Aben Minerals Ltd. to Change Name to Aben Gold Corp.

Aben Minerals Ltd. to Change Name to Aben Gold Corp.

Aben Minerals Ltd. (TSX-V: ABM ) (OTCQB: ABNAF ) (Frankfurt: R26 ) ("Aben" or "the Company") announces that it is proceeding with a name change from Aben Minerals Ltd. to Aben Gold Corp.

The Company's share capitalization and trading symbol will remain the same.

The name change is subject to the acceptance of the TSX Venture Exchange. The Company shall issue a subsequent news release confirming the effective date of the name change.

The Company purchased the domain rights to www.abengold.com and www.abengold.ca, the Company's website url will be www.abengold.com upon completion and approval.

About Aben Minerals:

Aben Minerals is a Canadian gold exploration company with exploration projects in the Yukon Territory and British Columbia. The Company's flagship, the 7,400-hectare, 100% owned Justin Gold Project is located in the southeast Yukon in the Tintina Gold Belt adjacent to Seabridge Gold's 3 Aces Project. Aben Minerals also owns 100% of the Forrest Kerr Gold Project located in the Golden Triangle of British Columbia and shares claims borders with Skeena's KSP Project, and Seabridge Gold's Iskut Project.

The Company's goal is to increase shareholder value through new discoveries and developing exploration projects in geopolitically favourable jurisdictions.

The Company has 23.2 million shares outstanding.

Twitter

LinkedIn

For further information on Aben Minerals Ltd. (TSX-V: ABM ), visit our Company's website at www.abenminerals.com .

ABEN MINERALS LTD.

"Riley Trimble"

______________________
Riley Trimble
President & CEO

For further information contact:
Aben Minerals Ltd.
Riley Trimble, President & CEO
Telephone: 604-639-3852
Facsimile: 604-687-3119
Email: info@abenminerals.com

Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

This release includes certain statements that may be deemed to be "forward-looking statements". All statements in this release, other than statements of historical facts, that address events or developments that management of the Company expects, are forward-looking statements. Although management believes the expectations expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance, and actual results or developments may differ materially from those in the forward-looking statements. The Company undertakes no obligation to update these forward-looking statements if management's beliefs, estimates or opinions, or other factors, should change. Factors that could cause actual results to differ materially from those in forward-looking statements, include market prices, exploration and development successes, continued availability of capital and financing, and general economic, market or business conditions. Please see the public filings of the Company at www.sedarplus.ca for further information.


 

Primary Logo

News Provided by GlobeNewswire via QuoteMedia

ABM:CC
The Conversation (0)
Aben Minerals Commences Technical Report at Forrest Kerr

Aben Minerals Commences Technical Report at Forrest Kerr

Aben Minerals Ltd. (TSX-V: ABM ) (OTCQB: ABNAF ) (Frankfurt: R26 ) ("Aben" or "the Company") is pleased to announce that it has commenced a NI 43-101 Technical Report at the Forrest Kerr Project, in British Columbia's Golden Triangle.

The author of the report is North Mountain Geosciences located in Smithers, BC. Our objective with commencing a technical report on the project is for two fundamental motives. One, collect and combine all of the exploration work and data to help determine future work programs and areas of interest on the project. And two, provide management with a fair market value for the project.

News Provided by GlobeNewswire via QuoteMedia

Keep reading...Show less
ALTECH - CERENERGY Battery Prototype Reaches Key Milestones

ALTECH - CERENERGY Battery Prototype Reaches Key Milestones

Altech Batteries (ATC:AU) has announced ALTECH - CERENERGY Battery Prototype Reaches Key Milestones

Download the PDF here.

Altech Batteries Ltd  CERENERGY Battery Prototype Reaches Key Milestones

Altech Batteries Ltd CERENERGY Battery Prototype Reaches Key Milestones

Perth, Australia (ABN Newswire) - Altech Batteries Limited (ASX:ATC,OTC:ALTHF) (FRA:A3Y) (OTCMKTS:ALTHF) is pleased to announce the latest performance results of the CERENERGY(R) cell and battery pack prototypes. These results confirm the technological maturity and robustness of the CERENERGY(R) technology and mark another decisive step towards industrialisation.

