

ASX ANNOUNCEMENT

20 January 2026

Initial Fieldwork Identifies an Additional Cu-Au Mineralised Area at Glava Project, Sweden

South Harz Potash Limited (**ASX:SHP**) (**South Harz or the Company**) is pleased to announce encouraging results from the recently completed exploration fieldwork at the Glava Project in the Värmland Province, Sweden.

Highlights

- New potentially mineralised zone identified by rock chip sampling, located 300m from existing workings and adjacent to the southern boundary of the Glava 100 licence
- The ground magnetic survey highlights areas for further investigation and likely south-trending orientation, i.e. towards the Glava 300 licence application area
- Encouraging rock chip sample assays delivered, including a standout result of 9.88g/t Au and 2.88% Cu
- Geochemical analyses show a strong, consistent copper-gold correlation across all samples
- Initial fieldwork validates the historical data, with the potential mineralised zone enhancing the hypothesis that the region is prospective for copper-gold deposits
- While targeting copper and gold, reconnaissance sampling identified Rare Earth Element (REE) mineralisation, highlighted by a result of 9,513 ppm Total REEs with an associated favourable ~30% Neodymium (Nd) and Praseodymium (Pr) ratio
- High-grade REE anomaly highlights further exploration upside potential
- South Harz targeting follow-up fieldwork and a maiden drill program at Glava in the June quarter 2026

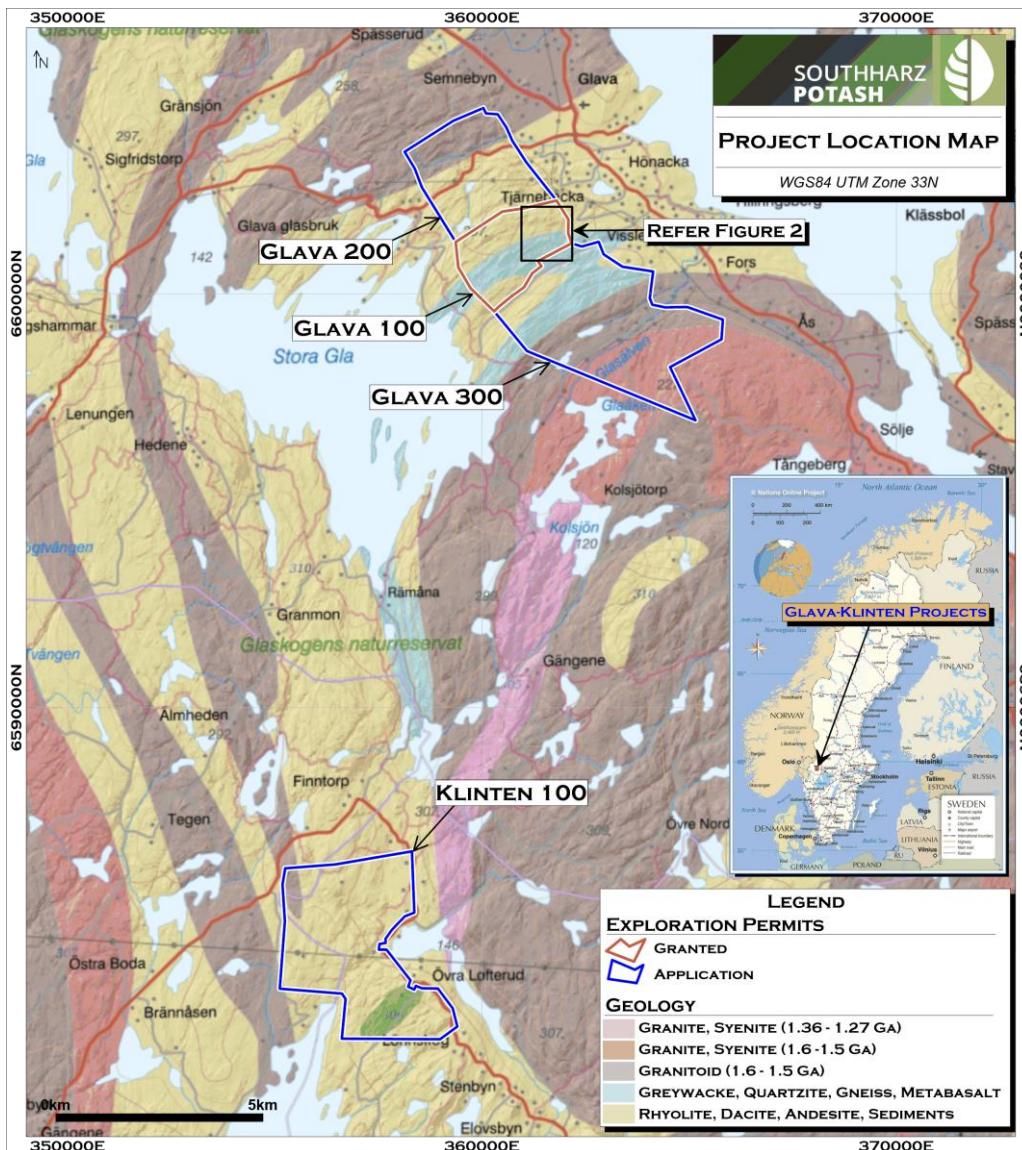
South Harz Executive Chairman Mr Len Jubber, commented:

“The initial program both confirms the historic grades recently reported and strengthens our hypothesis that Glava is potentially an epithermal-style mineral system.

The newly identified mineralisation at the southern boundary is evidence of the exploration upside and highlights the value of the recent contiguous exploration licence applications.

Additionally, the anomalous rare earths result near the southern boundary of the permit may present significant optionality and justifies follow-up exploration to identify further occurrences.

We are encouraged by these early results and therefore progressing with the design of our initial drill program, planned for the June 2026 quarter.”



Introduction

As announced on 28 November 2025¹, South Harz entered into a heads of agreement with McKnight Resources (“McKnight”) to secure an exclusive option over the Glava 100 permit in Sweden, as well as to facilitate new permit applications in the region.

Pertaining to new permit applications under the agreement, McKnight is responsible for preparing and lodging applications in its name, on trust for South Harz. South Harz will pay the cost of the applications to the Geological Survey of Sweden (SGU), and the parties will transfer legal ownership to South Harz (subject to foreign investment approval by the Swedish regulator, if required) upon exercise of the exclusive option.

On 11 December 2025², SHP announced that, via McKnight, it had applied for the Glava 200 and Glava 300 exploration licences, covering 1,825ha. The applications were submitted to secure tenure adjacent on either side of the Glava 100 (429ha) Exploration Licence area (Figure 1). In addition, an application for the nearby Klinten Project was submitted.

