

5 February 2026

Sandstone RC drilling delivers high-grade assays up to 125g/t Au

Results from significant drilling programs in 2025 at several advanced deposits to feed into Mineral Resource upgrade and Sandstone PFS

HIGHLIGHTS

- Brightstar has received results from reverse circulation drilling at the **2.4Moz @ 1.5g/t Au Sandstone Hub** completed in late 2025
- Drilling was designed to infill key deposits the subject of ongoing Pre-Feasibility Study (**PFS**) work streams, as well as test for growth extensions along strike and down dip
- Significant assays include:

Achilles North Deposit

- ACRC25002
 - **3m @ 42.5g/t Au from 158m**
- ACRC25008:
 - **4m @ 5.16g/t Au from 127m**

Shillington-Two Mile Hill Deposit

- SNRC25-079
 - **13m @ 5.44g/t Au from 177m**
- SNRC25-085
 - **3m @ 7.16g/t Au from 245m**

Lord Henry Deposit

- LHRC25038
 - **5m @ 10.7g/t Au from 57m**
- LHRC25015
 - **2m @ 9.04g/t Au from 46m**
- LHRC25040:
 - **2m @ 6.98g/t Au from 104m**

Vanguard Deposit

- VNRC25148
 - **7m @ 5.59g/t Au from 162m**
- VNRC25117:
 - **14m @ 2.44g/t Au from 62m**
- VNRC25136
 - **14m @ 2.31g/t Au from 133m**

- Assays from the diamond drilling completed in 2025 are pending
- **Sandstone Mineral Resource upgrade due in JunQ'26 with the Pre-Feasibility Study targeted for delivery early in the SepQ'26**
- 2026 drilling campaign has now commenced with the arrival of **RC and diamond drill rigs at Sandstone** to complete the last of the infill drilling for PFS work streams and commence extensional drilling targeting growth to the Mineral Resources

Brightstar Resources Limited (ASX: BTR) (**Brightstar**) is pleased to announce results from reverse circulation (**RC**) drilling programs at the Sandstone Hub, which hosts a current Mineral Resource Estimate (**MRE**) of **2.4Moz @ 1.5g/t Au**.

The RC drilling programs targeted infill and extensions to key deposits at the Sandstone Hub, including Achilles, Lord Henry, Vanguard, and Shillington-Two Mile Hill.

Results from the Achilles and Lord Henry deposits have highlighted the potential for **extensions of mineralised lodes, outside of the current MRE**. The infill drilling at both Vanguard and Two-Mile Hill Shillington was designed to increase confidence and has confirmed the grades in the current resource being used for feasibility study and mine planning purposes.

Brightstar's Managing Director, Alex Rovira, commented:

"Results from Brightstar's comprehensive 2025 Sandstone drilling programs continue to impress and provide the necessary technical information to underpin the upcoming Mineral Resource upgrade and pre-feasibility study.

Following on from the strongly supported capital raising, which raised the development equity capital for the Goldfields Hub as well as providing the necessary funds to accelerate Sandstone to Final Investment Decision, Brightstar has a robust budget to continue to fast-track Sandstone exploration and development activities.

The results reported from the Lord Henry, Achilles, Vanguard, and Shillington-Two Mile Hill deposits, which are all key deposits at the Sandstone Hub, are very encouraging. High grade results from extensional drillholes are particularly promising, indicating the limits of mineralisation have not been reached.

The upside potential of Sandstone is enormous, with ~1,800km² of prospective tenure in underexplored greenstone belts. With 1.6Moz of Mineral Resources located in the top 150m from surface, Brightstar is well-funded and favourably positioned to continue to grow the Sandstone resource base and rapidly de-risk the eventual development of Sandstone into a meaningful Western Australian gold production hub.

In parallel with the ongoing RC and diamond core drilling at Sandstone, pre-feasibility study workstreams are continuing across all disciplines and advancing on schedule."

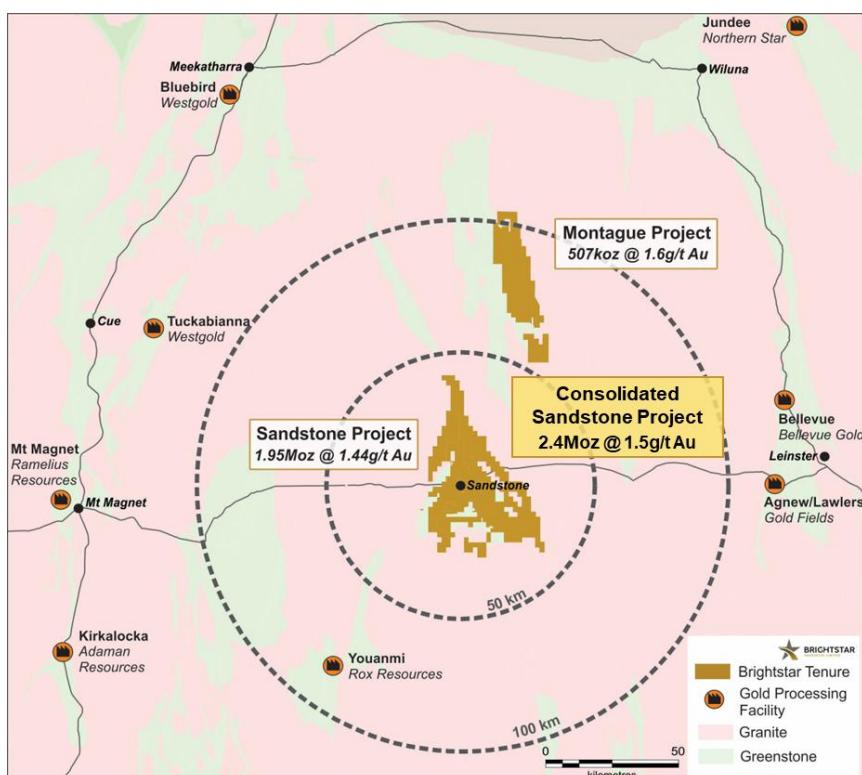


Figure 1: Brightstar's Consolidated Sandstone Project

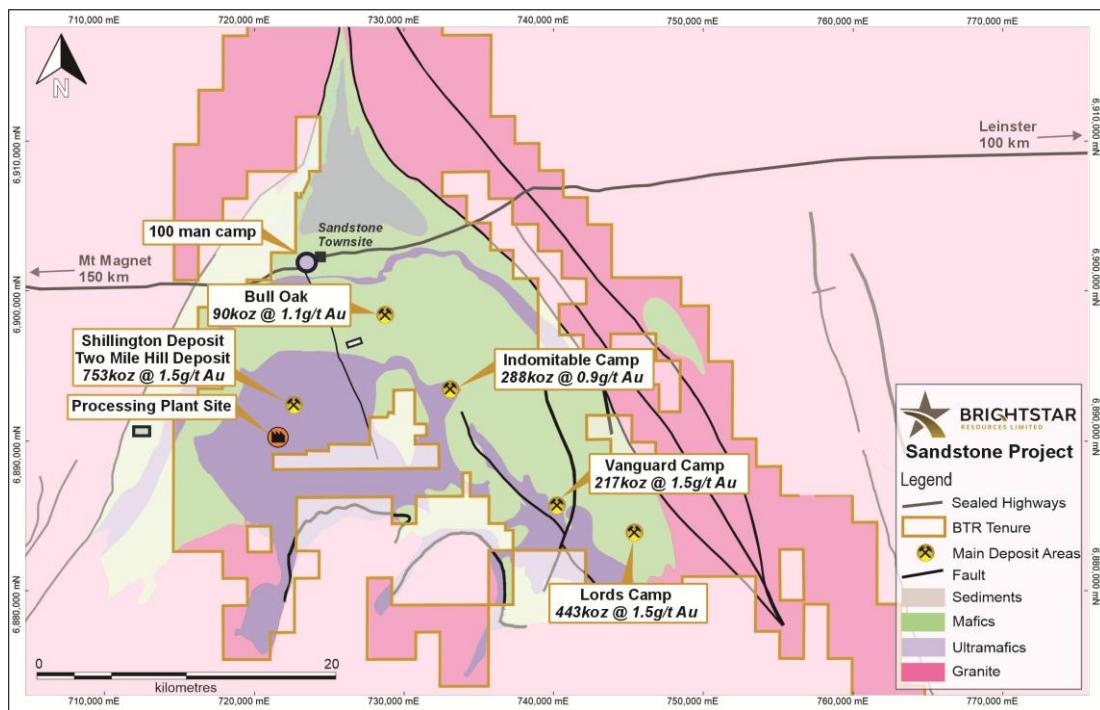


Figure 2: Location map of the Central Sandstone Project, part of the Consolidated Sandstone Hub

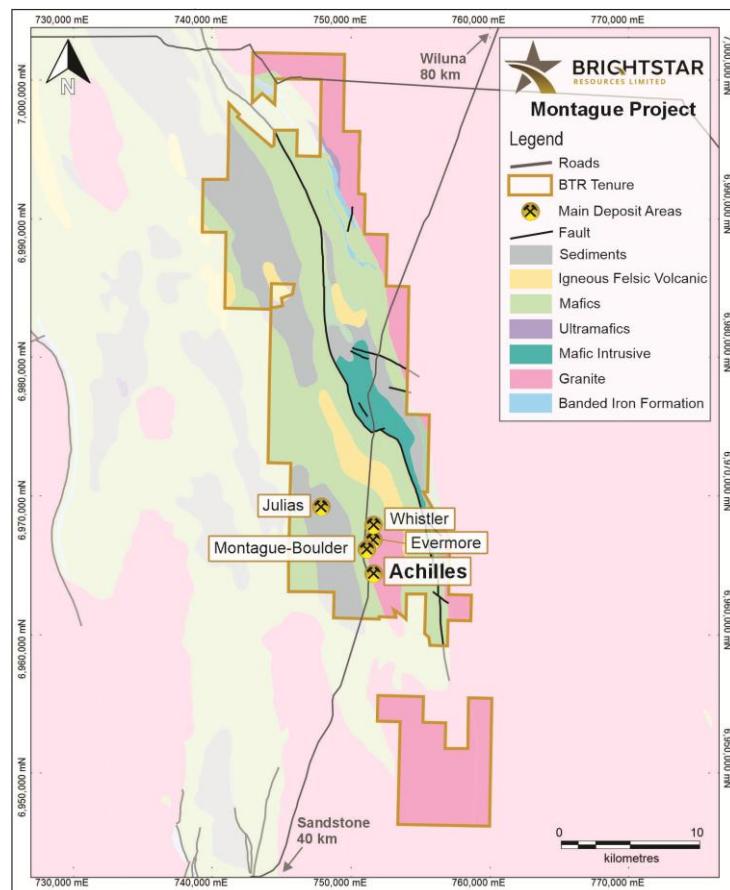


Figure 3: Location map of the Montague Project, part of the Consolidated Sandstone Hub

TECHNICAL DISCUSSION

ACHILLES NORTH DEPOSIT

The Achilles North deposit comprises part of the Montague project, located 70km north of the town of Sandstone. The deposit hosts a current mineral resource estimate of **99Koz @ 1.5g/t Au**, including the neighbouring Airport deposit. Primary mineralisation is hosted in east-dipping lodes, in proximity to the contact of the Montague Granodiorite within a basalt unit. Secondary supergene mineralisation also is present.

The drilling program aimed to validate the extents of the existing mineralisation and guide follow-up infill programs. A total of **16 RC holes were drilled for ~2,400m**, intersecting narrow shear zones with pyrite-rich quartz veining hosted in both the basalt and internal to the granodiorite.

Significant intercepts from the drilling include:

- **3m @ 42.5g/t Au from 158m**, including **1m @ 125g/t Au from 159m** in ACRC25002
- **4m @ 5.16g/t Au from 127m**, including **1m @ 11.4g/t Au from 127m** in ACRC25008
- **3m @ 3.37g/t Au from 205m** in ACRC25011
- **5m @ 1.90g/t Au from 66m** in ACRC25004



Figure 4: Map view of the drill collars for the Achilles RC program

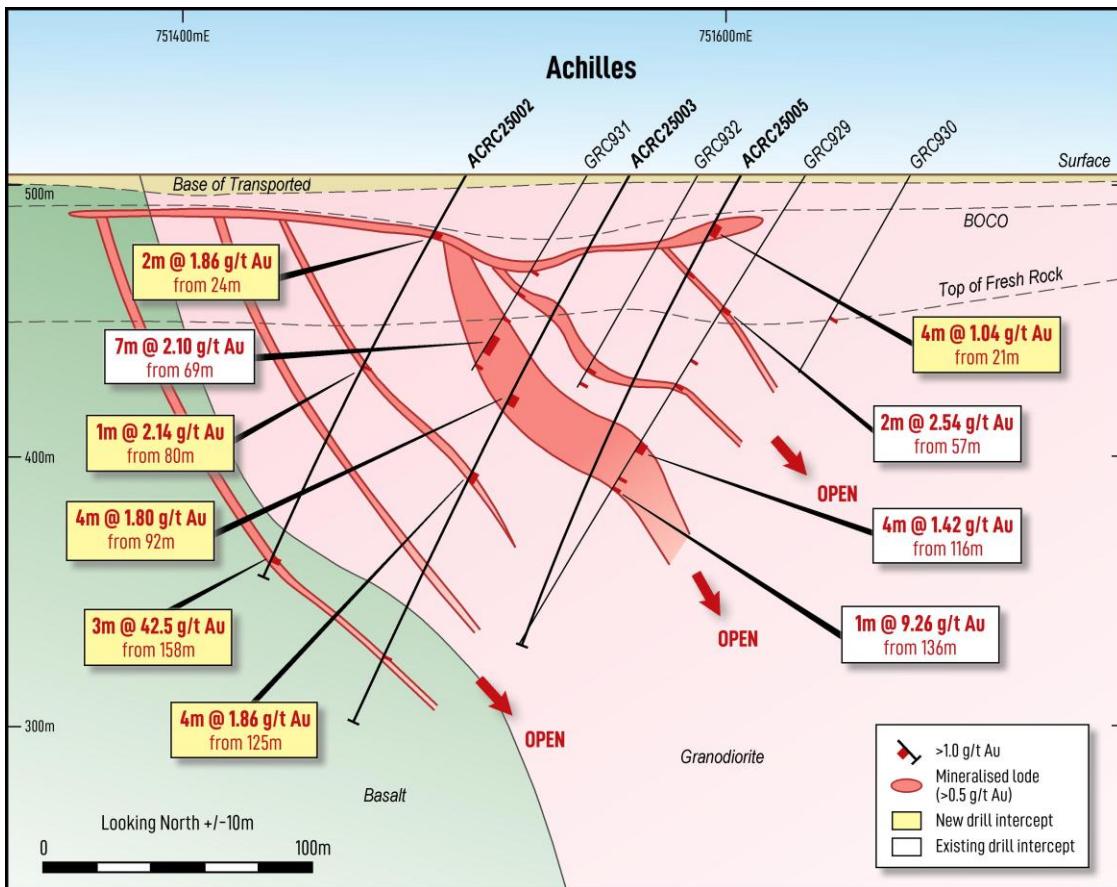


Figure 5: Cross section A-A' at the Achilles North Deposit

LORD HENRY DEPOSIT

The Lord Henry deposit is located 30km southeast of the town of Sandstone and features a package of north-dipping lodes hosted within a granodiorite intrusion (known as the Lords Granodiorite). The deposit was mined as a shallow open pit by Troy Resources from 2005-2007, producing 48koz @ 3.61g/t Au. Lord Henry hosts a current MRE of **99koz @ 1.4g/t Au**.