Highlights

- 650+ cycles with no capacity loss, proving exceptional material stability and long operational lifespan compared to conventional batteries

- Near 100% Coulombic efficiency, confirming minimal side reactions and strong intrinsic safety of sodium nickel chloride chemistry

- High energy efficiency of up to 92%, surpassing typical 70-80% levels of competing battery technologies

- Proven safety under extreme conditions - cells remained stable during overcharge, deep discharge, and thermal cycling up to 300 degC with no gassing, leakage, or rupture

- Robust and reliable chemistry - sodium nickel chloride avoids flammable electrolytes and runaway risks, confirming suitability for safe, large-scale grid and renewable energy storage

- ABS60 prototype validated under real-world conditions -tested across diverse load profiles, high-current pulses up to 50 A, and thermal variations

- Stable, efficient performance - achieved ~88% round-trip efficiency with no observable capacity fade over 110+ cycles

CELL PERFORMANCE

The CERENERGY(R) prototype cells have successfully completed over 650 charge-discharge cycles without any detectable capacity loss. Cycle life is a critical measure of battery durability, as most conventional batteries experience gradual degradation with every cycle. Achieving such performance highlights the outstanding stability of the materials and points to the potential for a long operational lifespan.

For stationary energy storage systems (ESS), this translates into fewer battery replacements, lower lifetime operating costs, and greater reliability for end users.

The cells also delivered nearly 100% Coulombic efficiency alongside an energy efficiency of up to 92% across 650 cycles. Coulombic efficiency reflects the proportion of charge recovered during discharge relative to what was supplied during charging. A value approaching 100% indicates minimal side reactions or parasitic losses, confirming the intrinsic stability and safety of sodium nickel chloride chemistry. This high efficiency demonstrates that the cells are not expending energy on unwanted processes such as electrode degradation. Such performance is vital for scalability, ensuring reliable, longterm operation in commercial energy storage applications.

Energy efficiency represents the proportion of energy delivered relative to the energy supplied. Competing technologies, including conventional high-temperature batteries and many flow batteries, typically achieve only around 70-80%. By reaching 92%, CERENERGY(R) positions itself in a highly competitive class, offering more cost-effective energy storage, stronger economics for grid operators, and seamless compatibility with the requirements of renewable energy integration.

The cells achieved a nominal capacity of 100 Ah and 250 Wh, with reliable performance even at higher discharge rates. A key feature is their ability to support multiple daily charge-discharge cycles within the 20-80% state of charge (SoC) range at 25 A. This capability positions CERENERGY(R) as a highly flexible solution for grid operators and energy storage providers, enabling cost-efficient, long-life performance in applications that demand frequent cycling such as renewable integration, peak shaving, and backup power.

CERENERGY(R) prototype cells underwent rigorous abuse testing, including overcharge to 4 V, deep discharge to 0.2 V, and thermal cycling between room temperature and 300 degC. In all cases, the cells remained stable with no gassing, leakage, or rupture -clear proof of their outstanding safety. These results highlight the intrinsic stability of sodium nickel chloride chemistry, which avoids the flammable electrolytes and runaway risks common in lithium-ion batteries. The ability to withstand extreme electrical and thermal stress demonstrates CERENERGY(R)'s robustness and confirms its suitability for safe, largescale deployment in grid, renewable, and industrial energy storage applications. This was achieved over 3 cycles with 1.8 Full Charge Equivalent (FCE) into 22 hours.

BATTERY PACK ABS60 (60 kWh) PROTOTYPE

The first ABS60 battery pack prototype has been successfully validated under real-world operating conditions, marking a major step forward in product readiness. Testing included diverse load profiles,

continuous discharges at 25 A (equivalent to C-rate of C/4 (discharges in 4 hours), or one-quarter of the pack's rated capacity per hour) at 80% depth of discharge (DoD), short-duration high-current pulses up to 50 A, and carefully controlled thermal variations.

The pack consistently demonstrated stable performance, achieving ~88% round-trip efficiency while maintaining reliable thermal management. Efficiency refers to the proportion of input energy that can be retrieved during operation-a critical measure of economic viability for large-scale storage. Over more than 110 cycles, results showed no observable capacity fading and only a slight increase in internal resistance. Capacity fading refers to the gradual decline in usable energy over repeated cycles, while internal resistance influences power delivery and heat generation.

The absence of meaningful degradation confirms the durability and electrochemical stability of the ABS60 design. These outcomes are highly significant as they demonstrate that the pack can withstand real-world duty cycles while retaining performance and efficiency, translating into longer service life, fewer replacements, and lower total cost of ownership.