Figure 1: Project Location Map

¹ Refer ASX Announcement dated 28 November 2025, Option to Acquire Scandinavian Copper-Gold Project

² Refer ASX Announcement dated 11 December 2025, Licence Applications Submitted for Glava Cu-Au Project Area

Exploration Program

The Glava 100 field activities conducted in November 2025 under an exclusivity agreement comprised:

- Rock-chip sampling on a grid over an 9km² area
- Ground magnetic survey (40 line-kilometres at 25-metre spacing).
- Geological mapping
- Waste Dump rock chip sampling

The activities were designed to

- Collect sufficient data in the historic artisanal mining area to verify the historic data
- Enable characterisation of the geology and mineralisation style
- Identify potential copper-gold anomalies across the project area

Rock Chip Geochemistry – New Mineralised Zone Identified

A wide-spaced orientation geochemical sampling program was completed in the western portion of the Glava 100 licence area. This program comprised 59 rock chip samples collected on a roughly 100mx150m pattern along six north-easterly-oriented lines (Figure 2). The samples were submitted to ALS Scandinavia AB, located in Piteå, Sweden for analysis, using methods Au-AA23 and ME-MS61. The samples were analysed for a suite of elements including copper, gold, silver and tellurium.

In an area that is located 300m southeast from the known artisanal workings a quartz breccia, which was non-typical of the area, was located during mapping. Eight samples were collected from this outcrop and, in addition to the above analyses, they were subsequently check-analysed for rare earth elements.

Base and Precious Metals

The complete rock chip sampling results are listed in Appendix 1 and sample locations are shown in Figure 2. Significant rock chip sampling results are listed in Table 1.

Outside of the historic mine footprint, an anomalous Cu and Au occurrence was located 300m southeast of where the maximum grades of 2.88%Cu and 9.88g/tAu were obtained from a sample located near a newly identified artisanal working.

The results show a strong correlation between Cu and Au.

Table 1: Significant Rock Chip Geochemistry

Sample ID	Easting	Northing	Au (ppm)	Ag (ppm)	Cu (%)	Te (ppm)
GL17N	361342	6601256	0.37	9.11	0.73	13.4
GL17S	361342	6601269	1.35	1.61	1.75	12.5
GL18N	361466	6601315	0.03	2.19	0.16	2.07
GL18S	361466	6601315	3.38	68.8	0.96	51.8
GL4a	361709	6601074	0.75	14.7	0.89	50.4
GL4b1	361709	6601074	0.34	5.01	0.46	12.5
GL4b2	361709	6601074	9.88	38.6	2.88	426

