenum substrate through room-temperature anodization, an electrochemical process for thickening metal parts by adding a natural oxide layer.
The researchers then exposed the film to sulfur vapor at 300 °C (572 °F) for one hour. The result was molybdenum disulfide that had a flexible, nano-porous sponge-like structure.
Since the key to catalysts and to the electrodes in supercapacitors is surface area, the researchers immediately realized that the material would fit the bill for both applications. The Rice team developed a supercapacitor using the material and found the device retained 90 percent of its capacity after 10,000 charge-discharge cycles and 83 percent after 20,000 cycles.
Investing News Network websites or approved third-party tools use cookies. Please refer to the cookie policy for collected data, privacy and GDPR compliance. By continuing to browse the site, you agree to our use of cookies.