The recent drilling program comprised **30 RC holes for ~3,100m** predominantly targeting extensions of the lodes to the north as well as infill of several remaining zones of inferred resource in the current MRE. An additional 341m of diamond drilling was completed (3 holes) with all assays still outstanding.

The RC drillholes intersected zones of sericite-altered host rock with quartz veining and minor sulphides (pyrite and chalcopyrite).

Significant intercepts from the drilling include:

- 5m @ 10.7g/t Au from 57m, including 2m @ 24.7g/t Au from 57m** in LHRC25038
- 2m @ 9.04g/t Au from 46m, including 1m @ 16.8g/t Au from 46m** in LHRC25015
- 6m @ 2.63g/t Au from 98m, including 1m @ 11.9g/t Au from 98m** in LHRC25016
- 4m @ 3.73g/t Au from 44m** in LHRC25035
- 2m @ 6.98g/t Au from 104m** in LHRC25040

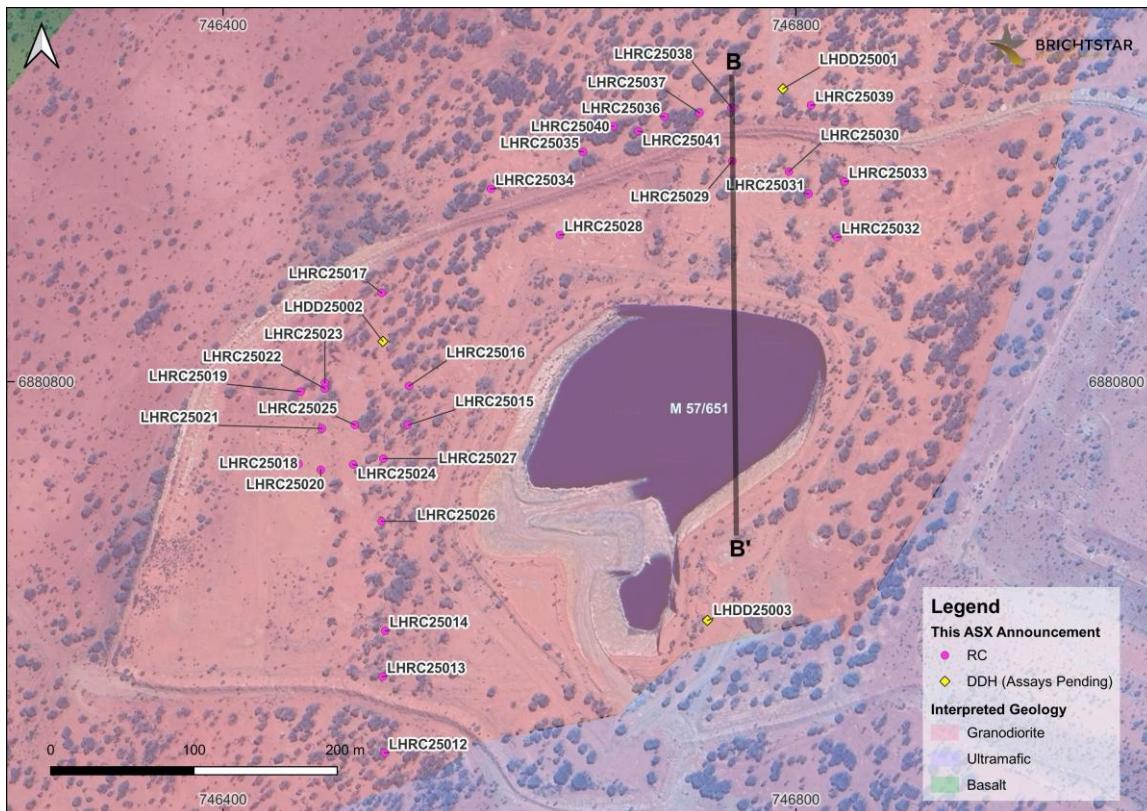


Figure 6: Plan view map of RC and Diamond drill collars for the Lord Henry drilling program

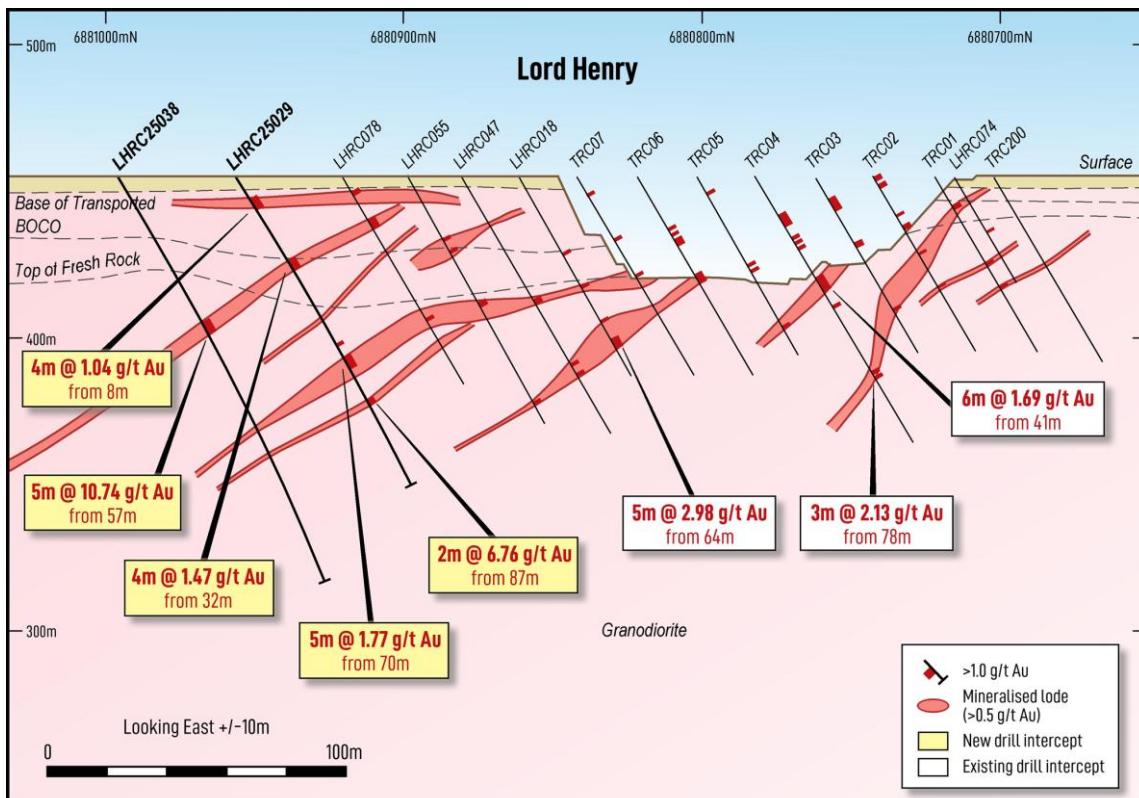


Figure 7: Cross Section B-B' looking East at the Lord Henry deposit

VANGUARD DEPOSIT

Mineralisation at the Vanguard deposit is associated with quartz-pyrite shear lodes hosted in a differentiated dolerite sill. The current drilling program totalled **72 RC holes for ~8,800m** of drilling. An additional 613m of diamond drilling (4 holes) was completed, with all assays still pending for these holes.

The RC component of the drilling program targeted further infill of the mineralised lodes to facilitate resource upgrades to the Indicated classification in the upcoming Sandstone MRE update.

Assays remain pending for 14 holes, with significant assays from the returned results including:

- **7m @ 5.59g/t Au from 162m** in VNRC25148
- **14m @ 2.44g/t Au from 62m, including 1m @ 13.1g/t from 74m** in VNRC25117
- **8m @ 4.25g/t Au from 20m** in VNRC25112
- **14m @ 2.31g/t Au from 133m** in VNRC25136
- **13m @ 2.31g/t Au from 49m** in VNRC25134
- **5m @ 5.23g/t Au from 30m** in VNRC25150

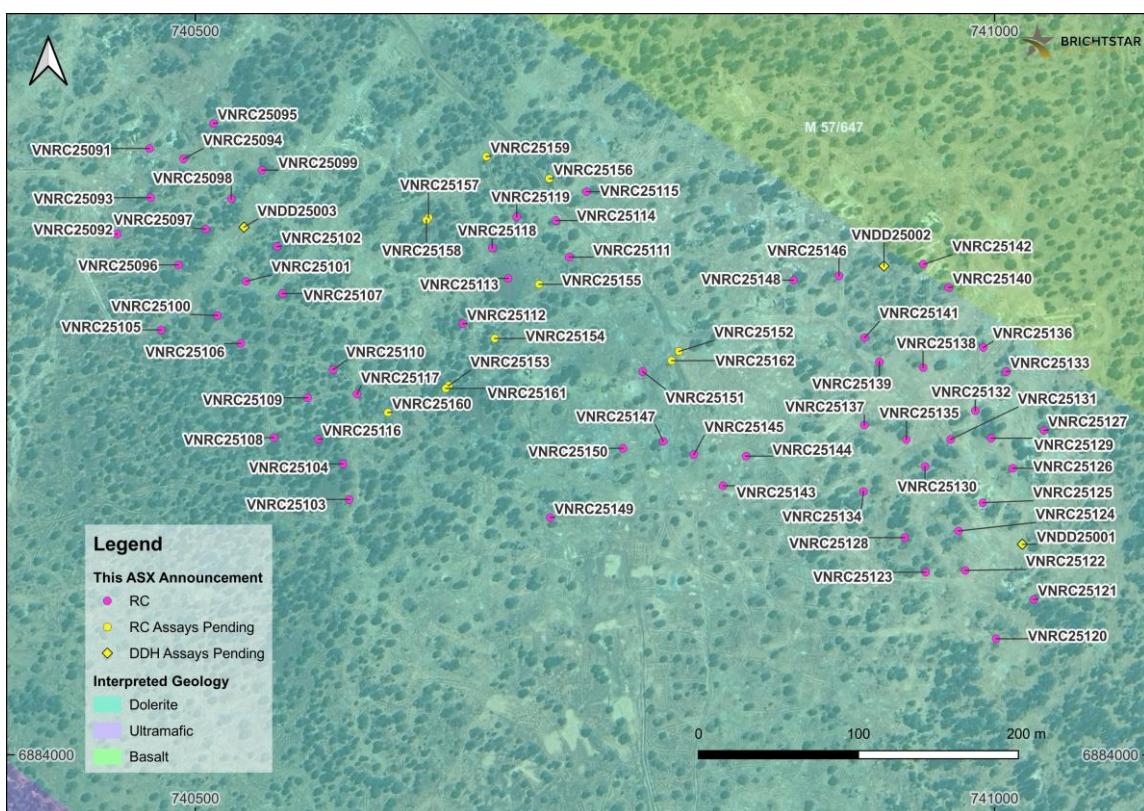


Figure 8: Plan view of RC and diamond drill collars completed at the Vanguard deposit

Central Sandstone (Ex-Aurumin tenure)

In late 2025, Aurumin Ltd completed RC and diamond core drilling programs across the central Sandstone project, prior to the implementation of the Scheme of Arrangement with Brightstar.

The drilling was predominantly focussed on the Shillington-Two Mile Hill area which features a tonalite intrusion intruded into a package of mafic-ultramafic rocks and banded iron sedimentary units (BIFs). A total of **28 RC holes for 4,300m were completed, with 4 diamond tails drilled for ~1,240m**. The program targeted infill and depth extension to the deposits, as well as providing geotechnical data to inform ongoing pre-feasibility study work. Additional modest RC drilling programs were completed at the McIntyre (**4 holes, ~380m**) and Old Town Well (**4 holes, ~320m**) deposits, targeting resource infill. Assays are pending for the diamond drilling, with significant assays from the Shillington-Two Mile Hill RC program including:

- **13m @ 5.44g/t Au from 177m, including 2m @ 27.4g/t Au from 184m** in SNRC25-079
- **1m @ 24.9g/t Au from 201m** in SNRC25-058
- **7m @ 3.12g/t Au from 66m** in SNRC25-082
- **3m @ 7.16g/t Au from 245m, including 1m @ 17.8g/t Au from 247m** in SNRC25-085