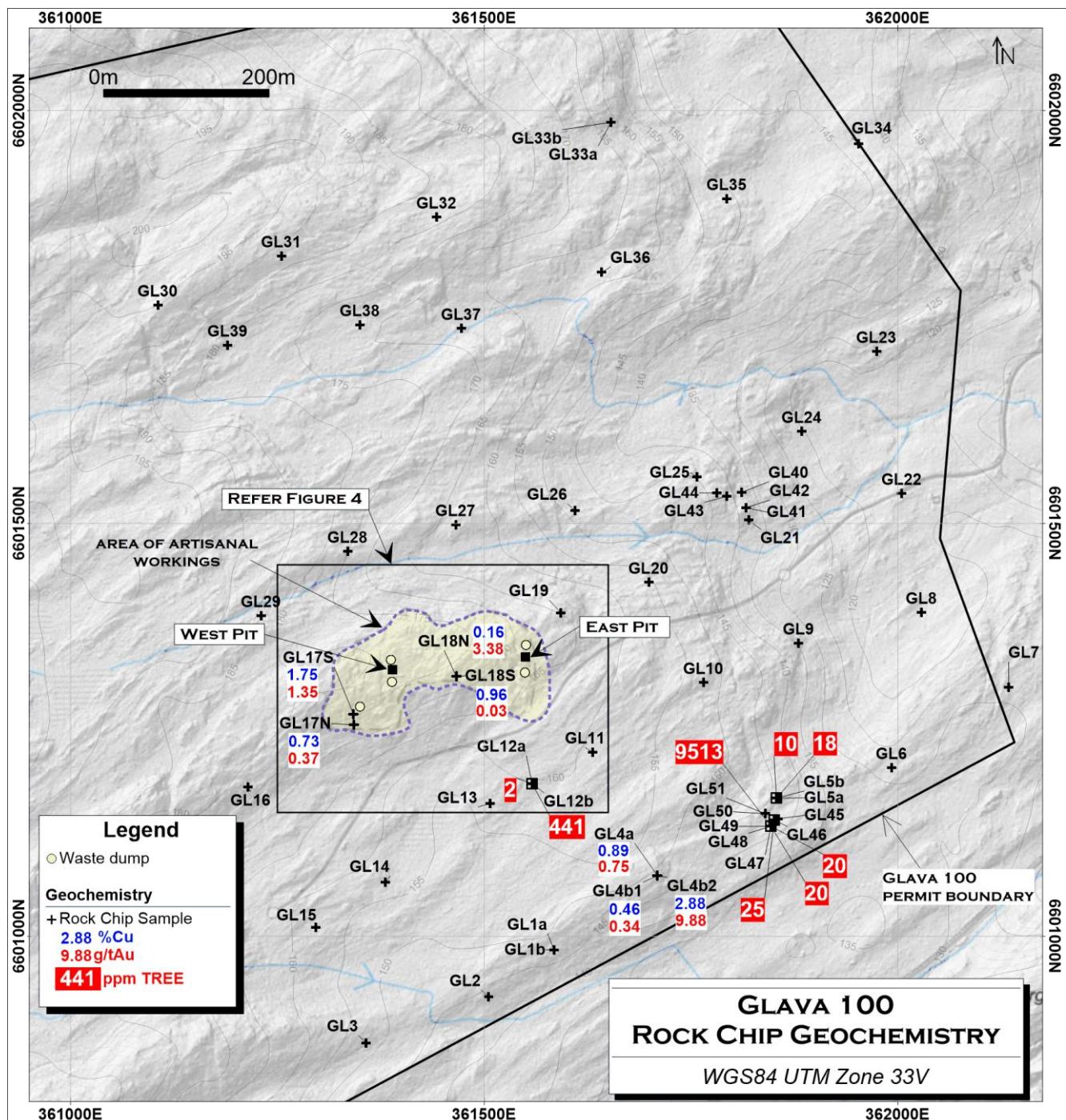


Figure 2: Geochemical Sample Location Map

Rare Earth Elements

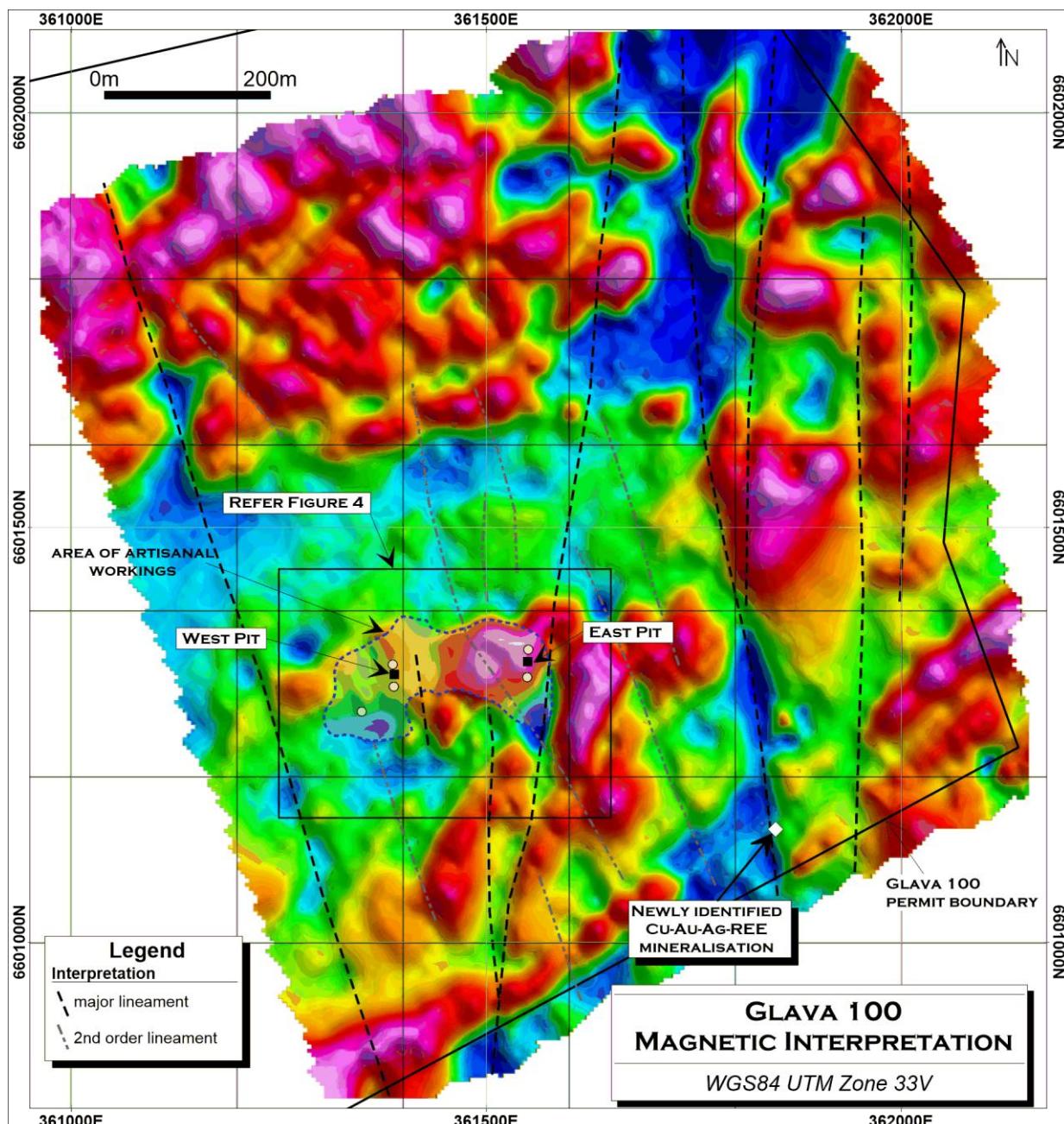
In an area that is located 300m southeast from the known artisanal workings, a quartz breccia, which was non-typical of the area, was located during mapping. Eight samples were collected from this outcrop to test for gold mineralisation. These samples did not return anomalous Au-Cu-Ag-Te results. However, two samples returned anomalous Lanthanum (La) results. Refer to Appendix 1. The eight samples associated with the quartz breccia were then subjected to further assaying using the ME-MS81d method. These results are listed in Table 2.

Table 2: Glava Rock Chip Geochemistry – Rare Earth Elements

Sample ID	Easting	Northing	TREE ppm	Ce ppm	Dy ppm	Er ppm	Eu ppm	Gd ppm	Ho ppm	La ppm	Lu ppm	Nd ppm	Pr ppm	Sm ppm	Tb ppm	Tm ppm	Y ppm	Yb ppm
GL12a	361558	6601185	2	0.3	0.03	0.07	0.03	0.10	0.01	0.6	0.02	0.3	0.12	0.04	0.01	0.01	0.30	0.04
GL12b	361558	6601185	441	13.1	0.68	0.18	0.89	3.82	0.08	272.0	0.01	105.5	31.70	8.52	0.21	0.01	4.10	0.10
GL46	361851	6601141	25	3.5	0.97	0.77	0.11	0.74	0.24	5.7	0.10	3.5	0.92	0.63	0.13	0.09	7.30	0.79
GL47	361847	6601133	20	4.3	0.62	0.43	0.11	0.68	0.12	5.3	0.05	3.0	0.79	0.44	0.10	0.04	4.00	0.38
GL48	361847	6601133	20	3.4	0.87	0.66	0.12	0.68	0.21	3.5	0.13	2.4	0.80	0.41	0.12	0.12	6.00	0.63
GL49	361847	6601133	9,513	327	18	5.10	20	95	2.4	5,860	0.3	2,230	663	182	5.4	0.5	103	2.37
GL5a	361853	6601167	18	2.9	0.51	0.37	0.10	0.64	0.11	5.4	0.05	2.8	0.85	0.64	0.09	0.05	3.20	0.31
GL5b	361853	6601167	10	3.1	0.31	0.16	0.05	0.30	0.06	1.6	0.04	1.3	0.36	0.29	0.04	0.02	1.80	0.15

The initial reconnaissance-level sampling confirms the development of mineralisation that, based on two samples, features a high ratio of the value magnetic REE elements, namely Neodymium (Nd) and Praseodymium (Pr). Refer to Table 3.