For grid operators and renewable integration projects, this combination of robust cycling capability, efficiency, and thermal stability underscores the ABS60's commercial readiness and competitive advantage in the stationary energy storage market.

These results are a strong confirmation of CERENERGY(R)'s technological leadership and a clear signal of the technology's competitiveness and robustness for future applications in energy storage and industrial markets.

Group Managing Director, Iggy Tan said "These results confirm CERENERGY(R)'s robustness and readiness for market adoption. Demonstrating long cycle life, high efficiency, and unmatched safety, we are now strongly positioned to deliver a competitive and sustainable alternative for grid and industrial energy storage."

*To view photographs, tables and figures, please visit:
https://abnnewswire.net/lnk/17QS44T3



About Altech Batteries Ltd:

Altech Batteries Limited (ASX:ATC,OTC:ALTHF) (FRA:A3Y) is a specialty battery technology company that has a joint venture agreement with world leading German battery institute Fraunhofer IKTS ("Fraunhofer") to commercialise the revolutionary CERENERGY(R) Sodium Alumina Solid State (SAS) Battery. CERENERGY(R) batteries are the game-changing alternative to lithium-ion batteries. CERENERGY(R) batteries are fire and explosion-proof; have a life span of more than 15 years and operate in extreme cold and desert climates. The battery technology uses table salt and is lithium-free; cobalt-free; graphite-free; and copper-free, eliminating exposure to critical metal price rises and supply chain concerns.

The joint venture is commercialising its CERENERGY(R) battery, with plans to construct a 100MWh production facility on Altech's land in Saxony, Germany. The facility intends to produce CERENERGY(R) battery modules to provide grid storage solutions to the market.

News Provided by ABN Newswire via QuoteMedia

Keep reading...Show less
Battery Anode Material Refinery - Design & Location Update

Battery Anode Material Refinery - Design & Location Update

Metals Australia (MLS:AU) has announced Battery Anode Material Refinery - Design & Location Update

Download the PDF here.

IR1:IR1 Completes Acquisition to Consolidate Black Hills, US

IR1:IR1 Completes Acquisition to Consolidate Black Hills, US

Rapid Critical Metals (RLL:AU) has announced IR1:IR1 Completes Acquisition to Consolidate Black Hills, US

Download the PDF here.

Critical Minerals Market Expected to Reach $586 Billion by 2032 as Demand Grows for Supply of Essential Minerals

Critical Minerals Market Expected to Reach $586 Billion by 2032 as Demand Grows for Supply of Essential Minerals

FN Media Group News Commentary - Industry experts project that the global critical minerals market will continue maintaining substantial growth as it has in recent years. The global critical minerals market is experiencing unprecedented growth, primarily driven by the accelerating transition to clean energy technologies. According to the International Energy Agency (IEA), the market size of key energy transition minerals doubled over the past five years, aligning closely with the market size for iron ore mining. This surge is largely attributed to the tripling of lithium demand, a 70% increase in cobalt demand, and a 40% rise in nickel demand between 2017 and 2022, with clean energy applications accounting for significant portions of this demand. The sustainability of the global critical minerals market is increasingly influenced by governmental initiatives aimed at reducing environmental impact and enhancing resource efficiency. A recent report from DataM Intelligence projected that Critical Minerals Market Size reached US$ 328.19 billion in 2024 and is expected to reach US$ 586.63 billion by 2032, growing with a CAGR of 7.53% during the forecast period 2025-2032. The report said: "A notable trend in the critical minerals market is the increasing investment in mineral development, which witnessed a 30% rise in 2022 following a 20% increase in 2021. Lithium saw the sharpest investment increase at 50%, followed by copper and nickel. This investment surge is a response to the soaring demand for minerals like lithium, cobalt, nickel, and copper, driven by the deployment of clean energy technologies such as electric vehicles, wind turbines, and solar panels." Active companies in the markets this week include: Saga Metals Corp. (OTCQB: SAGMF) (TSX-V: SAGA), TMC the metals company Inc. (NASDAQ: TMC), Critical Metals Corp. (NASDAQ: CRML), Rio Tinto Group (NYSE: RIO), Empire Metals Limited (OTCQX: EPMLF) (LON: EEE).

News Provided by GlobeNewswire via QuoteMedia

Keep reading...Show less

Latest Press Releases

Related News

×