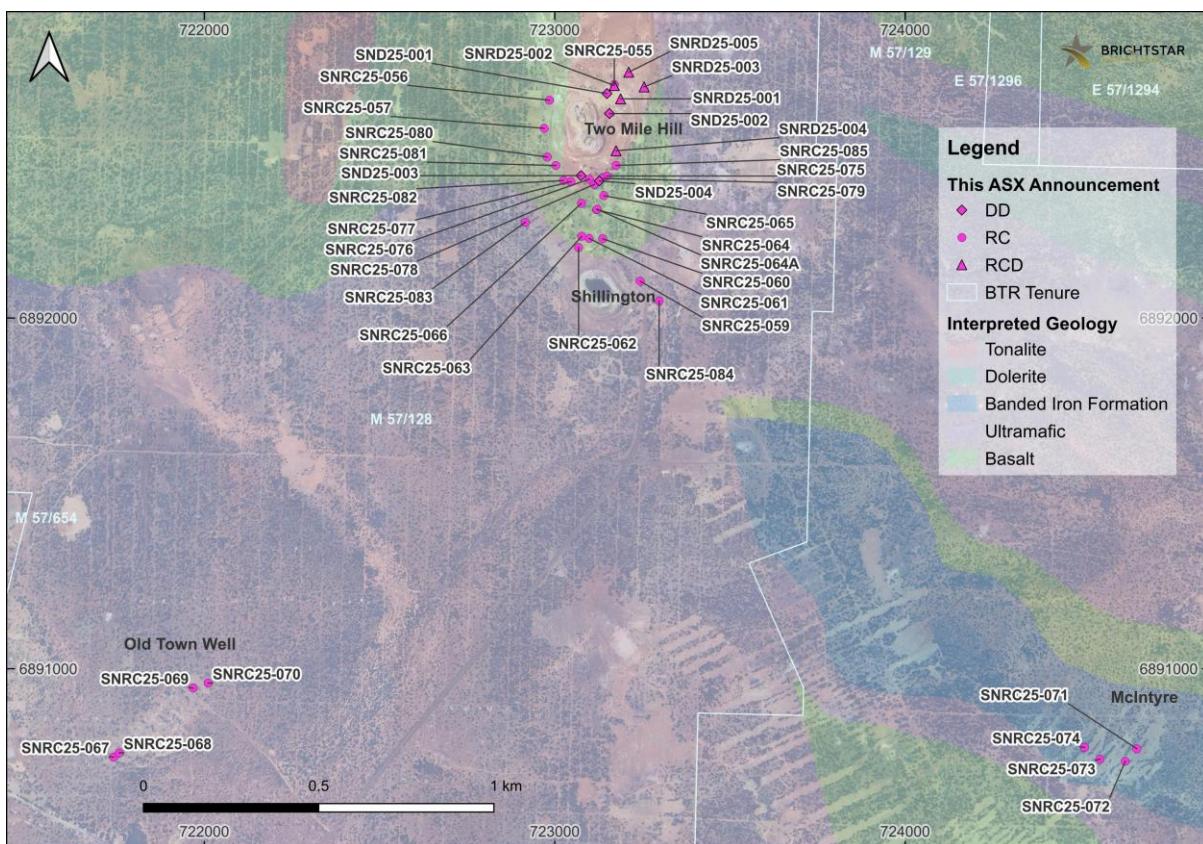


Figure 9: Plan view map of RC and Diamond drill collars for the Central Sandstone drilling

Table 1: Significant Intercepts (>1.0g/t Au) for the Achilles RC drilling, **+10 gram-metre intercepts highlighted**.

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram-metres	Prospect
ACRC25001		58	60	2	1.31	2m @ 1.31g/t from 58m	2.62	Achilles
ACRC25001		68	69	1	1.26	1m @ 1.26g/t from 68m	1.26	Achilles
ACRC25002		24	26	2	1.86	2m @ 1.86g/t from 24m	3.72	Achilles
ACRC25002		80	81	1	2.14	1m @ 2.14g/t from 80m	2.14	Achilles
ACRC25002		158	161	3	42.5	3m @ 42.5g/t from 158m	128	Achilles
ACRC25002	<i>including</i>	159	160	1	124	1m @ 125g/t from 159m	124	Achilles
ACRC25003		92	96	4	1.80	4m @ 1.80g/t from 92m	7.20	Achilles
ACRC25003		125	129	4	1.86	4m @ 1.86g/t from 125m	7.44	Achilles
ACRC25003		199	200	1	3.42	1m @ 3.42g/t from 199m	3.42	Achilles
ACRC25004		66	71	5	1.90	5m @ 1.90g/t from 66m	9.50	Achilles
ACRC25004		99	100	1	1.85	1m @ 1.85g/t from 99m	1.85	Achilles
ACRC25005		21	25	4	1.04	4m @ 1.04g/t from 21m	4.16	Achilles
ACRC25005		41	42	1	1.06	1m @ 1.06g/t from 41m	1.06	Achilles
ACRC25006		149	151	2	2.45	2m @ 2.45g/t from 149m	4.90	Achilles
ACRC25007						NSI		Achilles
ACRC25008		90	96	6	1.17	6m @ 1.17g/t from 90m	7.02	Achilles
ACRC25008		127	131	4	5.16	4m @ 5.16g/t from 127m	20.6	Achilles
ACRC25008	<i>including</i>	127	128	1	11.4	1m @ 11.4g/t from 127m	11.4	Achilles
ACRC25008		136	137	1	5.26	1m @ 5.26g/t from 136m	5.26	Achilles
ACRC25008		149	150	1	1.12	1m @ 1.12g/t from 149m	1.12	Achilles
ACRC25008		159	160	1	1.77	1m @ 1.77g/t from 159m	1.77	Achilles
ACRC25009		126	128	2	1.05	2m @ 1.05g/t from 126m	2.10	Achilles
ACRC25009		131	133	2	1.31	2m @ 1.31g/t from 131m	2.62	Achilles
ACRC25009		168	169	1	1.02	1m @ 1.02g/t from 168m	1.02	Achilles
ACRC25010		26	28	2	1.17	2m @ 1.17g/t from 26m	2.34	Achilles
ACRC25010		42	43	1	3.04	1m @ 3.04g/t from 42m	3.04	Achilles
ACRC25010		53	54	1	1.21	1m @ 1.21g/t from 53m	1.21	Achilles
ACRC25010		99	100	1	5.06	1m @ 5.06g/t from 99m	5.06	Achilles
ACRC25010		108	109	1	1.65	1m @ 1.65g/t from 108m	1.65	Achilles
ACRC25010		145	147	2	3.04	2m @ 3.04g/t from 145m	6.08	Achilles
ACRC25011		108	110	2	1.50	2m @ 1.50g/t from 108m	3.00	Achilles
ACRC25011		113	118	5	1.28	5m @ 1.28g/t from 113m	6.40	Achilles
ACRC25011		127	128	1	1.09	1m @ 1.09g/t from 127m	1.09	Achilles

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram-metres	Prospect
ACRC25011		135	136	1	1.07	1m @ 1.07g/t from 135m	1.07	Achilles
ACRC25011		145	146	1	2.66	1m @ 2.66g/t from 145m	2.66	Achilles
ACRC25011		156	157	1	1.53	1m @ 1.53g/t from 156m	1.53	Achilles
ACRC25011		169	170	1	1.08	1m @ 1.08g/t from 169m	1.08	Achilles
ACRC25011		185	187	2	3.15	2m @ 3.15g/t from 185m	6.30	Achilles
ACRC25011		205	208	3	3.37	3m @ 3.37g/t from 205m	10.1	Achilles
ACRC25012		64	65	1	1.10	1m @ 1.10g/t from 64m	1.10	Achilles
ACRC25012		68	69	1	2.79	1m @ 2.79g/t from 68m	2.79	Achilles
ACRC25012		75	76	1	1.11	1m @ 1.11g/t from 75m	1.11	Achilles
ACRC25012		86	87	1	1.42	1m @ 1.42g/t from 86m	1.42	Achilles
ACRC25013		91	92	1	3.40	1m @ 3.40g/t from 91m	3.40	Achilles
ACRC25013		131	133	2	2.52	2m @ 2.52g/t from 131m	5.04	Achilles
ACRC25014		114	115	1	1.09	1m @ 1.09g/t from 114m	1.09	Achilles
ACRC25014		136	137	1	1.36	1m @ 1.36g/t from 136m	1.36	Achilles
ACRC25015		34	37	3	1.00	3m @ 1.00g/t from 34m	3.00	Achilles
ACRC25015		38	41	3	1.07	3m @ 1.07g/t from 38m	3.21	Achilles
ACRC25015		46	47	1	1.01	1m @ 1.01g/t from 46m	1.01	Achilles
ACRC25015		56	58	2	1.03	2m @ 1.03g/t from 56m	2.06	Achilles
ACRC25016		47	48	1	1.48	1m @ 1.48g/t from 47m	1.48	Achilles
ACRC25016		87	88	1	1.13	1m @ 1.13g/t from 87m	1.13	Achilles

Table 2: Significant Intercepts (>1.0g/t Au) for the Lord Henry RC drilling, **+10 gram-metre intercepts highlighted**.

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram-metres	Prospect
LHRC25012		10	11	1	1.05	1m @ 1.05g/t from 10m	1.05	Lord Henry
LHRC25013		31	34	3	1.37	3m @ 1.37g/t from 31m	4.11	Lord Henry
LHRC25014		26	27	1	1.73	1m @ 1.73g/t from 26m	1.73	Lord Henry
LHRC25014		31	32	1	1.00	1m @ 1.00g/t from 31m	1.00	Lord Henry
LHRC25015		46	48	2	9.04	2m @ 9.04g/t from 46m	18.1	Lord Henry
LHRC25015	<i>Including</i>	46	47	1	16.8	1m @ 16.8g/t from 46	16.8	Lord Henry
LHRC25016		60	63	3	1.60	3m @ 1.60g/t from 60m	4.80	Lord Henry
LHRC25016		98	104	6	2.63	6m @ 2.63g/t from 98m	15.8	Lord Henry
LHRC25016	<i>Including</i>	98	99	1	11.9	1m @ 11.9g/t from 98m	11.9	Lord Henry

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram-metres	Prospect
LHRC25017		80	83	3	2.51	3m @ 2.51g/t from 80m	7.53	Lord Henry
LHRC25017		112	116	4	2.24	4m @ 2.24g/t from 112m	8.96	Lord Henry
LHRC25018						NSI		Lord Henry
LHRC25019		73	74	1	1.51	1m @ 1.51g/t from 73m	1.51	Lord Henry
LHRC25020						NSI		Lord Henry
LHRC25021						NSI		Lord Henry
LHRC25022						NSI		Lord Henry
LHRC25023		65	66	1	1.26	1m @ 1.26g/t from 65m	1.26	Lord Henry
LHRC25024		34	37	3	1.48	3m @ 1.48g/t from 34m	4.44	Lord Henry
LHRC25025		52	53	1	1.36	1m @ 1.36g/t from 52m	1.36	Lord Henry
LHRC25026		6	7	1	3.33	1m @ 3.33g/t from 6m	3.33	Lord Henry
LHRC25027		8	9	1	1.24	1m @ 1.24g/t from 8m	1.24	Lord Henry
LHRC25027		23	24	1	3.87	1m @ 3.87g/t from 23m	3.87	Lord Henry
LHRC25028		84	85	1	1.13	1m @ 1.13g/t from 84m	1.13	Lord Henry
LHRC25028		111	114	3	1.90	3m @ 1.90g/t from 111m	5.70	Lord Henry
LHRC25028		118	123	5	2.51	5m @ 2.51g/t from 118m	12.6	Lord Henry
LHRC25028		150	151	1	1.59	1m @ 1.59g/t from 150m	1.59	Lord Henry
LHRC25029		8	12	4	1.04	4m @ 1.04g/t from 8m	4.16	Lord Henry
LHRC25029		32	36	4	1.47	4m @ 1.47g/t from 32m	5.88	Lord Henry
LHRC25029		65	66	1	1.41	1m @ 1.41g/t from 65m	1.41	Lord Henry
LHRC25029		70	75	5	1.77	5m @ 1.77g/t from 70m	8.85	Lord Henry
LHRC25029		87	89	2	6.76	2m @ 6.76g/t from 87m	13.5	Lord Henry
LHRC25030		19	22	3	1.28	3m @ 1.28g/t from 19m	3.84	Lord Henry
LHRC25030		26	28	2	2.20	2m @ 2.20g/t from 26m	4.40	Lord Henry
LHRC25030		43	47	4	1.67	4m @ 1.67g/t from 43m	6.68	Lord Henry
LHRC25030		96	97	1	1.57	1m @ 1.57g/t from 96m	1.57	Lord Henry
LHRC25031		36	42	6	1.13	6m @ 1.13g/t from 36m	6.78	Lord Henry
LHRC25032						NSI		Lord Henry
LHRC25033		27	28	1	1.09	1m @ 1.09g/t from 27m	1.09	Lord Henry
LHRC25033		45	46	1	6.25	1m @ 6.25g/t from 45m	6.25	Lord Henry
LHRC25033		50	51	1	5.72	1m @ 5.72g/t from 50m	5.72	Lord Henry
LHRC25034		112	113	1	1.30	1m @ 1.30g/t from 112m	1.30	Lord Henry
LHRC25034		124	126	2	2.78	2m @ 2.78g/t from 124m	5.56	Lord Henry
LHRC25034		136	137	1	1.09	1m @ 1.09g/t from 136m	1.09	Lord Henry

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram-metres	Prospect
LHRC25035		44	48	4	3.73	4m @ 3.73g/t from 44m	14.9	Lord Henry
LHRC25035		101	102	1	1.13	1m @ 1.13g/t from 101m	1.13	Lord Henry
LHRC25035		105	106	1	1.57	1m @ 1.57g/t from 105m	1.57	Lord Henry
LHRC25035		166	167	1	1.34	1m @ 1.34g/t from 166m	1.34	Lord Henry
LHRC25036		12	15	3	4.39	3m @ 4.39g/t from 12m	13.2	Lord Henry
LHRC25036	<i>including</i>	12	13	1	12.2	1m @ 12.2g/t from 12m	12.2	Lord Henry
LHRC25036		41	42	1	1.39	1m @ 1.39g/t from 41m	1.39	Lord Henry
LHRC25036		73	74	1	1.04	1m @ 1.04g/t from 73m	1.04	Lord Henry
LHRC25036		106	108	2	1.87	2m @ 1.87g/t from 106m	3.74	Lord Henry
LHRC25037		26	30	4	1.15	4m @ 1.15g/t from 26m	4.60	Lord Henry
LHRC25037		66	68	2	1.46	2m @ 1.46g/t from 66m	2.90	Lord Henry
LHRC25037		91	92	1	2.13	1m @ 2.13g/t from 91m	2.13	Lord Henry
LHRC25037		123	124	1	1.61	1m @ 1.61g/t from 123m	1.61	Lord Henry
LHRC25038		57	62	5	10.7	5m @ 10.7g/t from 57m	53.7	Lord Henry
LHRC25038	<i>including</i>	57	59	2	24.7	2m @ 24.7g/t from 57m	49.3	Lord Henry
LHRC25038		134	135	1	1.44	1m @ 1.44g/t from 134m	1.44	Lord Henry
LHRC25039		51	53	2	1.16	2m @ 1.16g/t from 51m	2.32	Lord Henry
LHRC25039		70	72	2	4.48	2m @ 4.48g/t from 70m	8.96	Lord Henry
LHRC25040		5	6	1	1.17	1m @ 1.17g/t from 5m	1.17	Lord Henry
LHRC25040		99	100	1	1.88	1m @ 1.88g/t from 99m	1.88	Lord Henry
LHRC25040		104	106	2	6.98	2m @ 6.98g/t from 104m	14.0	Lord Henry
LHRC25041		81	84	3	1.07	3m @ 1.07g/t from 81m	3.21	Lord Henry
LHRC25041		158	159	1	1.64	1m @ 1.64g/t from 158m	1.64	Lord Henry

Table 3: Significant Intercepts (>1.0g/t Au) for the Vanguard RC drilling, **+10 gram-metre intercepts highlighted**.