Table 3: Glava Significant Rock Chip Geochemistry – Rare Earth Elements


Sample ID	Easting	Northing	TREE ppm	Nd ppm	Pr ppm	Nd+Pr ppm	Nd/Pr Ratio
GL12b	361558	6601185	441	106	32	137	31%
GL49	361847	6601133	9,513	2,230	663	2,893	30%

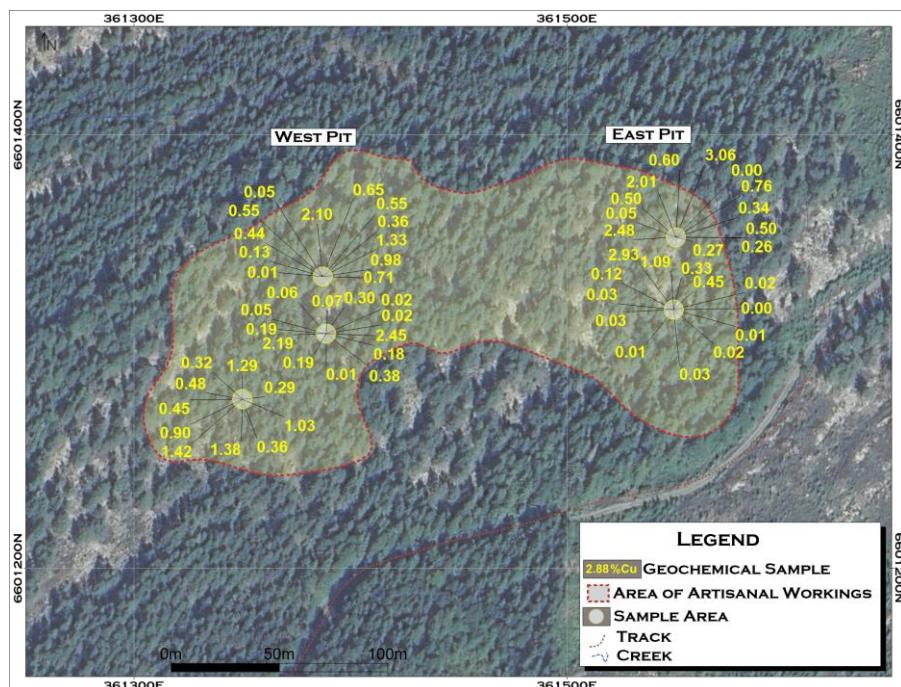
Ground Magnetic Survey

A ground magnetic survey comprising 40-line kilometres was undertaken in the area surrounding the historic artisanal mining. In November 2025, the Finnish consultancy, GRM-SERVICES Oy Ltd, conducted the survey (Figure 3).

The survey aimed to develop an understanding of the structural controls on mineralisation. Initial interpretation of the magnetic imagery confirmed a northerly-oriented array of lineaments that intersect the roughly south-dip east-west bedding orientation. Known mineralisation is thought to align with the north-south structures.

From inspection of samples from the historic workings area, it is evident that copper mineralisation is directly associated with localised magnetite. The survey results confirm that the known mineralised area coincides with elevated magnetic anomalies. Residual magnetism patterns surrounding the historic workings area may be related to deeper magmatic activity. Further exploration will be undertaken to expand the footprint of the geochemical survey and confirm that the magnetic patterns are directly related to mineralisation.

Figure 3: Magnetic Interpretation


Waste Dump Sampling

Sixty (60) samples were collected from five separate areas on the waste dumps adjacent to the historic open pits (Figure 4). Ten of these samples were collected in 2024 and have been previously reported³. A total of 50 samples were collected in 2025. Samples were collected by hand, and therefore, are not considered to be bulk samples. ALS Scandinavia AB analysed the samples using methods Au-AA23 and ME-MS61. Samples that returned grades exceeding 0.5% Cu are listed in Table 2. All data are shown in Appendix 2.

³ Refer ASX Announcement dated 28 November 2025, Option to Acquire Scandinavian Copper-Gold Project

Table 4: Glava Significant Waste Dump Geochemistry

Sample ID	Easting	Northing	Au (g/t)	Cu (%)	Ag (g/t)
GLEPN1	361550	6601353	0.69	0.50	16.2
GLEPN12	361550	6601353	2.19	2.01	68.9
GLEPN2	361550	6601353	5.44	3.06	80.6
GLEPN3	361550	6601353	3.85	2.48	83.5
GLEPN4	361550	6601353	1.40	0.76	21.5
GLEPN5	361550	6601353	1.25	0.60	18.5
GLEPN6	361550	6601353	3.07	0.50	32
GLEPN9	361550	6601353	2.73	0.34	20.3
GLEPS13	361549	6601319	1.56	1.09	30.1
GLEPS5	361549	6601319	5.41	2.93	101
GLV1*	361350	6601278	2.27	1.38	42.7
GLV2*	361350	6601278	4.89	1.29	48.8
GLV7*	361350	6601278	0.88	0.90	8.48
GLV8*	361350	6601278	2.25	1.42	19.1
GLV9*	361350	6601278	3.08	1.03	32.9
GLWPN1	361387	6601335	2.66	1.33	41.1
GLWPN2	361387	6601335	1.68	0.65	24
GLWPN4	361387	6601335	0.89	0.55	14.45
GLWPN5	361387	6601335	0.83	2.10	24.7
GLWPN6	361387	6601335	0.62	0.55	10.9
GLWPN7	361387	6601335	1.56	0.71	21.1
GLWPN8	361387	6601335	1.51	0.98	23.5
GLWPS6	361389	6601308	5.30	2.19	78.4
GLWPS8	361389	6601308	3.97	2.45	59.7

Figure 4: Waste Dump Geochemical Sampling Map

The weighted average grades at various Cu cut-offs are summarised in Table 5. Overall, the data are consistent with previously reported historical sampling information. The geochemical data from the waste dump sampling show a correlation between copper and gold and silver.

