Are Thorium Reactors the Future of Nuclear Energy?

Thorium reactors hold promise as an alternative for uranium in the nuclear energy sector, but are they really a viable option?

thorium reactors

The world’s energy needs are expected to skyrocket thanks to population growth and higher demand from developing nations, and thorium reactors are becoming increasingly appealing as a result.

While uranium-driven reactors are being built in large quantities around the world, these reactors are not without drawbacks. Nuclear meltdowns remain a concern, and uranium has some negative connotations due to its association with weapons.

Thorium, on the other hand, is seen by some as a less dangerous, more environmentally friendly option. So how does thorium play into the future of global energy? 

What is thorium?

Thorium is a slightly radioactive metal that occurs in rocks and soils. It is more abundant in nature than uranium and is fertile rather than fissile, meaning it can be converted into fissile material through radiation. It is meant to be used alongside fissile materials like recycled plutonium and uranium.

Despite its benefits, using thorium as a primary source of nuclear energy is challenging. The World Nuclear Association notes that extracting latent energy is still difficult to do in a cost-effective manner, and research into refinement technology will be needed if thorium is to be turned into a viable energy option.

Even with those challenges, the question of whether thorium reactors work for energy production was answered in 2013, when privately owned Norwegian company Thor Energy began using thorium to produce power at its Halden test reactor in Norway. “It is the fundamental first step in the thorium evolution,” Thor Energy CEO Oystein Asphjell told Reuters at the time.

How thorium works

Thorium can’t split to make a nuclear chain reaction like uranium. In scientific terms, it isn’t fissile. However, if it is bombarded by neutrons from a fuel that is fissile — like uranium-235 or plutonium-239 — it is converted into uranium-233. The process creates energy and is self-sustaining after it begins; fission of uranium-233 turns more thorium nearby into the same nuclear fuel.

There are many more complex processes involved, but this relationship between thorium and fissile materials serves as the foundation for thorium reactor technology.

Thorium vs. uranium

It’s important to understand the differences between uranium and thorium when considering nuclear energy developments. Here are a few key ways they differ.

Cost and efficiency

One reason thorium is an interesting alternative to uranium is that it is cheaper and more abundant. Thorium is also used more efficiently in the reaction process — thorium inputs are almost completely used up during a nuclear reaction, meaning waste is reduced to a minimum. That is especially important considering the longevity of nuclear waste in the environment.

Weapons and safety

The dangers of uranium — widely publicized in the wake of the Fukushima disaster in 2011 — are a key reason why experts are giving thorium reactors serious consideration. As thorium is not fissile on its own, reactions could be stopped in case of emergency, according to Forbes.

Thorium is considered a strong choice for non-proliferation when it comes to nuclear weapons, but it is also important to note that there have been occasions in history where nuclear weapons based off of thorium have been detonated. That being said, the nature of these weapons makes them difficult to handle and easy to detect.

The use of thorium reactors could allow countries like Iran and North Korea to benefit from nuclear power by minimizing concerns that they are secretly developing nuclear weapons.

Thorium and uranium have an interesting relationship in that they are complements and competitors to each other. Thorium can be used together with conventional uranium-based nuclear power generation, meaning a thriving thorium industry would not necessarily make uranium obsolete.

Thorium exploration

Thorium is present in small quantities in soils and rocks everywhere, and it’s estimated to be about four times more plentiful than uranium. India holds the largest thorium reserves in the world, though reserves are also significant in China, Australia, the US, Turkey and Norway, as per Reuters. The metal can be found in epigenetic vein deposits, low-grade deposits and black sand placer deposits.

Though it is abundant, few companies are currently exploring for thorium. In 2014, exploration and development of rare earths projects associated with thorium was underway in Australia, Brazil, Canada, Greenland, India, Russia, South Africa, the United States and Vietnam. Skyharbour Resources (TSXV:SYH) is one company currently exploring for thorium. Its Falcon Point uranium and thorium project is located in the Athabasca Basin in Saskatchewan.

Thorium reactors in the works

As mentioned, Thor was the first to begin energy production through thorium, but it now faces competition from firms across the globe. For example, India has been interested in thorium-based nuclear energy for decades, according to the US Geological Survey. The country’s nuclear developers have designed an advanced heavy water reactor that is specifically aimed at using thorium as a fuel.

China is also a major player in the development of thorium reactors. The country signed a Phase 2 agreement in 2009 to study the commercial and technical feasibility of its full-scale use in the Candu power system, a heavy water reactor that uses thorium-based fuels. Chines hopes to commercialize thorium reactors within about fifteen years.

In Indonesia, ThorCon and the country’s government are working on launching a molten salt thorium reactor that is expected to be operating by 2025.

Thorium Power Canada, in partnership with DBI, has designed thorium reactors, including a planned 10-MW reactor in Chile. Thorium Power Canada estimates the reactor will provide enough power to produce 20 million liters per day at the desalination plant, which is the equivalent of powering 3,500 homes.

Thorium’s challenge

As can be seen, thorium has been considered an excellent nuclear energy alternative for decades. It’s hard to believe that the safety and efficiency benefits have not led to more popular use of thorium reactors — but there are reasons for that. 

Put simply, thorium-based reactors are still not economically viable for the most part. Uranium has benefited from decades of research, development and infrastructure thanks to its dual applications in weapons and energy during the Cold War. This research has allowed countries to establish protocols, infrastructure and knowledge bases that make uranium-based energy a better option.

The result is that at least for now thorium reactors are unlikely to gain the upper hand over uranium reactors. It’s possible that thorium reactors could become more dominant in the future, but a lot of work will have to be done to get to that point.

This is an updated version of an article originally published by the Investing News Network in 2015.

Don’t forget to follow us @INN_Resource for real-time news updates!

Securities Disclosure: I, Sivansh Padhy, hold no direct investment interest in any company mentioned in this article. 

Get the Latest Uranium Investing Stock Information

Get the latest information about companies associated with Uranium Investing delivered directly to your inbox.


By selecting company or companies above, you are giving consent to receive email from those companies. And remember you can unsubscribe at any time.

  • Arafura Resources Nolans Bore rare earths resource in Australia’s Northern Territory is Australia’s largest hardrock thorium resource, at approximately 56 million tonnes @ 0.27% ThO2, or 150,000 tonnes of contained ThO2.

  • There’s no such thing as Thorium reactors. Thorium is a nuclear fuel. It can be used in several sorts of reactors. The Unicorn is Thorium Breeder reactors that can use Thorium with 99% efficiency. Meanwhile modifying existing reactors to use part Thorium fuel can reduce need for Uranium while increasing reactor power, improving economics and safety of such reactors.


Leave a Reply