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram-metres	Prospect
VNRC25091						NSI		Vanguard
VNRC25092		47	48	1	3.44	1m @ 3.44g/t from 47m	3.44	Vanguard
VNRC25093		41	42	1	2.72	1m @ 2.72g/t from 41m	2.72	Vanguard
VNRC25093		47	48	1	1.08	1m @ 1.08g/t from 47m	1.08	Vanguard
VNRC25094		89	90	1	5.98	1m @ 5.98g/t from 89m	5.98	Vanguard
VNRC25095		36	37	1	2.27	1m @ 2.27g/t from 36m	2.27	Vanguard

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram-metres	Prospect
VNRC25095		60	62	2	1.07	2m @ 1.07g/t from 60m	2.14	Vanguard
VNRC25095		78	79	1	1.19	1m @ 1.19g/t from 78m	1.19	Vanguard
VNRC25096						NSI		Vanguard
VNRC25097						NSI		Vanguard
VNRC25098		82	85	3	3.31	3m @ 3.31g/t from 82m	9.93	Vanguard
VNRC25099		50	51	1	1.63	1m @ 1.63g/t from 50m	1.63	Vanguard
VNRC25099		79	81	2	2.08	2m @ 2.08g/t from 79m	4.16	Vanguard
VNRC25100		24	25	1	1.41	1m @ 1.41g/t from 24m	1.41	Vanguard
VNRC25100		31	38	7	2.35	7m @ 2.35g/t from 31m	16.4	Vanguard
VNRC25101		43	46	3	2.75	3m @ 2.75g/t from 43m	8.25	Vanguard
VNRC25102						NSI		Vanguard
VNRC25103						NSI		Vanguard
VNRC25104		4	8	4	1.14	4m @ 1.14g/t from 4m	4.56	Vanguard
VNRC25105		39	41	2	4.73	2m @ 4.73g/t from 39m	9.46	Vanguard
VNRC25105		50	53	3	1.55	3m @ 1.55g/t from 50m	4.65	Vanguard
VNRC25106						NSI		Vanguard
VNRC25107		59	60	1	1.39	1m @ 1.39g/t from 59m	1.39	Vanguard
VNRC25108		45	46	1	1.20	1m @ 1.20g/t from 45m	1.20	Vanguard
VNRC25109		8	12	4	1.12	4m @ 1.12g/t from 8m	4.48	Vanguard
VNRC25109		20	28	8	1.10	8m @ 1.10g/t from 20m	8.76	Vanguard
VNRC25110						NSI		Vanguard
VNRC25111		70	71	1	2.48	1m @ 2.48g/t from 70m	2.48	Vanguard
VNRC25111		75	76	1	2.69	1m @ 2.69g/t from 75m	2.69	Vanguard
VNRC25112		20	28	8	4.25	8m @ 4.25g/t from 20m	34.0	Vanguard
VNRC25112		61	70	9	2.06	9m @ 2.06g/t from 61m	18.5	Vanguard
VNRC25113		65	80	15	2.06	15m @ 2.06g/t from 65m	30.9	Vanguard
VNRC25114						NSI		Vanguard
VNRC25115						NSI		Vanguard
VNRC25116						NSI		Vanguard
VNRC25117		51	54	3	1.09	3m @ 1.09g/t from 51m	3.27	Vanguard
VNRC25117		62	76	14	2.44	14m @ 2.44g/t from 62m	34.2	Vanguard
VNRC25117	<i>including</i>	74	75	1	13.1	1m @ 13.1g/t from 74m	13.1	Vanguard
VNRC25120						NSI		Vanguard
VNRC25121						NSI		Vanguard

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram-metres	Prospect
VNRC25122		104	107	3	1.31	3m @ 1.31g/t from 104m	3.93	Vanguard
VNRC25122		123	124	1	1.86	1m @ 1.86g/t from 123m	1.86	Vanguard
VNRC25123						NSI		Vanguard
VNRC25124		40	48	8	1.50	8m @ 1.50g/t from 40m	12.0	Vanguard
VNRC25124		81	83	2	1.01	2m @ 1.01g/t from 81m	2.01	Vanguard
VNRC25125						NSI		Vanguard
VNRC25126		84	85	1	1.36	1m @ 1.36g/t from 84m	1.36	Vanguard
VNRC25127		159	162	3	1.07	3m @ 1.07g/t from 159m	3.21	Vanguard
VNRC25128						NSI		Vanguard
VNRC25129		107	108	1	1.01	1m @ 1.01g/t from 107m	1.01	Vanguard
VNRC25129		125	126	1	1.73	1m @ 1.73g/t from 125m	1.73	Vanguard
VNRC25130		74	75	1	1.02	1m @ 1.02g/t from 74m	1.02	Vanguard
VNRC25130		77	81	4	1.05	4m @ 1.05g/t from 77m	4.18	Vanguard
VNRC25131		106	107	1	3.17	1m @ 3.17g/t from 106m	3.17	Vanguard
VNRC25131		145	146	1	1.42	1m @ 1.42g/t from 145m	1.42	Vanguard
VNRC25132		127	136	9	2.64	9m @ 2.64g/t from 127m	23.7	Vanguard
VNRC25132		147	150	3	1.59	3m @ 1.59g/t from 147m	4.77	Vanguard
VNRC25133		137	138	1	1.72	1m @ 1.72g/t from 137m	1.72	Vanguard
VNRC25133		156	160	4	2.55	4m @ 2.55g/t from 156m	10.2	Vanguard
VNRC25134		49	62	13	2.31	13m @ 2.31g/t from 49m	30.0	Vanguard
VNRC25135		98	102	4	1.52	4m @ 1.52g/t from 98m	6.07	Vanguard
VNRC25135		148	156	8	2.10	8m @ 2.10g/t from 148m	16.8	Vanguard
VNRC25135		148	149	1	12.0	1m @ 12.0g/t from 148m	12.0	Vanguard
VNRC25136		129	130	1	1.29	1m @ 1.29g/t from 129m	1.29	Vanguard
VNRC25136		133	147	14	2.31	14m @ 2.31g/t from 133m	32.3	Vanguard
VNRC25136	<i>Including</i>	137	138	1	13.2	1m @ 13.2g/t from 137m	13.2	Vanguard
VNRC25137		105	106	1	1.62	1m @ 1.62g/t from 105m	1.62	Vanguard
VNRC25138		117	118	1	1.28	1m @ 1.28g/t from 117m	1.28	Vanguard
VNRC25138		158	159	1	2.16	1m @ 2.16g/t from 158m	2.16	Vanguard
VNRC25139		93	94	1	1.18	1m @ 1.18g/t from 93m	1.18	Vanguard
VNRC25139		118	119	1	2.21	1m @ 2.21g/t from 118m	2.21	Vanguard
VNRC25139		145	146	1	1.77	1m @ 1.77g/t from 145m	1.77	Vanguard
VNRC25140		155	156	1	1.52	1m @ 1.52g/t from 155m	1.52	Vanguard
VNRC25141		92	93	1	1.08	1m @ 1.08g/t from 92m	1.08	Vanguard

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram-metres	Prospect
VNRC25141		134	135	1	1.72	1m @ 1.72g/t from 134m	1.72	Vanguard
VNRC25141		139	140	1	1.02	1m @ 1.02g/t from 139m	1.02	Vanguard
VNRC25142		167	170	3	2.82	3m @ 2.82g/t from 167m	8.47	Vanguard
VNRC25143		28	29	1	2.55	1m @ 2.55g/t from 28m	2.55	Vanguard
VNRC25144		27	29	2	1.05	2m @ 1.05g/t from 27m	2.09	Vanguard
VNRC25144		52	57	5	1.23	5m @ 1.23g/t from 52m	6.14	Vanguard
VNRC25145		24	36	12	1.69	12m @ 1.69g/t from 24m	20.3	Vanguard
VNRC25145		41	43	2	1.72	2m @ 1.72g/t from 41m	3.43	Vanguard
VNRC25145		75	81	6	1.20	6m @ 1.20g/t from 75m	7.21	Vanguard
VNRC25145		97	103	6	1.56	6m @ 1.56g/t from 97m	9.38	Vanguard
VNRC25146		168	171	3	5.30	3m @ 5.30g/t from 168m	15.8	Vanguard
VNRC25146	<i>including</i>	168	169	1	12.6	1m @ 12.6g/t from 168	12.6	Vanguard
VNRC25147		34	39	5	1.71	5m @ 1.71g/t from 34m	8.56	Vanguard
VNRC25147		72	79	7	1.76	7m @ 1.76g/t from 72m	12.3	Vanguard
VNRC25148		139	145	6	2.09	6m @ 2.09g/t from 139m	12.5	Vanguard
VNRC25148		155	156	1	9.21	1m @ 9.21g/t from 155m	9.21	Vanguard
VNRC25148		162	169	7	5.59	7m @ 5.59g/t from 162m	39.1	Vanguard
VNRC25149		5	12	7	1.76	7m @ 1.76g/t from 5m	12.3	Vanguard
VNRC25150		30	35	5	5.23	5m @ 5.23g/t from 30m	26.1	Vanguard
VNRC25150	<i>including</i>	32	33	1	23.1	1m @ 23.1g/t from 32m	23.1	Vanguard
VNRC25150		68	70	2	1.49	2m @ 1.49g/t from 68m	2.97	Vanguard
VNRC25150		87	88	1	1.61	1m @ 1.61g/t from 87m	1.61	Vanguard

Table 4: Significant Intercepts (>1.0g/t Au) for the Two Mile Hill RC drilling, **+10 gram-metre intercepts highlighted**.

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram-metres	Prospect
SNRC25-056						NSI		Two Mile Hill
SNRC25-056		132	133	1	1.09	1m @ 1.09g/t from 132m	1.09	Two Mile Hill
SNRC25-056		143	145	2	4.15	2m @ 4.15g/t from 143m	8.29	Two Mile Hill
SNRC25-056		148	149	1	1.20	1m @ 1.20g/t from 148m	1.20	Two Mile Hill
SNRC25-056		153	154	1	4.79	1m @ 4.79g/t from 153m	4.79	Two Mile Hill
SNRC25-056		157	158	1	1.06	1m @ 1.06g/t from 157m	1.06	Two Mile Hill
SNRC25-056		222	236	14	1.19	14m @ 1.19g/t from 222m	16.6	Two Mile Hill

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram-metres	Prospect
SNRC25-057		160	161	1	1.41	1m @ 1.41g/t from 160m	1.41	Two Mile Hill
SNRC25-057		167	168	1	3.12	1m @ 3.12g/t from 167m	3.12	Two Mile Hill
SNRC25-059		48	54	6	2.17	6m @ 2.17g/t from 48m	13.0	Two Mile Hill
SNRC25-060		73	83	10	1.98	10m @ 1.98g/t from 73m	19.8	Two Mile Hill
SNRC25-060		117	118	1	1.73	1m @ 1.73g/t from 117m	1.73	Two Mile Hill
SNRC25-061						NSI		Two Mile Hill
SNRC25-062						NSI		Two Mile Hill
SNRC25-063		26	29	3	3.29	3m @ 3.29g/t from 26m	9.86	Two Mile Hill
SNRC25-063		32	36	4	1.75	4m @ 1.75g/t from 32m	7.01	Two Mile Hill
SNRC25-063		50	52	2	4.74	2m @ 4.74g/t from 50m	9.48	Two Mile Hill
SNRC25-063		56	58	2	1.00	2m @ 1.00g/t from 56m	1.99	Two Mile Hill
SNRC25-063		64	65	1	7.18	1m @ 7.18g/t from 64m	7.18	Two Mile Hill
SNRC25-064		96	98	2	1.30	2m @ 1.30g/t from 96m	2.59	Two Mile Hill
SNRC25-064A		76	78	2	1.30	2m @ 1.30g/t from 76m	2.59	Two Mile Hill
SNRC25-064A		81	85	4	4.51	4m @ 4.51g/t from 81m	18.0	Two Mile Hill
SNRC25-064A	<i>including</i>	82	83	1	10.7	1m @ 10.7g/t from 82m	10.7	Two Mile Hill
SNRC25-064A		92	99	7	1.61	7m @ 1.61g/t from 92m	11.3	Two Mile Hill
SNRC25-065		57	58	1	1.74	1m @ 1.74g/t from 57m	1.74	Two Mile Hill
SNRC25-065		98	99	1	1.13	1m @ 1.13g/t from 98m	1.13	Two Mile Hill
SNRC25-065		103	104	1	3.94	1m @ 3.94g/t from 103m	3.94	Two Mile Hill
SNRC25-065		112	114	2	2.96	2m @ 2.96g/t from 112m	5.92	Two Mile Hill
SNRC25-065		117	118	1	2.68	1m @ 2.68g/t from 117m	2.68	Two Mile Hill
SNRC25-065		124	127	3	2.95	3m @ 2.95g/t from 124m	8.84	Two Mile Hill
SNRC25-065		130	134	4	1.62	4m @ 1.62g/t from 130m	6.49	Two Mile Hill
SNRC25-066		57	60	3	3.02	3m @ 3.02g/t from 57m	9.05	Two Mile Hill
SNRC25-066		93	95	2	1.46	2m @ 1.46g/t from 93m	2.91	Two Mile Hill
SNRC25-067		39	43	4	1.85	4m @ 1.85g/t from 39m	7.41	Old Town Well
SNRC25-068		0	4	4	1.00	4m @ 1.00g/t from 0m	4.00	Old Town Well
SNRC25-068		87	90	3	1.23	3m @ 1.23g/t from 87m	3.69	Old Town Well
SNRC25-068		103	105	2	1.70	2m @ 1.70g/t from 103m	3.40	Old Town Well
SNRC25-069						NSI		Old Town Well
SNRC25-070		81	86	5	1.73	5m @ 1.73g/t from 81m	8.64	Old Town Well