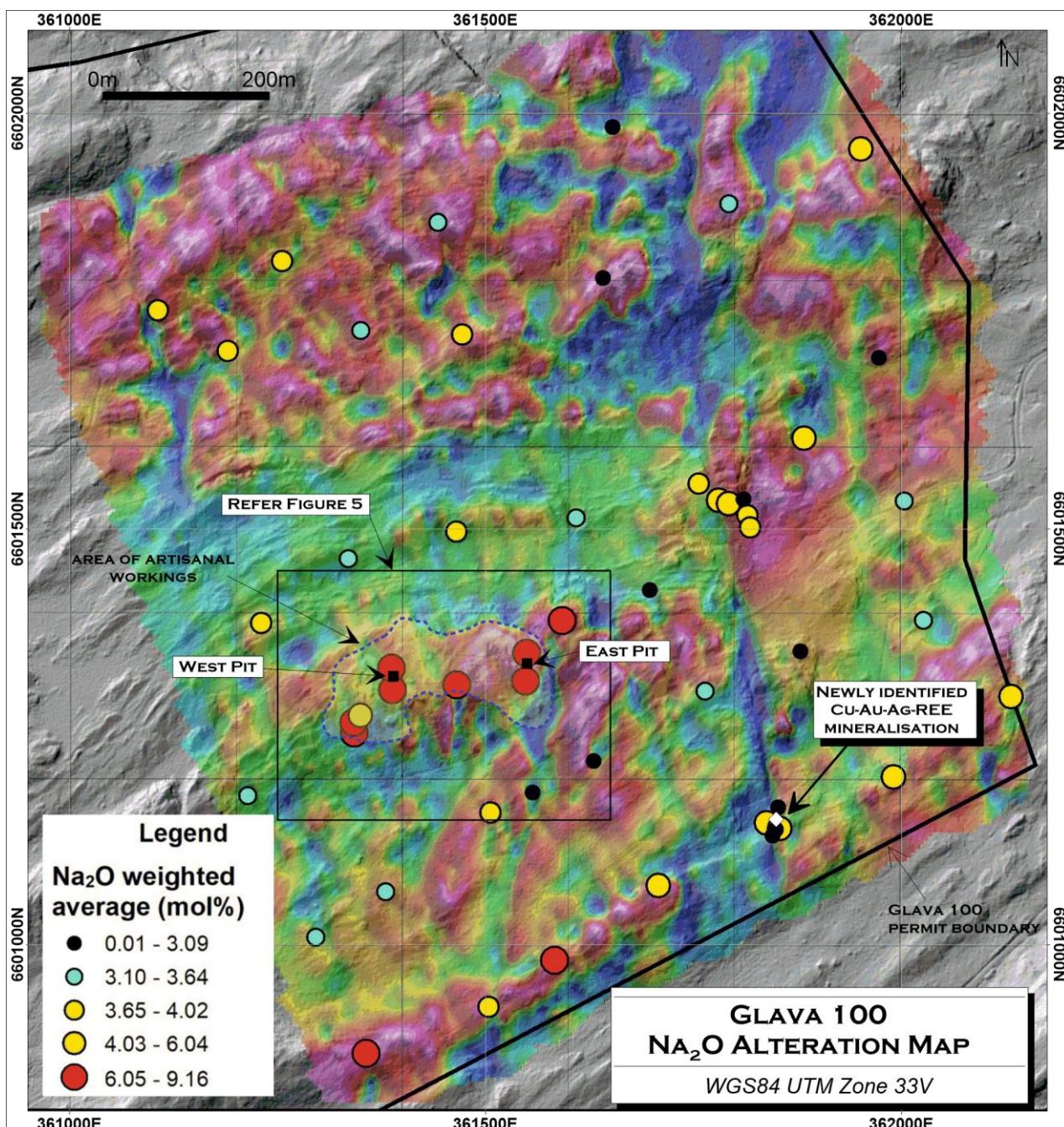

* Refer ASX Announcement dated 28 November 2025, Option to Acquire Scandinavian Copper-Gold Project

Table 5: Waste Dump Geochemistry – Averaged Grades

Cut Off	Number of Samples	Au (g/t)	Cu (%)	Ag (g/t)
none	60	1.20	0.63	18.26
0.5%Cu	23	2.00	1.00	39.22

Trace Element Analysis

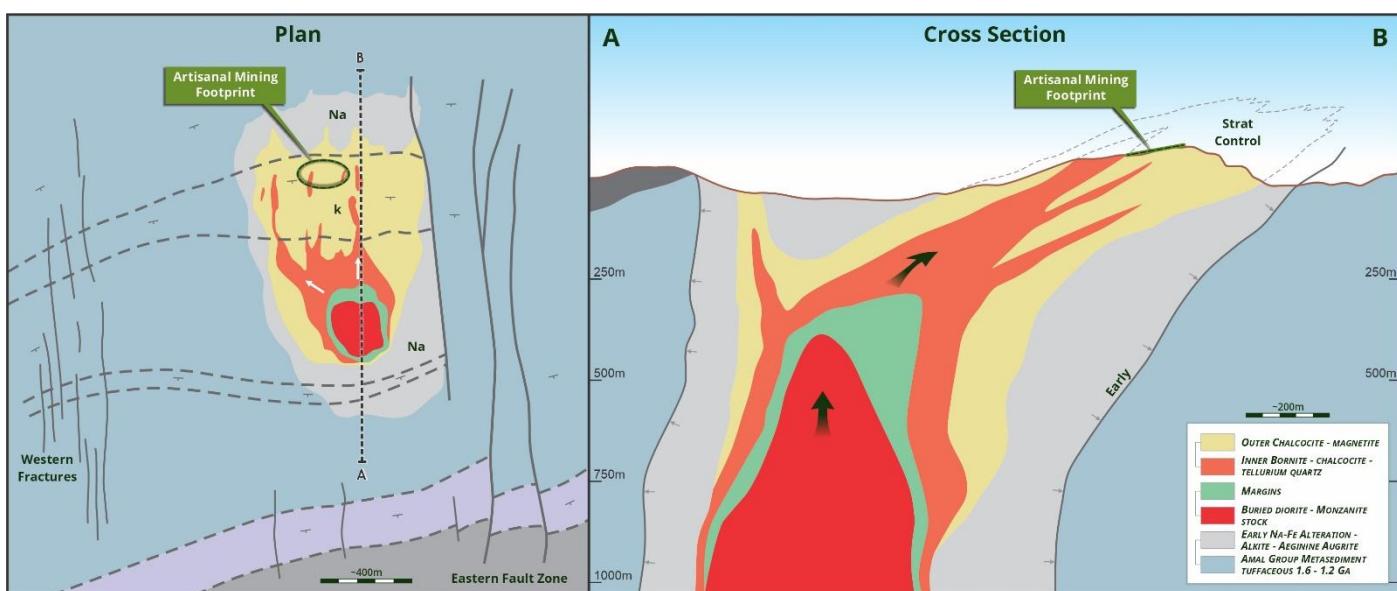

Whole rock analyses were also conducted to identify geochemical indicators of potential alteration zones typical of epithermal systems. The data, which are listed in Appendix 3, show elevated sodium (Na_2O) in areas around the existing workings and towards the south (Figure 5). Further analysis of these data together with the aeromagnetic interpretation is ongoing.