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram-metres	Prospect
SNRC25-071		28	32	4	2.01	4m @ 2.01g/t from 28m	8.04	Mcintyre
SNRC25-071		28	32	4	2.01	4m @ 2.01g/t from 28m	8.04	Mcintyre
SNRC25-071		37	38	1	1.09	1m @ 1.09g/t from 37m	1.09	Mcintyre
SNRC25-071		41	44	3	1.85	3m @ 1.85g/t from 41m	5.54	Mcintyre
SNRC25-071		48	55	7	1.83	7m @ 1.83g/t from 48m	12.8	Mcintyre
SNRC25-072		47	54	7	1.29	7m @ 1.29g/t from 47m	9.03	Mcintyre
SNRC25-073		25	28	3	1.47	3m @ 1.47g/t from 25m	4.41	Mcintyre
SNRC25-073		31	34	3	1.40	3m @ 1.40g/t from 31m	4.19	Mcintyre
SNRC25-074						NSI		Mcintyre
SNRC25-075		119	120	1	1.19	1m @ 1.19g/t from 119m	1.19	Two Mile Hill
SNRC25-075		127	129	2	1.49	2m @ 1.49g/t from 127m	2.97	Two Mile Hill
SNRC25-076						NSI		Two Mile Hill
SNRC25-077		69	73	4	1.38	4m @ 1.38g/t from 69m	5.53	Two Mile Hill
SNRC25-077		90	91	1	5.37	1m @ 5.37g/t from 90m	5.37	Two Mile Hill
SNRC25-077		107	108	1	1.46	1m @ 1.46g/t from 107m	1.46	Two Mile Hill
SNRC25-078		113	114	1	4.70	1m @ 4.70g/t from 113m	4.70	Two Mile Hill
SNRC25-078		117	119	2	3.17	2m @ 3.17g/t from 117m	6.34	Two Mile Hill
SNRC25-079		177	190	13	5.44	13m @ 5.44g/t from 177m	70.7	Two Mile Hill
SNRC25-079	<i>including</i>	184	186	2	27.4	2m @ 27.4g/t from 184	54.9	Two Mile Hill
SNRC25-079		195	200	5	1.44	5m @ 1.44g/t from 195m	7.20	Two Mile Hill
SNRC25-079		213	218	5	1.10	5m @ 1.10g/t from 213m	5.48	Two Mile Hill
SNRC25-079		245	248	3	1.71	3m @ 1.71g/t from 245m	5.14	Two Mile Hill
SNRC25-080		55	56	1	1.45	1m @ 1.45g/t from 55m	1.45	Two Mile Hill
SNRC25-080		164	167	3	2.76	3m @ 2.76g/t from 164m	8.27	Two Mile Hill
SNRC25-081		111	112	1	1.03	1m @ 1.03g/t from 111m	1.03	Two Mile Hill
SNRC25-081		116	117	1	1.33	1m @ 1.33g/t from 116m	1.33	Two Mile Hill
SNRC25-081		121	122	1	2.03	1m @ 2.03g/t from 121m	2.03	Two Mile Hill
SNRC25-081		128	129	1	1.63	1m @ 1.63g/t from 128m	1.63	Two Mile Hill
SNRC25-081		158	159	1	1.17	1m @ 1.17g/t from 158m	1.17	Two Mile Hill
SNRC25-082		66	73	7	3.12	7m @ 3.12g/t from 66m	21.9	Two Mile Hill
SNRC25-082		101	102	1	1.12	1m @ 1.12g/t from 101m	1.12	Two Mile Hill
SNRC25-082		105	107	2	1.50	2m @ 1.50g/t from 105m	2.99	Two Mile Hill
SNRC25-083						NSI		Two Mile Hill
SNRC25-084		96	101	5	1.13	5m @ 1.13g/t from 96m	5.66	Two Mile Hill

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram-metres	Prospect
SNRC25-085		32	36	4	1.61	4m @ 1.61g/t from 32m	6.44	Two Mile Hill
SNRC25-085		208	213	5	1.00	5m @ 1.00g/t from 208m	4.99	Two Mile Hill
SNRC25-085		245	248	3	7.16	3m @ 7.16g/t from 245m	21.5	Two Mile Hill
SNRC25-085	<i>including</i>	247	248	1	17.8	1m @ 17.8g/t from 247m	17.8	Two Mile Hill
SNRC25-085		253	256	3	1.86	3m @ 1.86g/t from 253m	5.58	Two Mile Hill
SNRD25-001		24	32	8	1.34	8m @ 1.34g/t from 24m	10.7	Two Mile Hill
SNRD25-001		63	64	1	1.32	1m @ 1.32g/t from 63m	1.32	Two Mile Hill
SNRD25-001		104	105	1	4.15	1m @ 4.15g/t from 104m	4.15	Two Mile Hill
SNRD25-002		63	64	1	1.86	1m @ 1.86g/t from 63m	1.86	Two Mile Hill
SNRD25-002		70	71	1	4.17	1m @ 4.17g/t from 70m	4.17	Two Mile Hill
SNRD25-003		176	180	4	1.78	4m @ 1.78g/t from 176m	7.12	Two Mile Hill
SNRD25-003		201	202	1	24.9	1m @ 24.9g/t from 201m	24.9	Two Mile Hill
SNRD25-004		48	52	4	2.24	4m @ 2.24g/t from 48m	8.96	Two Mile Hill
SNRD25-005		70	71	1	1.44	1m @ 1.44g/t from 70m	1.44	Two Mile Hill
SNRD25-005		97	98	1	1.18	1m @ 1.18g/t from 97m	1.18	Two Mile Hill
SNRD25-005		120	121	1	4.25	1m @ 4.25g/t from 120m	4.25	Two Mile Hill
SNRD25-005		227	228	1	1.23	1m @ 1.23g/t from 227m	1.23	Two Mile Hill
SNRD25-005		267	271	4	4.72	4m @ 4.72g/t from 267m	18.9	Two Mile Hill
SNRD25-005		277	278	1	1.14	1m @ 1.14g/t from 277m	1.14	Two Mile Hill
SNRD25-005		285	287	2	1.37	2m @ 1.37g/t from 285m	2.73	Two Mile Hill
SNRD25-005		293	294	1	2.02	1m @ 2.02g/t from 293m	2.02	Two Mile Hill

Table 5: Achilles Reverse Circulation drillhole collar information. Holes located on tenements M57/99. Grid coordinates shown in MGA94 Zone 50.

Hole ID	Hole Type	Easting	Northing	RL	Dip	Azimuth	Hole Depth (m)	Status
ACRC25001	RC	751507	6964975	503	-61	274	90	This ASX Announcement
ACRC25002	RC	751505	6965075	503	-61	273	166	This ASX Announcement
ACRC25003	RC	751565	6965076	503	-60	271	227	This ASX Announcement
ACRC25004	RC	751443	6965125	503	-60	271	113	This ASX Announcement
ACRC25005	RC	751606	6965079	503	-60	272	191	This ASX Announcement
ACRC25006	RC	751519	6965126	503	-61	271	180	This ASX Announcement
ACRC25007	RC	751480	6965176	504	-61	272	161	This ASX Announcement
ACRC25008	RC	751500	6965228	504	-61	271	173	This ASX Announcement
ACRC25009	RC	751477	6965277	503	-61	270	185	This ASX Announcement
ACRC25010	RC	751439	6965326	503	-62	273	157	This ASX Announcement
ACRC25011	RC	751518	6965327	504	-61	270	220	This ASX Announcement
ACRC25012	RC	751423	6965373	504	-61	273	90	This ASX Announcement
ACRC25013	RC	751519	6965379	504	-61	274	154	This ASX Announcement
ACRC25014	RC	751480	6965425	504	-61	273	141	This ASX Announcement
ACRC25015	RC	751400	6965425	504	-61	272	82	This ASX Announcement
ACRC25016	RC	751402	6965475	504	-60	274	88	This ASX Announcement

Table 6: Lord Henry Reverse Circulation and diamond drillhole collar information. Holes located on tenements M57/651. Grid coordinates shown in MGA94 Zone 50.

Hole ID	Hole Type	Easting	Northing	RL	Dip	Azimuth	Hole Depth (m)	Status
LHRC25012	RC	746513	6880541	453	-61	179	30	This ASX Announcement
LHRC25013	RC	746511	6880594	453	-61	180	60	This ASX Announcement
LHRC25014	RC	746513	6880626	453	-60	181	60	This ASX Announcement
LHRC25015	RC	746529	6880770	454	-60	181	120	This ASX Announcement
LHRC25016	RC	746530	6880797	454	-60	179	120	This ASX Announcement
LHRC25017	RC	746511	6880862	454	-61	179	156	This ASX Announcement
LHRC25018	RC	746453	6880743	453	-61	181	54	This ASX Announcement
LHRC25019	RC	746454	6880793	454	-61	179	90	This ASX Announcement
LHRC25020	RC	746468	6880739	453	-61	180	60	This ASX Announcement
LHRC25021	RC	746469	6880767	454	-60	180	72	This ASX Announcement
LHRC25022	RC	746471	6880795	454	-61	181	60	This ASX Announcement

Hole ID	Hole Type	Easting	Northing	RL	Dip	Azimuth	Hole Depth (m)	Status
LHRC25023	RC	746471	6880799	454	-61	180	90	This ASX Announcement
LHRC25024	RC	746491	6880742	454	-61	180	60	This ASX Announcement
LHRC25025	RC	746492	6880770	454	-61	181	72	This ASX Announcement
LHRC25026	RC	746511	6880703	453	-60	179	36	This ASX Announcement
LHRC25027	RC	746512	6880746	454	-61	180	60	This ASX Announcement
LHRC25028	RC	746635	6880902	454	-61	180	156	This ASX Announcement
LHRC25029	RC	746755	6880954	455	-61	179	120	This ASX Announcement
LHRC25030	RC	746795	6880947	455	-61	181	102	This ASX Announcement
LHRC25031	RC	746809	6880931	455	-61	179	90	This ASX Announcement
LHRC25032	RC	746829	6880901	454	-61	181	36	This ASX Announcement
LHRC25033	RC	746834	6880940	455	-61	179	60	This ASX Announcement
LHRC25034	RC	746587	6880935	454	-56	179	180	This ASX Announcement
LHRC25035	RC	746651	6880961	454	-66	181	186	This ASX Announcement
LHRC25036	RC	746708	6880985	454	-55	181	162	This ASX Announcement
LHRC25037	RC	746733	6880988	455	-68	182	150	This ASX Announcement
LHRC25038	RC	746755	6880991	455	-61	179	156	This ASX Announcement
LHRC25039	RC	746810	6880993	455	-56	179	132	This ASX Announcement
LHRC25040	RC	746673	6880978	454	-61	179	186	This ASX Announcement
LHRC25041	RC	746690	6880975	454	-69	180	177	This ASX Announcement
LHDD25001	DD	746791	6881005	455	-51	180	130	Assays pending
LHDD25002	DD	746512	6880828	454	-60	180	132.2	Assays pending
LHDD25003	DD	746738	6880633	453	-50	0	78.6	Assays pending

Table 7: Vanguard Reverse Circulation and diamond drillhole collar information. Holes located on tenements M57/647. Grid coordinates shown in MGA94 Zone 50.

Hole ID	Hole Type	Easting	Northing	RL	Dip	Azimuth	Hole Depth (m)	Status
VNRC25091	RC	740475	6884379	476	-60	221	120	This ASX Announcement
VNRC25092	RC	740455	6884325	476	-60	220	70	This ASX Announcement
VNRC25093	RC	740475	6884349	476	-61	221	82	This ASX Announcement
VNRC25094	RC	740496	6884374	476	-61	223	100	This ASX Announcement
VNRC25095	RC	740516	6884395	477	-61	225	112	This ASX Announcement
VNRC25096	RC	740491	6884306	476	-61	219	76	This ASX Announcement

Hole ID	Hole Type	Easting	Northing	RL	Dip	Azimuth	Hole Depth (m)	Status
VNRC25097	RC	740509	6884328	477	-61	219	88	This ASX Announcement
VNRC25098	RC	740525	6884348	477	-60	221	100	This ASX Announcement
VNRC25099	RC	740546	6884369	477	-60	221	130	This ASX Announcement
VNRC25100	RC	740516	6884274	476	-60	221	51	This ASX Announcement
VNRC25101	RC	740534	6884295	477	-60	221	82	This ASX Announcement
VNRC25102	RC	740553	6884318	477	-61	221	100	This ASX Announcement
VNRC25103	RC	740598	6884158	475	-61	221	70	This ASX Announcement
VNRC25104	RC	740593	6884182	476	-60	219	76	This ASX Announcement
VNRC25105	RC	740479	6884265	476	-61	222	64	This ASX Announcement
VNRC25106	RC	740531	6884263	470	-60	219	52	This ASX Announcement
VNRC25107	RC	740554	6884291	477	-61	220	64	This ASX Announcement
VNRC25108	RC	740550	6884198	475	-61	221	88	This ASX Announcement
VNRC25109	RC	740571	6884224	477	-61	220	106	This ASX Announcement
VNRC25110	RC	740587	6884242	477	-61	220	113	This ASX Announcement
VNRC25111	RC	740739	6884313	477	-61	222	126	This ASX Announcement
VNRC25112	RC	740670	6884269	476	-61	220	126	This ASX Announcement
VNRC25113	RC	740699	6884299	477	-61	219	126	This ASX Announcement
VNRC25114	RC	740728	6884334	477	-61	221	120	This ASX Announcement
VNRC25115	RC	740747	6884352	477	-60	220	120	This ASX Announcement
VNRC25116	RC	740580	6884196	476	-61	220	72	This ASX Announcement
VNRC25117	RC	740602	6884226	477	-62	220	108	This ASX Announcement
VNRC25118	RC	740686	6884317	477	-60	213	120	Assays pending
VNRC25119	RC	740704	6884336	477	-61	218	132	Assays pending
VNRC25120	RC	741006	6884081	466	-61	219	144	This ASX Announcement
VNRC25121	RC	741030	6884096	475	-60	220	144	This ASX Announcement
VNRC25122	RC	740986	6884115	479	-61	221	180	This ASX Announcement
VNRC25123	RC	740959	6884115	475	-60	219	144	This ASX Announcement
VNRC25124	RC	740980	6884142	474	-61	220	150	This ASX Announcement
VNRC25125	RC	740995	6884157	474	-61	219	162	This ASX Announcement
VNRC25126	RC	741012	6884183	474	-60	219	174	This ASX Announcement
VNRC25127	RC	741030	6884207	475	-61	219	180	This ASX Announcement
VNRC25128	RC	740945	6884137	474	-59	222	150	This ASX Announcement
VNRC25129	RC	740999	6884196	474	-61	223	174	This ASX Announcement
VNRC25130	RC	740963	6884181	474	-60	220	162	This ASX Announcement

Hole ID	Hole Type	Easting	Northing	RL	Dip	Azimuth	Hole Depth (m)	Status
VNRC25131	RC	740976	6884197	474	-61	221	162	This ASX Announcement
VNRC25132	RC	740987	6884216	475	-61	219	174	This ASX Announcement
VNRC25133	RC	741006	6884239	475	-61	220	180	This ASX Announcement
VNRC25134	RC	740922	6884166	474	-60	219	156	This ASX Announcement
VNRC25135	RC	740946	6884195	474	-60	219	162	This ASX Announcement
VNRC25136	RC	740996	6884253	475	-60	218	186	This ASX Announcement
VNRC25137	RC	740920	6884205	474	-61	220	132	This ASX Announcement
VNRC25138	RC	740963	6884245	475	-60	220	180	This ASX Announcement
VNRC25139	RC	740930	6884246	474	-61	221	150	This ASX Announcement
VNRC25140	RC	740979	6884303	475	-61	221	192	This ASX Announcement
VNRC25141	RC	740919	6884261	475	-61	220	174	This ASX Announcement
VNRC25142	RC	740961	6884307	475	-61	221	204	This ASX Announcement
VNRC25143	RC	740840	6884172	475	-52	220	114	This ASX Announcement
VNRC25144	RC	740845	6884180	474	-70	220	132	This ASX Announcement
VNRC25145	RC	740813	6884187	475	-61	220	126	This ASX Announcement
VNRC25146	RC	740907	6804300	475	-60	219	204	This ASX Announcement
VNRC25147	RC	740793	6884196	475	-61	220	114	This ASX Announcement
VNRC25148	RC	740878	6884296	475	-61	221	192	This ASX Announcement
VNRC25149	RC	740726	6884148	475	-61	220	90	This ASX Announcement
VNRC25150	RC	740772	6884193	475	-61	220	102	This ASX Announcement
VNRC25151	RC	740781	6884231	476	-61	221	144	Assays pending
VNRC25152	RC	740802	6884251	476	-61	219	90	Assays pending
VNRC25153	RC	740660	6884229	476	-61	220	6	Assays pending
VNRC25154	RC	740689	6884260	476	-61	219	84	Assays pending
VNRC25155	RC	740720	6884296	474	-61	221	108	Assays pending
VNRC25156	RC	740723	6884364	478	-61	218	144	Assays pending
VNRC25157	RC	740649	6884340	478	-60	220	14	Assays pending
VNRC25158	RC	740647	6884339	478	-61	219	84	Assays pending
VNRC25159	RC	740684	6884377	478	-61	219	84	Assays pending
VNRC25160	RC	740622	6884213	476	-65	220	90	Assays pending
VNRC25161	RC	740657	6884228	476	-60	221	96	Assays pending
VNRC25162	RC	740800	6884250	476	-60	220	150	Assays pending
VNDD25001	DD	741017	6884132	475	-60	220	160	Assays pending
VNDD25002	DD	740931	6884306	476	-57	222	203.2	Assays pending

Hole ID	Hole Type	Easting	Northing	RL	Dip	Azimuth	Hole Depth (m)	Status
VNDD25003	DD	740531	6884330	478	-60	220	89.4	Assays pending
VNDD25004	DD	740350	6884825	480	-50	43	160.7	Assays pending

Table 8: Reverse Circulation and diamond drillhole collar information for holes drilled at the Shillington-Two Mile Hill, McIntyre, and Old Town Well deposits. Holes located on tenements M57/128 and M57/129. Grid coordinates shown in MGA94 Zone 50. RC DT is reporting RC pre-collar only. Diamond tail assays remain pending.

Hole ID	Hole Type	Easting	Northing	RL	Dip	Azimuth	Hole Depth (m)	Status
SNRC25-055	RC	723170	6892666	520	-60	91	80	This ASX Announcement
SNRC25-056	RC	722985	6892621	521	-60	91	236	This ASX Announcement
SNRC25-057	RC	722970	6892541	516	-90	0	206	This ASX Announcement
SNRC25-059	RC	723244	6892105	509	-60	236	80	This ASX Announcement
SNRC25-060	RC	723137	6892226	517	-60	236	140	This ASX Announcement
SNRC25-061	RC	723098	6892227	511	-60	236	110	This ASX Announcement
SNRC25-062	RC	723068	6892201	511	-60	236	80	This ASX Announcement
SNRC25-063	RC	723077	6892233	512	-60	236	92	This ASX Announcement
SNRC25-064A	RC	723121	6892310	515	-60	236	134	This ASX Announcement
SNRC25-065	RC	723140	6892349	517	-60	236	164	This ASX Announcement
SNRC25-066	RC	723076	6892327	513	-60	91	122	This ASX Announcement
SNRC25-067	RC	721741	6890748	501	-60	126	62	This ASX Announcement
SNRC25-068	RC	721757	6890760	502	-60	126	44	This ASX Announcement
SNRC25-069	RC	721968	6890945	488	-60	126	110	This ASX Announcement
SNRC25-070	RC	722011	6890959	493	-60	221	92	This ASX Announcement
SNRC25-071	RC	724661	6890772	512	-60	221	74	This ASX Announcement
SNRC25-072	RC	724628	6890736	512	-60	221	65	This ASX Announcement
SNRC25-073	RC	724556	6890742	517	-60	221	74	This ASX Announcement
SNRC25-074	RC	724512	6890776	514	-60	236	50	This ASX Announcement
SNRC25-075	RC	723149	6892405	511	-60	236	194	This ASX Announcement
SNRC25-076	RC	723099	6892396	505	-60	236	146	This ASX Announcement
SNRC25-077	RC	723046	6892389	517	-60	236	134	This ASX Announcement
SNRC25-078	RC	723113	6892381	520	-60	271	158	This ASX Announcement
SNRC25-079	RC	723134	6892398	515	-60	91	260	This ASX Announcement
SNRC25-080	RC	722979	6892459	518	-60	236	200	This ASX Announcement
SNRC25-081	RC	723003	6892435	521	-80	236	182	This ASX Announcement

Hole ID	Hole Type	Easting	Northing	RL	Dip	Azimuth	Hole Depth (m)	Status
SNRC25-082	RC	723025	6892392	514	-60	236	134	This ASX Announcement
SNRC25-083	RC	722916	6892273	513	-60	236	50	This ASX Announcement
SNRC25-084	RC	723298	6892049	517	-60	271	164	This ASX Announcement
SNRC25-085	RC	723175	6892435	516	-60	91	302	This ASX Announcement
SNRD25-001	RCDT	723188	6892625	523	-60	271	435	This ASX Announcement 140m RC Pre-collar
SNRD25-002	RCDT	723170	6892663	521	-60	271	392.8	This ASX Announcement 80m RC Pre-collar
SNRD25-003	RCDT	723255	6892659	521	-60	271	510	This ASX Announcement 234m RC Pre-collar
SNRD25-004	RCDT	723175	6892477	518	-60	271	400.1	This ASX Announcement 140m RC Pre-collar
SNRD25-005	RCDT	723211	6892701	519	-60	271	396	This ASX Announcement 302m RC Pre-collar

This ASX announcement has been approved by the Managing Director on behalf of the Board of Brightstar.

FOR FURTHER INFORMATION, PLEASE CONTACT:

Alex Rovira

Managing Director

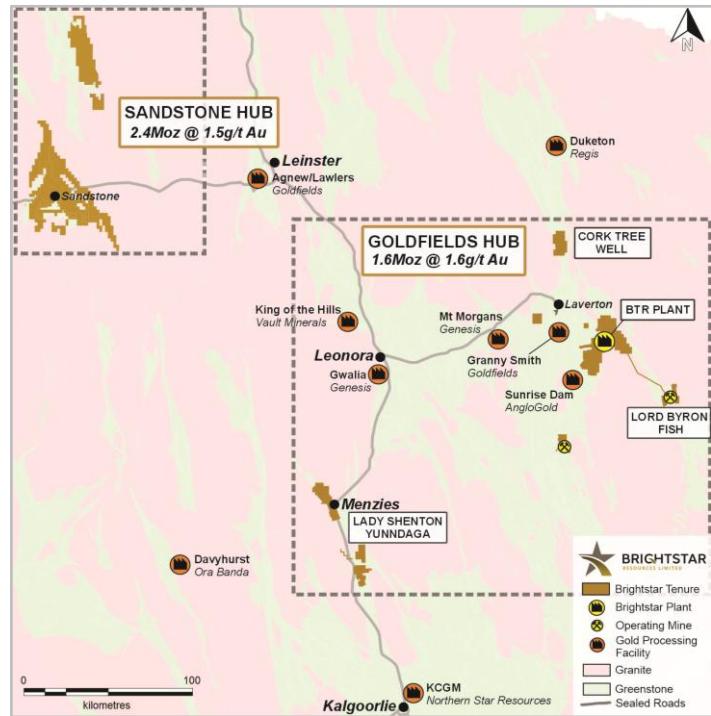
Email: alex@brightstarresources.com.au

Investor Relations

Lucas Robinson

Phone: +61 408 228 889

Email: luca@corporatestorytime.com


ABOUT BRIGHTSTAR RESOURCES

Brightstar Resources Limited is an emerging gold producer and developer listed on the Australian Securities Exchange (ASX: BTR) and based in Perth, WA.

The Company hosts a portfolio of high-quality assets hosted in the Tier-1 jurisdiction of Western Australia, with over 4.0Moz of Mineral Resources across the Goldfields and Sandstone regions, ideally located near key infrastructure such as sealed highways and on granted mining leases for ready development.

Brightstar is currently advancing the Goldfields Hub into near-term gold production, with a January 2026 updated Feasibility Study outlining the production of +75,000oz per annum for six years which delivered impressive financial metrics such as ~A\$1 billion in LOM cashflows, a A\$606 million NPV and 74% internal rate of return. Brightstar is targeting commencement of gold production in JunQ'CY27.

Brightstar aspires to be a leading mid-tier gold miner via the staged development of its Goldfields Project and Sandstone Project, with current operations and proposed expansions providing a significant platform for growth.

Consolidated Mineral Resources of Laverton, Menzies & Sandstone Hubs

Location	Cut-off	Measured			Indicated			Inferred			Total		
		g/t Au	kt	g/t Au	koz	kt	g/t Au	koz	kt	g/t Au	koz	kt	g/t Au
Alpha	0.5	-	-	-	371	1.9	22	1,028	2.8	92	1,399	2.5	115
Beta	0.5	345	1.7	19	576	1.6	29	961	1.7	54	1,882	1.7	102
Cork Tree Well	0.5	-	-	-	3,264	1.6	166	3,198	1.2	126	6,462	1.4	292
Lord Byron	0.5	311	1.7	17	2,104	1.5	105	2,974	1.5	145	5,389	1.5	267
Fish	1.6	25	5.4	4	199	4.5	29	153	3.2	16	376	4.0	49
Gilt Key	0.5	-	-	-	15	2.2	1	153	1.3	6	168	1.3	8
Second Fortune (UG)	2.5	24	15.3	12	34	13.7	15	34	11.7	13	92	13.4	40
Total - Laverton		705	2.3	52	6563	1.7	367	8,501	1.7	452	15,768	1.7	873
Lady Shenton System	0.5/1.2	-	-	-	3,725	1.4	168	4,349	1.3	184	8,074	1.4	352
Yunndaga	0.5/1.2	-	-	-	2,172	2.2	152	923	1.8	54	3,095	2.1	206
Aspacia	0.5	-	-	-	137	1.7	7	1,238	1.6	62	1,375	1.6	70
Lady Harriet System	0.5	-	-	-	520	1.3	22	590	1.1	21	1,110	1.2	43
Link Zone	0.5	-	-	-	160	1.3	7	740	1.0	23	890	1.0	29
Selkirk	0.5	-	-	-	30	6.3	6	140	1.2	5	170	2.1	12
Lady Irene	0.5	-	-	-	-	-	-	100	1.7	6	100	1.7	6
Total - Menzies		-	-	-	6,744	1.7	362	8,080	1.4	355	14,814	1.5	718
Montague-Boulder	0.6	-	-	-	522	4.0	67	2,556	1.2	96	3,078	1.7	163
Whistler	0.5	-	-	-	-	-	-	1,704	2.2	120	1,704	2.2	120
Evermore	0.6	-	-	-	-	-	-	1,319	1.6	67	1,319	1.6	67
Achilles Nth / Airport	0.6	-	-	-	221	2.0	14	1,847	1.4	85	2,068	1.5	99
Julias ¹ (Attributable)	0.6	-	-	-	-	-	-	-	-	-	1,431	1.3	58
Lord Nelson	0.5	-	-	-	1,500	2.1	100	4,100	1.4	191	5,600	1.6	291
Lord Henry	0.5	-	-	-	1,626	1.5	78	570	1.1	20	2,197	1.4	98
Vanguard Camp	0.5	-	-	-	405	2.0	26	3,344	1.8	191	3,749	1.8	217
Havilah Camp	0.5	-	-	-	-	-	-	1,171	1.4	54	1,171	1.4	54
Indomitable Camp	0.5	-	-	-	800	0.9	23	7,400	1.1	273	8,200	1.1	296
Bull Oak	0.5	-	-	-	-	-	-	2,470	1.1	90	2,470	1.1	90
Two Mile Hill	0.5/0.73	-	-	-	1,786	1.4	82	11,160	1.6	582	12,945	1.6	664
Shillington	0.5	-	-	-	1300	1.5	61	613	1.5	30	1,913	1.5	91
McIntyre	0.5	-	-	-	496	1.2	19	67	0.9	2	562	1.2	21
Plum Pudding	0.5	-	-	-	325	1.5	15	88	1.2	4	413	1.4	19
Central Trend (Eureka, Wirraminna, Old Town, Twin Shafts, Goat Farm, McLaren)	0.5	-	-	-	1,480	1.1	53	1,131	1.1	39	2,612	1.1	91
Total - Sandstone		-	-	-	10,461	1.6	538	39,540	1.5	1,844	51,432	1.5	2,439
Total - BTR (Attributable)		705	2.3	52	23,768	1.7	1,267	56,121	1.5	2,651	82,014	1.5	4,030

- Note some rounding discrepancies may occur. Tonnes are reported as thousand tonnes (Kt) and rounded to the nearest 1000; Au ounces are reported as thousands rounded to the nearest 1,000
- Pericles, Lady Shenton & Stirling deposits are consolidated into Lady Shenton System.
- Warrior, Lady Harriet & Bellenger deposits are consolidated into Lady Harriet System.
- Note 1: Julias is located on M57/427, which is owned 75% by Brightstar and 25% by Estuary Resources Pty Ltd. Attributable gold ounces to Brightstar include 75% of total Mineral Resources are reported inclusive of declared Ore Reserves.
- The Mineral Resource estimates include Inferred Mineral Resources that are normally considered too speculative geologically to have economic considerations applied to them that would enable them to be categorized as Ore Reserves. There is also no certainty that Inferred Mineral Resources will be converted to Measured and Indicated categories through further drilling, or into Ore Reserves once economic considerations are applied.
- Mineral Resources are depleted for historical mining

Competent Person Statement – Mineral Resource Estimates

This Announcement contains references to Brightstar's JORC Mineral Resource estimates, extracted from the ASX announcements titled "Cork Tree Well Resource Upgrade Delivers 1Moz Group MRE" dated 23 June 2023, "Maiden Link Zone Mineral Resource" dated 15 November 2023, "Aspacia deposit records maiden Mineral Resource at the Menzies Gold Project" dated 17 April 2024, "Brightstar Makes Recommended Bid for Linden Gold", dated 25 March 2024, "Brightstar to drive consolidation of Sandstone Gold District" dated 1 August 2024 and "Scheme Booklet Registered by ASIC" dated 14 October 2024 and "Robust Mineral Resource Upgrades at Laverton and Menzies Underpins Future Mining Operations" dated 19 May 2025.