Figure 5: Geochemical Sampling Map Showing Area of Sodium Anomalism

Conceptual Geological Model

The conceptual geological model for the Glava epithermal-style (low-temperature, $<300^{\circ}\text{C}$) mineralisation infers that a localised deep-seated intrusion, emplaced during the Grenville Orogeny or later, has provided a heat and fluid “engine” that drives mineralising fluids towards the surface. The migrating fluids are concentrated into a north-south fault system that forms conduits or pathways towards the surface, whereupon minerals such as copper and gold may be concentrated and precipitated. Large, zoned, partly sodium-enriched alteration halos, which are caused by the interaction between the fluids and the country rocks, are commonly associated with such intrusions, and can thus provide vectors towards a potential inner-most copper-gold zone.

The presence of telluride mineralisation together with evidence of sodic alteration, which are both characteristic indicators of epithermal systems, suggests that the exposed mineralisation at Glava may be part of such a system. This conceptual model is illustrated in Figure 6.

Figure 6: Glava Conceptual Geological Model

Key Observations and Conclusions

- Several characteristics of the conceptual geological model have been identified:
 - Copper and gold mineralisation
 - Structural setting comprising north-south array of fracture and faults
 - Telluride mineralisation which is commonly associated with epithermal systems
 - Discrete sodic alteration at the mineralization locations
- The geochemical data support and build on the understanding of the location and historical grade and mineralogical data
- Higher grade samples located in an area south of the previously identified areas. This highlights the importance of the decision to apply for the contiguous licences to the north and south
- The relationship between the copper and gold grades is consistent and favourable

Next Steps

The following program aims to follow-up the results from the recent fieldwork to generate additional targets and finalise the drilling program planned for June Quarter 2026.

- Investigate areas where base metal, precious metal and REE grade results were obtained
- Conduct detailed geological mapping
- Extend the ground magnetic survey
- Include an assessment of the REE potential
- Extend rock chip sampling coverage
- Compile an integrated geological model that combines geophysics, geochemistry and geology
- Prepare drilling plan and fulfil permitting requirements

Sweden

Sweden is recognised as one of the world's most attractive jurisdictions for mineral exploration and development, with a long history of mining, transparent legislation and strong government support. The country's 2014 National Mineral Strategy provided a clear framework that encourages responsible investment and outlines commitments to maintain a positive operating environment for the mining industry.

Sweden has combined an established infrastructure network, skilled workforce, and a commitment to developing critical minerals for the European energy transition. It is a Tier-1 jurisdiction for discovery and development of projects such as Glava. This approach has been recognised in the mining industry with Sweden ranked 6th (out of 183) in the Fraser Institute's 2024 Annual Survey of Mining Companies.

Competent Persons Statement

The information in this ASX release that relates to Exploration Results is based on information compiled and reviewed by Mr. Alfred Gillman, Director of independent consulting firm, Odessa Resources Pty Ltd. Mr. Gillman, a Fellow and Chartered Professional of the Australasian Institute of Mining and Metallurgy (the AusIMM) and has sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results. Mr Gillman is a full-time employee of Odessa Resources Pty Ltd, a firm that specialises in mineral resource estimation, evaluation, and exploration. Neither Mr Gillman nor Odessa Resources Pty Ltd holds any interest in South Harz Potash, its related parties, or in any of the mineral properties that are the subject of this announcement. Mr Gillman consents to the inclusion in this ASX release of the matters based on information in the form and context in which it appears. Additionally, Mr Gillman confirms that the entity is not aware of any new information or data that materially affects the information contained in the ASX releases referred to in this report.

JORC

To the extent that this announcement contains references to prior exploration results which have been cross referenced to previous market announcements made by the Company, unless explicitly stated, no new information is contained. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed.

This ASX release has been approved by the Board of Directors.

Investor and media enquiries

Len Jubber

Executive Chairman

South Harz Potash Ltd

ljubber@southharzpotash.com

Investor and Media Relations

Andrew Willis

NWR Communications

awillis@nwrcommunications.com.au

Appendix 1: Rock Chip Geochemistry Results

SampleID	Easting	Northing	Au (g/t)	Ag (g/t)	Cu (%)	Te (ppm)	La (ppm)
GL10	361765	6601307	0.00	0.1	0.00	0.05	30.6
GL11	361631	6601223	0.02	0.46	0.00	0.88	27.0
GL12a	361558	6601185	0.00	0.03	0.00	0.03	0.6
GL12b	361558	6601185	0.01	0.04	0.00	0.03	268.0
GL13	361507	6601161	0.00	0.02	0.00	0.03	31.0
GL14	361381	6601065	0.00	0.02	0.00	0.05	27.8
GL15	361297	6601011	0.00	0.06	0.00	0.03	28.8
GL16	361214	6601181	0.01	0.08	0.00	0.07	33.4
GL17N	361342	6601256	0.37	9.11	0.73	13.40	46.3
GL17S	361342	6601269	1.35	1.61	1.75	12.50	48.4
GL18N	361466	6601315	0.03	2.19	0.16	2.07	31.9
GL18S	361466	6601315	3.38	68.8	0.96	51.80	31.2
GL19	361593	6601392	0.04	0.53	0.09	0.92	38.4
GL1a	361584	6600983	0.07	1.66	0.09	0.43	26.0
GL1b	361584	6600983	0.05	0.48	0.02	1.28	37.5
GL2	361505	6600927	0.00	0.04	0.00	0.03	27.5
GL20	361699	6601429	0.00	0.06	0.00	0.03	21.4
GL21	361820	6601504	0.00	0.08	0.00	0.03	16.2
GL22	362005	6601536	0.00	0.03	0.00	0.06	31.2
GL23	361974	6601708	0.00	0.04	0.00	0.03	25.3
GL24	361884	6601611	0.00	0.06	0.00	0.11	39.4
GL25	361757	6601557	0.00	0.23	0.00	0.03	29.6
GL26	361610	6601516	0.00	0.12	0.00	0.05	34.5
GL27	361466	6601499	0.00	0.1	0.00	0.05	33.9
GL28	361335	6601466	0.00	0.06	0.00	0.03	40.3
GL29	361230	6601388	0.00	0.05	0.00	0.03	32.5
GL3	361357	6600871	0.00	0.005	0.00	0.03	42.2
GL30	361105	6601765	0.00	0.02	0.00	0.03	40.2
GL31	361255	6601824	0.00	0.02	0.00	0.03	22.0
GL32	361443	6601871	0.00	0.01	0.00	0.03	40.0
GL33a	361653	6601986	0.00	0.07	0.00	0.03	40.2
GL33b	361653	6601986	0.00	0.01	0.00	0.03	0.8
GL34	361952	6601960	0.00	0.11	0.00	0.03	37.0
GL35	361793	6601893	0.00	0.12	0.00	0.03	36.5
GL36	361642	6601804	0.00	0.01	0.00	0.03	20.5
GL37	361472	6601736	0.02	0.68	0.01	0.03	33.1
GL38	361350	6601741	0.02	0.01	0.00	0.03	33.2
GL39	361190	6601716	0.00	0.03	0.00	0.03	30.3
GL40	361811	6601538	0.00	0.01	0.00	0.03	7.0
GL41	361816	6601519	0.00	0.01	0.00	0.03	15.5
GL42	361816	6601519	0.00	0.04	0.00	0.03	13.4
GL43	361793	6601533	0.01	0.04	0.00	0.06	29.7
GL44	361781	6601537	0.00	0.04	0.00	0.03	15.0
GL45	361855	6601142	0.00	0.02	0.00	0.03	17.5
GL46	361851	6601141	0.00	0.92	0.00	0.43	4.9
GL47	361847	6601133	0.00	0.81	0.00	0.34	4.9
GL48	361847	6601133	0.01	0.93	0.00	0.24	3.0
GL49	361847	6601133	0.01	0.12	0.00	0.13	6040
GL4a	361709	6601073	0.75	14.7	0.89	50.40	43.0
GL4b1	361709	6601073	0.34	5.01	0.46	12.50	0.9
GL4b2	361709	6601073	9.88	38.6	2.88	426	36.5
GL50	361840	6601149	0.00	0.02	0.00	0.03	15.0
GL51	361840	6601149	0.00	0.02	0.00	0.03	25.9
GL5a	361853	6601167	0.01	0.42	0.00	0.23	5.0
GL5b	361853	6601167	0.01	0.29	0.00	0.09	1.5
GL6	361993	6601204	0.01	0.08	0.00	0.44	28.1
GL7	362134	6601301	0.01	0.17	0.00	0.72	29.8
GL8	362029	6601392	0.00	0.05	0.00	0.13	35.0
GL9	361880	6601355	0.00	0.02	0.00	0.10	5.8