Aurumin's Mineral Resource Estimates are extracted from the ASX announcement titled "Brightstar Pursues Synergistic Consolidation and Sandstone" dated 21 July 2025.

Brightstar confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the Mineral Resource estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Competent Person Statement – Exploration

The information presented here relating to exploration of the Menzies, Laverton and Sandstone Gold Project areas are based on information compiled by Mr Michael Kammermann, MAIG. Mr Kammermann is a Member of the Australasian Institute of Geoscientists (AIG) and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a "Competent Person" as that term is defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)". Mr Kammermann is a fulltime employee of the Company in the position of Exploration Manager and has provided written consent approving the inclusion of the Exploration Results in the form and context in which they appear.

Compliance Statement

With reference to previously reported Exploration Results and Mineral Resources, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Brightstar's planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Brightstar believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that further exploration will result in the estimation of a Mineral Resource.

APPENDIX 1: JORC CODE, 2012 EDITION – TABLE 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<p>Drilling carried out by Brightstar Resources Limited (BTR) (VNRC, ACRC, LHRC25 prefixes) and Aurumin Limited (AUN) (SNRC and SNRD prefixes)</p> <ul style="list-style-type: none"> Samples were collected by reverse circulation (RC) and diamond (DD) drilling. RC samples were passed directly from the in-line cyclone through a rig mounted cone splitter. Samples were collected in 1m intervals into bulk plastic bags and 1m calico splits, which were retained for later use. From the bulk 1m sample, a 4m composite sample was collected using a split PVC scoop and then submitted to ALS Laboratory in Perth (Aurumin) for analysis by fire assay and to Intertek Laboratory (BTR) for analysis by Photon method. RC 1m splits were submitted if the composite sample assay values are equal to or greater than 0.2 g/t Au. Diamond core sampling on HQ/NQ diamond drill core at mostly 1m intervals. Closer spaced sampling around specific mineralized zones or structures. <p>Drilling carried out by Troy Resources NL (TRC and LHRC prefixes)</p> <ul style="list-style-type: none"> RC samples were passed directly from the in-line cyclone through a rig mounted multi-tier riffle splitter. From the bulk samples a 5m composite sample was collected using a PVC scoop and then submitted to the laboratory for

Criteria	JORC Code Explanation	Commentary
		<p>analysis.</p> <ul style="list-style-type: none"> • Troy samples were sent to SGS Australia Pty Ltd (SGS). • Where anomalous gold zones were detected, 1m re-split samples were collected later and submitted to the laboratory. <p>Drilling carried out by Gateway Mining Limited (GRC prefixes)</p> <ul style="list-style-type: none"> • Reverse circulation drilling samples were ~2-3kg split from dry 1m bulk samples. The sample was initially collected via the cyclone in an inline collection box. Once the metre was completed the sample was dropped under gravity through a cone splitter, with the 1m split for assay collected in a calico bag. • The bulk reject from the sample was dumped into neat piles on the ground.
Drilling techniques	<ul style="list-style-type: none"> • <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> • BTR RC drill holes were drilled utilising a 5.5 inch face sampling hammer and surveyed using an Axis Champ true-North-seeking gyroscopic survey tool. Drilling was conducted by Topdrill using a Schramm C685 drill rig with a booster compressor. • AUN and Gateway RC drilling used a KWL 350 drill rig with an onboard 1100cgm/350psi compressor and a truck mounted 1000cfm auxiliary and 1000psi booster. The face sampler had a nominal 140mm hole. • It is not known what type of RC rig was used by Troy. • BTR Diamond drilling is drilled by Topdrill utilising a Sandvik DE840 drill rig. HQ and NQ diameter drill core was obtained. In areas of unconsolidated ground, triple tube configuration was used to maximise core recovery. All drill core was oriented (where possible), using the Axis Champ Ori system. • AUN diamond drilling is drilled by Terra Drilling. HQ and NQ diameter drill core was obtained. In areas of unconsolidated

Criteria	JORC Code Explanation	Commentary
		ground, triple tube configuration was used to maximise core recovery. All drill core was oriented (where possible).
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> RC sample recovery was qualitatively assessed and recorded by comparing drill chip volumes (sample bags) for individual metres. Sample depths were cross-checked every rod (6m). The cyclone was regularly cleaned to ensure no material build up and sample material was checked for any potential downhole contamination. Wet samples were recorded, although the majority of samples were dry. In the CP's opinion, the drilling sample recoveries/quality are acceptable and are appropriately representative for the style of mineralisation Sample recoveries are recorded on sample registers with sample recovery and moisture content estimated. Good sample recovery was standard in reported programs. No grade versus sample recovery biases, or biases relating the loss or gain or fines have been identified in BTR's drilling. All samples are weighed at the laboratory and reported as a part of standard preparation protocols. No water compromised samples are reported in this program. Drilling is carried out orthogonal to the mineralisation to get representative samples of the mineralisation. RC samples are collected through a cyclone and cone splitter. The sample required for the assay is collected directly into a calico sample bag at a designed 2kg sample mass which is optimal by Photon method. Gateway sample recovery was estimated as a percentage and recorded on field sheets prior to entry into the database. There are no available records of Troy sample recovery.

Criteria	JORC Code Explanation	Commentary
Logging	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> <i>The total length and percentage of the relevant intersections logged.</i> 	<ul style="list-style-type: none"> BTR RC holes were logged on one metre intervals at the rig by the geologist from drill chips. Logging was recorded directly into LogChief computer software. Detailed geological logging includes the lithology, alteration, veining and mineralisation of the drill chips or core. Logging is both quantitative and qualitative in nature, depending on the feature. 100% of BTR drilling is geologically logged. AUN and Gateway drill chips were sieved from each 1m sample and geologically logged. Washed drill chips from each 1m sample were stored in chip trays. Geological logging of drill hole intervals was carried out with sufficient detail to meet the requirements of resource estimation. Troy drill holes were logged using detailed geological codes that were correlated with Alto/BTR logging codes and logging is of sufficient detail to meet the requirements of resource estimation.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<p>BTR RC drilling</p> <ul style="list-style-type: none"> RC drilling single 1 metre splits were automatically taken at the time of drilling by a cone splitter attached to the cyclone. For interpreted non-mineralised areas, 4 metre composite samples were collected from the drill rig by spearing each 1m collection bag. The 4 metre compo26sites were submitted for assay. Composite samples returning grade >0.1 g/t Au were resampled as 1m cone-split samples with samples having been collected for upcoming laboratory analyses. For interpreted mineralised areas, the 1 metre splits were bagged on the static cyclone splitter on the RC rig.

Criteria	JORC Code Explanation	Commentary
		<ul style="list-style-type: none"> QAQC samples (blanks and standards) were submitted for all samples at a rate between 1:10 and 1:20 Duplicate samples were taken over selected interpreted mineralised intervals to determine if sampling is representative. Samples submitted for analysis via Photon assay technique were dried, crushed to nominal 85% passing 2mm, linear split and a nominal 500g sub sample taken. The 500g sample is assayed for gold by Photon Assay along with quality control samples including certified reference materials, blanks and sample duplicates. Samples volumes were typically 1.0-3.0 kg and are considered to be of suitable size for the style of mineralisation. <p>BTR diamond drilling</p> <ul style="list-style-type: none"> No assays are being reported. <p>AUN RC drilling</p> <ul style="list-style-type: none"> The 1m samples were collected from a cone splitter via the cyclone directly into pre-numbered calico bags, creating a nominal 2.5kg sample. Composite samples were created using a PVC spear to collect sample from the reject 1m intervals placed on the ground. These were placed into pre-numbered calico bags. All samples were submitted to ALS laboratories in Perth. Most samples were dry with some moisture present at depth in some holes. Field Duplicate samples were taken as per Aurumin's QAQC sample procedure at a rate of 1:20.

Criteria	JORC Code Explanation	Commentary
		<ul style="list-style-type: none"> Sample preparation for drill samples involved drying the whole sample before crushing and pulverising it to 85% passing 75 microns. A 50g sub-sample charge was then used for gold analysis by fire assay. Samples where raw sample weight is greater than 3kg are fine crushed to 70% passing 2mm, then split using a Boyd Rotary Splitter to produce a 3kg sample which is then pulverised to 85% passing 75 microns. QAQC samples were inserted in the field as per Aurumin's QAQC sample procedure. Sample sizes are considered appropriate for the grain size of material sample. <p>AUN diamond drilling</p> <ul style="list-style-type: none"> No assays are being reported. <p>Troy Resources NL drilling</p> <ul style="list-style-type: none"> RC samples were passed directly from a cyclone through a rig mounted multi-tier riffle splitter and samples were collected in 1m intervals into bulk plastic bags and 1m calico splits (which were retained for later use). From the bulk sample, a 5m composite sample was collected using a split PVC scoop and then submitted to the laboratory for analysis. The 1m calico splits were submitted to the laboratory if the composite sample returned assay values +1g/t Au over the anomalous zone. Samples were collected Troy submitted 1 duplicate for every 50m

Criteria	JORC Code Explanation	Commentary
		<p>of drilling.</p> <p>Gateway Mining drilling</p> <ul style="list-style-type: none"> RC samples were split from dry, 1m bulk sample via cone splitter directly from the cyclone. All samples were analysed for gold using the Au-AA26 technique which is a 50g lead collection fire assay. The QC procedure adopted through the process includes: <ul style="list-style-type: none"> Field duplicates were collected at a rate of 1:50, these were collected during drilling at the same time as the primary sample. OREAS CRMs were inserted at a rate of 1:50.
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<p>BTR drilling</p> <ul style="list-style-type: none"> 1m and 4m composite samples were assayed by Fire Assay (FA50) by Bureau Veritas Laboratories for gold. Laboratory QC involves the use of internal lab standards, certified reference material, blanks, splits and replicates. QC results (blanks, coarse reject duplicates, bulk pulverised, standards) are monitored and were within acceptable limits. ~5% standards were inserted to check on precision of laboratory results. No diamond assay results are being reported. <p>AUN drilling</p> <ul style="list-style-type: none"> A 50g sample was used to analyse gold by fire assay. The fire assay analysis undertaken is considered to be a total analysis method. A fire assay fusion-gravimetric analysis is used for gold analysis in samples that return a greater than 100ppm results using the

Criteria	JORC Code Explanation	Commentary
		<p>standard fire analysis technique.</p> <ul style="list-style-type: none"> • Aurumin QAQC procedures collect field duplicates and insert certified reference materials (CRMs). Standards were inserted at a rate of 1:20 while blanks were inserted at 1:50. Duplicate samples are taken every 1:20. • Laboratory CRMs and repeats have been received and used to assess laboratory reproducibility and accuracy. • The assaying techniques and quality control protocols used are considered appropriate for the material tested and for the data to be used for reporting exploration drilling results. • No geophysical tools were used in determining element concentrations. • No diamond assay results are being reported. <p>Troy Resources NL</p> <ul style="list-style-type: none"> • SGS Australia Pty Ltd (SGS) located in Perth, Western Australia were responsible for sample preparation and assaying for drill hole samples and associated check assays. SGS at the time was certified to the ISO 9001 requirements for all related inspection, verification, testing and certification activities. • RC samples were assayed using a 50g fire assay with AAS finish, and sample sizes were noted as being 2kg. • For Troy RC drilling, an average of 1 field duplicate, 1 blank and 1 standard was submitted for every 50 samples. • Troy engaged Maxwell to undertake periodic audit of the exploration QAQC data on a monthly basis. • Laboratory Repeat assays were reported for Troy drill assays <p>Gateway Mining</p> <ul style="list-style-type: none"> • Drill samples were submitted to Intertek Perth. All samples were

Criteria	JORC Code Explanation	Commentary
		<p>analysed by 50g fire assay which is a total digest assay technique.</p> <ul style="list-style-type: none"> Field duplicates were collected Field duplicates were collected at a rate of 1:50, these were collected during drilling at the same time as the primary sample.
Verification of sampling and assaying	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<p>Brightstar Resources Ltd</p> <ul style="list-style-type: none"> Significant intersections have been reviewed by several company personnel. Data storage was captured electronically onsite using Logchief before uploading to a cloud-based server and imported into an externally managed Datashed geological database. Security is set through both SQL and Datashed configuration software. Brightstar has an external consultant Database Administrator with expertise in programming and SQL database administration. The database assay management system records all metadata within the MDS, providing full audit trails to meet industry best practice. No data was adjusted. No transformations or alterations are made to assay data stored in the database. The lab's primary Au field is the one used for plotting purposes. No averaging of results for individual samples is employed. No top cuts are applied to the assays when calculating intercepts. <p>AUN drilling</p> <ul style="list-style-type: none"> No independent verification of results has been conducted. All sampling and assay data are stored in a secure database with restricted access. Twinned holes are not considered necessary at this stage. Field data were collected digitally into Excel spreadsheets at the