Appendix 2: Waste Dump Geochemistry Results

SampleID	Easting	Northing	Au (g/t)	Cu (%)	Ag (g/t)	Year
GLEPN1	361550	6601353	0.69	0.50	16.20	2025
GLEPN10	361550	6601353	0.01	0.00	0.07	2025
GLEPN11	361550	6601353	0.07	0.05	1.04	2025
GLEPN12	361550	6601353	2.19	2.01	68.90	2025
GLEPN2	361550	6601353	5.44	3.06	80.60	2025
GLEPN3	361550	6601353	3.85	2.48	83.50	2025
GLEPN4	361550	6601353	1.40	0.76	21.50	2025
GLEPN5	361550	6601353	1.25	0.60	18.50	2025
GLEPN6	361550	6601353	3.07	0.50	32.00	2025
GLEPN7	361550	6601353	0.11	0.26	4.26	2025
GLEPN8	361550	6601353	0.35	0.27	5.98	2025
GLEPN9	361550	6601353	2.73	0.34	20.30	2025
GLEPS1	361549	6601319	0.01	0.01	0.08	2025
GLEPS10	361549	6601319	1.86	0.45	20.50	2025
GLEPS11	361549	6601319	0.64	0.33	6.46	2025
GLEPS12	361549	6601319	0.03	0.03	0.39	2025
GLEPS13	361549	6601319	1.56	1.09	30.10	2025
GLEPS2	361549	6601319	0.53	0.12	3.96	2025
GLEPS3	361549	6601319	0.01	0.01	0.29	2025
GLEPS4	361549	6601319	0.01	0.00	0.04	2025
GLEPS5	361549	6601319	5.41	2.93	>100	2025
GLEPS6	361549	6601319	0.02	0.03	0.20	2025
GLEPS7	361549	6601319	0.05	0.03	0.75	2025
GLEPS8	361549	6601319	0.01	0.02	0.14	2025
GLEPS9	361549	6601319	0.01	0.02	0.17	2025
GLV1	361350	6601278	2.27	1.38	42.70	2024
GLV2	361350	6601278	4.89	1.29	48.80	2024
GLV3	361350	6601278	2.17	0.45	23.10	2024
GLV4	361350	6601278	0.99	0.36	19.20	2024
GLV5	361350	6601278	0.46	0.29	6.77	2024
GLV6	361350	6601278	0.77	0.48	11.05	2024
GLV7	361350	6601278	0.88	0.90	8.48	2024
GLV8	361350	6601278	2.25	1.42	19.10	2024
GLV9	361350	6601278	3.08	1.03	32.90	2024
GLV10	361350	6601278	0.08	0.32	1.38	2024
GLWPN1	361387	6601335	2.66	1.33	41.10	2025
GLWPN10	361387	6601335	0.68	0.44	10.55	2025
GLWPN11	361387	6601335	0.01	0.01	0.11	2025
GLWPN12	361387	6601335	0.06	0.05	1.30	2025
GLWPN2	361387	6601335	1.68	0.65	24.00	2025
GLWPN3	361387	6601335	0.33	0.13	3.98	2025
GLWPN4	361387	6601335	0.89	0.55	14.45	2025
GLWPN5	361387	6601335	0.83	2.10	24.70	2025
GLWPN6	361387	6601335	0.62	0.55	10.90	2025
GLWPN7	361387	6601335	1.56	0.71	21.10	2025
GLWPN8	361387	6601335	1.51	0.98	23.50	2025
GLWPN9	361387	6601335	0.30	0.36	11.30	2025
GLWPS1	361389	6601308	0.30	0.18	4.96	2025
GLWPS10	361389	6601308	0.02	0.02	0.63	2025
GLWPS11	361389	6601308	0.11	0.07	1.80	2025
GLWPS12	361389	6601308	0.24	0.19	3.91	2025
GLWPS13	361389	6601308	0.33	0.19	3.63	2025
GLWPS2	361389	6601308	0.01	0.06	0.19	2025
GLWPS3	361389	6601308	0.01	0.01	0.14	2025
GLWPS4	361389	6601308	0.55	0.30	13.20	2025
GLWPS5	361389	6601308	0.09	0.05	1.14	2025
GLWPS6	361389	6601308	5.30	2.19	78.40	2025
GLWPS7	361389	6601308	0.75	0.38	10.50	2025
GLWPS8	361389	6601308	3.97	2.45	59.70	2025
GLWPS9	361389	6601308	0.01	0.02	0.12	2025