Criteria	JORC Code Explanation	Commentary
		<p>time of logging. Logging data was validated by geological staff and then imported into the central Aurumin database.</p> <ul style="list-style-type: none"> • All data is stored by geological data management consultancy Expedio and backed up to a cloud-based storage system. <p>Troy Resources NL</p> <ul style="list-style-type: none"> • Drilling carried out by Troy was compiled from WA Dept Mines Open File records (WAMEX). • Data was transferred from WAMEX digital files to BTR database. The original WAMEX files were generally in excel or text format and were readily imported into BTR database. <p>Gateway Mining</p> <ul style="list-style-type: none"> • Drilling results are cross checked by company geologists. • Data is recorded digitally at the project with Micromine Geobank software. • Assay results are received digitally. • All data is stored within Dashed SQL Database.
Location of data points	<ul style="list-style-type: none"> • <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> • <i>Specification of the grid system used.</i> • <i>Quality and adequacy of topographic control.</i> 	<p>Brightstar Resources Ltd</p> <ul style="list-style-type: none"> • All drill collar locations were initially surveyed using a hand-held GPS, accurate to within 3-5m. • Post drilling, a qualified contract surveyor picked up the hole collars with a RTK DGPS accurate to cm scale. • The grid system used is MGA94 Zone 50. All reported coordinates are referenced to this grid. • The site topography utilised a DTM from 2019 with accuracy <1m. <p>Aurumin Limited</p> <ul style="list-style-type: none"> • Drill collars were located using a GPS by Aurumin staff. A

Criteria	JORC Code Explanation	Commentary
		<p>Differential GPS will be used to finalise hole locations.</p> <ul style="list-style-type: none"> • The grid system used is MGA94 Zone 50. <p>Troy Resources NL</p> <ul style="list-style-type: none"> • Troy drilling was located with DGPS in AGD84 Zone 50. • No downhole survey data was reported, however it is considered unlikely that variation from the reported dip over the short drillhole lengths would be materially significant. <p>Gateway Mining</p> <ul style="list-style-type: none"> • Drill holes recorded with a Garmin GPS (+/-3m). • Hole dips determined at the collar by clinometer, with no down hole surveys.
Data spacing and distribution	<ul style="list-style-type: none"> • <i>Data spacing for reporting of Exploration Results.</i> • <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> • <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> • Holes are variably spaced with the intent of infilling hole spacings to a nominal 20m x 20m pattern across the deposits. • No sample compositing of field samples has been applied. • Spacing and distribution is sufficient to establish the degree of geological grade and continuity for a mineral resource estimation.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> • <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> • <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<ul style="list-style-type: none"> • The relationship between the drilling orientation and the orientation of mineralised structures is not considered to have introduced a sampling bias. Most holes have been drilled perpendicular to the main orientation of mineralisation. • No drilling orientation related sampling bias has been identified at the project.
Sample security	<ul style="list-style-type: none"> • <i>The measures taken to ensure sample security.</i> 	<ul style="list-style-type: none"> • Brightstar samples were collected on site under supervision of the geologist. Visitors needed permission to visit site. Once collected samples were bagged, they were transported to Kalgoorlie by company personnel or trusted contractors for assaying with

Criteria	JORC Code Explanation	Commentary
		<p>Bureau Veritas transporting samples from Kalgoorlie to Perth. Despatch and consignment notes were delivered and checked for discrepancies.</p> <ul style="list-style-type: none"> • All samples collected by Aurumin were stored onsite in a secure location before being transported to Perth by consignment in sealed bags. • Troy reported that their drill samples were collected in a labelled and tied calico bag. Up to six calico bags were then placed in a larger polyweave bag that was labelled with the laboratory address and sender details and tied with wire. The polyweave bags were picked up by a courier firm who counted the number of polyweave bags before taking them to the Mt Magnet depot. The samples were picked up by the courier's road train and transported to Perth. Upon receipt of the samples the laboratory checked the sample IDs and total number of samples and notified Troy of any differences from the submission forms. • Gateway samples are sealed into green / polyweave bags and cable tied. These are then sealed in bulka bags and transported to the laboratory in Perth by company staff or contractors or established freight companies.
Audits or reviews	<ul style="list-style-type: none"> • <i>The results of any audits or reviews of sampling techniques and data.</i> 	<ul style="list-style-type: none"> • Sampling techniques and data have been reviewed internally by company personnel.

SECTION 2 REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> The Vanguard deposit is located within Mining Lease M57/647. The Lord Henry deposit is located within located within Mining Lease M57/51. The Achilles deposit is located within Mining Lease M57/99. The Two Mile Hill deposit is located within Mining Lease M57/128. All are granted tenements are owned by 100% subsidiary companies of Brightstar Resources Limited and are held in good standing with no known impediments.
Exploration done by other parties	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> Modern exploration for gold in the Sandstone Greenstone Belt began with Western Mining Corporation (WMC) in the late 1970s through to the 1990s. WMC carried out 17 significant regional exploration programs and formed several joint ventures in the main Sandstone mines area and at Oroya, Hacks, and Bull Oak. After spending approximately \$6M, WMC put its Sandstone assets out to tender, with Herald ultimately the successful bidder. Herald carried out extensive exploration throughout the project area and carried out open pit mining at Bull Oak and Oroya. The Sandstone tenements were then sold to Troy Resources NL (Troy). Troy undertook systematic exploration of the project area between 1998 and 2010, resulting in the discovery and subsequent mining of the Two Mile Hill, Bulchina, Lord Henry and Lord Nelson deposits. Troy ceased mining in August 2010 and the operations were placed on care and maintenance.

Criteria	JORC Code Explanation	Commentary
		<ul style="list-style-type: none"> • Early explorers in the Montague Ranges included Anaconda Australia Inc. (1966-67), followed by International Nickel Australia (1971-75) evaluating a Gabbro - banded differentiated basic complex believed prospective for copper and/or nickel such as the Duluth Gabbro, USA. Strong geophysical and mineralised anomalous was encountered, however, copper-zinc enrichment was also encountered in adjacent felsic stratigraphy at Ed's Bore prospect, which was followed-up by CRA Exploration (1983-1990) to intersect polymetallic VMS enrichments at Bevan prospect (not substantively pursued). • At Montague, Western Mining Corporation (1976) conducted investigations for copper and gold including soil sampling and IP surveying, which was followed by CRA Exploration (1984-89) working concurrently with AMOCO Minerals Australia Company (1984) and Clackline Refractories Ltd (from 1985 - to later become Herald Resources) assessing/purchasing historic mine areas from Mr W.J. Griffiths of Sandstone. RAB drilling penetrating transported cover resulted in the virgin discoveries of NE Pit by AMOCO and Whistler deposit by CRA. Later noted explorers included Dalrymple Resources NL (1987-1990) intersecting gold at the Armada (Twister) prospect, and Arimco Mining (1990- 98) intersecting gold at Lyle prospect, Victory West prospect, and copper at The Cup prospect (not substantively pursued). • The Montague Mining Centre produced approximately 150,000oz of gold commencing in 1986 at Caledonian and NE Pits (Clackline), and continued at Montague Boulder from 1988 (Herald), and was to close in 1993 after completion of the Rosie Castle open cut (Herald). Whistler open cut was mined from November 1990 (Polaris Pacific NL) and ore toll treated through

Criteria	JORC Code Explanation	Commentary
		<p>the Herald mill. Little attention was paid to mineralisation other than gold. Gateway Mining in joint venture with Herald Resources continued exploration of the Montague Mining Centre, Gateway also targeting poly-metallic intrusion related - VMS models in the district from 2006.</p>
Geology	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> The Sandstone Project covers much of the Sandstone Greenstone Belt, a triangular belt interpreted to be a north-plunging antiform situated at the northern end of the Southern Cross Domain. The belt primarily comprises mafic volcanic and intrusive units, with subordinate ultramafic, BIF and siliciclastic sediments. Much of the residual greenstone belt regolith is overlain by depositional material including colluvium, sheet wash alluvium and aeolian deposits. The alluvium thins in the northern and eastern parts of the project area where underlying meta-sediments and granitoids are exposed at the surface. A lateritic horizon is observed across much of the belt. <p><u>Vanguard</u></p> <ul style="list-style-type: none"> Drilling indicates the Vanguard mineralisation is hosted predominantly within mafic lithologies (dolerite). The average depth of weathering varies from 30 - 70m. Petrographic work by Alto has confirmed that differentiated dolerites and granophyres have been intersected in drill holes that host the gold mineralisation. Gold mineralisation is mainly associated with sulphidic quartz veins which occur as plunging shoots. The structures which

Criteria	JORC Code Explanation	Commentary
		<p>host the mineralisation are interpreted from drilling to strike and have a shallow plunge to the NE.</p> <p><u>Lord Henry</u></p> <ul style="list-style-type: none"> • The Lord Henry deposit occurs along the southern end of the granodiorite intrusion. • At Lord Henry, the granodiorite body is bounded to the south and west by a sheared ultramafic contact. • Mineralisation comprises a series of stacked, -20° to -30° north dipping lodes characterised by quartz-sericite-chlorite-pyrite alteration within the granodiorite body. • The overall trend of the mineralised zones is northeast with a defined length of 400m. High-grade gold intersections are associated with sulphide rich quartz veins and stringers. <p><u>Two Mile Hill</u></p> <ul style="list-style-type: none"> • The mineralisation at Two Mile Hill is hosted in three geological domains. The majority of the Two Mile Hill resource occurs within a tonalite intrusion. • Mineralisation also occurs within banded iron formation (BIF) beds, and within the basalts that host the tonalite intrusion. • The tonalite intrusion is approximately oblate in plan, dipping ~78° towards 281°. Tonalite hosted mineralisation occurs predominantly as fine free gold within a sheeted/stockwork quartz vein array. <p><u>Achilles</u></p> <ul style="list-style-type: none"> • The Achilles deposit is located north of the historic Rosie open pit and includes direct extensions to existing mineralised zones along a strike distance of 500m. The mineralisation at

Criteria	JORC Code Explanation	Commentary
		<p>Achilles/Rosie is broadly associated with the sheared western margin of the Montague Granodiorite which forms a NNE trending structural corridor also hosting the Airport, LA international and several other historical gold prospects.</p> <ul style="list-style-type: none"> Predominantly shallow oxide and supergene in nature, the mineralisation is associated with a series of moderately (55-60°) east dipping shear structures and quartz veining which host primary mineralisation and occur within the contact zone between granodiorite, dolerite and basalt lithologies. <p>Mineralisation extends to the near surface and in places, directly beneath the base of transported cover.</p>
Drill hole Information	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	<ul style="list-style-type: none"> The relevant data for drillholes reported in this announcement is provided in the body of the announcement. Data for historical collars referenced in this announcement is provided in tables within the announcement.
Data aggregation methods	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> 	<ul style="list-style-type: none"> Assay results reported here have been length weighted. Significant intercepts are reported above 1.0 g/t Au with a maximum consecutive interval of internal dilution (<1.0 g/t Au) of 2m.

Criteria	JORC Code Explanation	Commentary
	<ul style="list-style-type: none"> Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	<ul style="list-style-type: none"> No metal equivalent calculations were applied.
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	<ul style="list-style-type: none"> True widths are not confirmed at this time although all drilling is planned perpendicular to interpreted strike of the target lodes at the time of drilling.
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	<ul style="list-style-type: none"> Refer to figures in this report.
Balanced reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> Results from all drill holes in the program have been reported at a consistent cut-off grade (>1.0g/t), and their context discussed.
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> No other exploration data is reported here.

Criteria	JORC Code Explanation	Commentary
Further work	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	<ul style="list-style-type: none"> Additional drilling is being planned and if successful, further mineral resource estimates will be estimated.

APPENDIX 2: Historical Hole Details: Achilles

Hole ID	Hole Type	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)		From (m)	To (m)	Drilled Interval (m)	Au (g/t)
GRC929	RC	751630	6965071	504	271	-58	204		57	59	2	2.54
									80	81	1	1.02
									91	92	1	1.16
									116	120	4	1.42
									131	132	1	1.57
									136	137	1	9.26
									199	200	1	4.14
GRC930	RC	751668	6965071	503	272	-60	84		60	61	1	1.42
GRC931	RC	751550	6965069	504	272	-60	84		41	42	1	2.86
									50	51	1	1.06
									61	62	1	1.99
									69	76	7	2.10
									81	82	1	3.28
GRC932	RC	751590	6965070	503	272	-60	58		82	83	1	1.71
									88	89	1	1.04

APPENDIX 2: Historical Hole Details: Lord Henry

Hole ID	Hole Type	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)		From (m)	To (m)	Drilled Interval (m)	Au (g/t)
TRC200	RC	746761	6880703	456	180	-60	72					NSI
TRC201	RC	746761	6880722	456	180	-60	70		12	15	3	1.65
									35	36	1	2.30
									44	45	1	1.56
TRC202	RC	746760	68807443	456	180	-60	70		1	6	5	4.65
									16	22	6	1.17
									31	32	1	1.09
									44	45	1	1.50
TRC203	RC	746761	6880762	456	180	-60	70		9	16	7	4.72
								Incl.	14	15	1	17.0
									27	29	2	1.17
									53	54	1	1.59
TRC204	RC	746760	6880762	456	180	-60	105		11	30	19	2.17
									41	47	6	1.69
									52	53	1	1.41
									78	81	3	2.13
TRC205	RC	746761	6880802	456	180	-60	70		8	9	1	1.50
									36	39	3	1.06
									57	61	4	1.01
TRC206	RC	746760	6880822	456	180	-60	80		22	30	8	3.27

Hole ID	Hole Type	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)		From (m)	To (m)	Drilled Interval (m)	Au (g/t)
								Incl.	26	27	1	15.3
									40	44	4	2.07
TRC207	RC	746761	6880842	456	180	-60	80		8	9	1	1.34
									26	27	1	1.21
									40	42	2	1.09
LHRC018	RC	746761	6880862	456	180	-61	80		31	33	2	2.32
									44	46	2	4.60
									57	61	4	1.01
									64	69	5	2.98
LHRC047	RC	746760	6880881	457	180	-60	102					NSI
LHRC055	RC	746761	6880900	457	180	-60	100					NSI
LHRC074	RC	746766	6880716	455	180	-60	40					NSI
LHRC078	RC	746762	6880922	457	180	-60	84					NSI