Appendix 3: Whole Rock Geochemistry Results (%)

SampleID	Easting	Northing	SiO2	Al2O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	S	MnO	P2O5	BaO	Cr2O3	SrO
GLV1	361350	6601278	70.27	10.21	2.22	2.91	6.94	5.14	0.78	0.52	0.76	0.16	0.07	0	0	0.03
GLV2	361350	6601278	67.08	10.26	3.01	4.28	8.4	4.39	0.99	0.61	0.69	0.17	0.08	0.01	0	0.04
GLV3	361350	6601278	97.73	0.5	0.36	0.32	0.48	0.21	0.05	0.02	0.28	0.03	0.01	0	0	0
GLV4	361350	6601278	68.15	11.24	2.81	4.28	5.53	5.97	0.96	0.59	0.23	0.13	0.08	0.01	0	0.04
GLV5	361350	6601278	69.02	12.05	1.63	2.55	6.06	7.01	0.89	0.42	0.15	0.12	0.07	0	0	0.02
GLV6	361350	6601278	69	9.47	3.07	4.55	8.07	4.29	0.39	0.49	0.35	0.25	0.05	0	0	0.02
GLV7	361350	6601278	89.19	2.6	1.32	1.84	3.79	0.61	0.15	0.08	0.31	0.1	0.01	0	0	0.01
GLV8	361350	6601278	66.48	9.45	3.21	5.93	7.52	5.16	0.76	0.43	0.7	0.3	0.05	0	0	0.01
GLV9	361350	6601278	68.38	10.78	2.67	3.81	6.49	5.59	0.69	0.55	0.81	0.11	0.07	0.01	0	0.04
GLV10	361350	6601278	57.91	9.51	6.7	11.24	9.48	3.55	0.62	0.36	0.02	0.52	0.08	0	0	0.01
GL1a	361584.38	6600983.4	71.3	11.84	2.7	2.32	2.41	7.26	1.46	0.48	0.02	0.09	0.1	0.01	0	0.02
GL1b	361584.38	6600983.4	72.56	10.78	3.28	2.88	2.69	5.97	1.07	0.53	0.01	0.11	0.11	0.01	0	0.02
GL2	361504.9	6600926.8	76.68	9.79	1.73	1.72	3.38	3.99	2.18	0.35	0.02	0.07	0.07	0.05	0	0.03
GL3	361357.49	6600871	71.58	11.86	1.52	1.96	2.71	7.89	1.75	0.52	0.01	0.08	0.11	0.01	0	0.02
GL4a	361709.44	6601073.5	69.9	11.34	1.97	3.18	3.48	7.49	1.3	0.49	0.64	0.09	0.11	0.01	0	0.02
GL4b1	361709.44	6601073.5	98.09	0.48	0.28	0.32	0.11	0.22	0.12	0.04	0.32	0.01	0	0	0	0
GL4b2	361709.44	6601073.5	70.69	11.65	1.17	1.03	2.86	9.33	0.74	0.33	2.09	0.03	0.06	0	0	0.03
GL5a	361853.29	6601167.3	95.19	2.28	0.36	0.38	0.54	0.03	1.14	0.04	0.01	0.04	0.01	0.01	0	0
GL5b	361853.29	6601167.3	97.02	1.45	0.31	0.2	0.11	0.01	0.79	0.02	0.01	0.06	0.01	0	0	0
GL6	361992.66	6601204.3	73.01	9.91	2.38	3.2	4.29	5.58	0.93	0.5	0.02	0.09	0.07	0.01	0	0.02
GL7	362134	6601301.2	73.74	9.67	2.24	3.52	4.38	4.37	1.38	0.5	0.02	0.1	0.07	0.01	0	0.02
GL8	362028.82	6601392.4	80.16	9.11	0.9	1	2.34	3.55	2.57	0.26	0.01	0.05	0.03	0.04	0	0.02
GL9	361880.24	6601355.2	96.2	1.75	0.21	0.18	0.35	0.71	0.54	0.05	0.01	0.01	0	0.02	0	0
GL10	361765.23	6601307.4	72.48	10.11	2.45	3.55	5.07	3.58	2	0.53	0.01	0.13	0.08	0.03	0	0.02
GL11	361630.96	6601223.1	74.49	9.59	2.13	2.55	5.57	2.52	2.41	0.48	0.01	0.16	0.07	0.04	0	0.02
GL12a	361557.83	6601185	91.6	4.33	0.18	0.03	0.05	0.07	3.72	0	0.01	0.01	0	0.02	0	0
GL12b	361557.83	6601185	91.28	4.74	0.14	0.03	0.05	0.07	3.67	0	0.01	0	0	0.03	0	0
GL13	361506.92	6601160.8	74.17	9.79	2.43	3.1	4.23	3.8	1.75	0.5	0.01	0.13	0.07	0.02	0	0.02
GL14	361380.7	6601065.2	73.55	9.71	2.39	3.32	4.81	3.22	2.26	0.51	0.01	0.11	0.07	0.03	0	0.02
GL15	361296.58	6601010.7	73.41	9.79	2.31	3.23	5.35	3.16	2.01	0.52	0.02	0.11	0.07	0.03	0	0.02
GL16	361214.15	6601180.9	80.49	8.71	0.91	1.05	2.61	3.62	2.23	0.25	0.02	0.07	0.03	0.03	0	0.01
GL17S	361341.98	6601269.1	69.82	12.77	1.85	1.36	3.96	7.81	1.03	0.36	0.9	0.07	0.05	0.01	0	0.03
GL17N	361342.44	6601256.1	70.4	12.17	1.3	0.85	5.18	7.98	1.27	0.36	0.31	0.09	0.05	0.01	0	0.02
GL18S	361466.34	6601314.7	68.88	11.74	2.26	3.31	4.35	6.71	1.41	0.61	0.5	0.12	0.08	0.01	0	0.02
GL18N	361466.34	6601314.7	68.91	11.96	2.64	4.53	2.26	7.45	1.41	0.6	0.02	0.14	0.08	0.01	0	0.01
GL19	361592.81	6601391.7	70.99	12.13	0.89	1.56	3.12	9.16	1.32	0.63	0.02	0.08	0.08	0.01	0	0.02
GL20	361698.92	6601428.7	86.08	6	0.72	0.94	2.37	2.3	1.32	0.17	0.01	0.06	0.02	0.02	0	0.01
GL21	361819.66	6601504.1	68.68	11.23	3.38	4.85	5.67	3.75	1.64	0.56	0.02	0.14	0.06	0.03	0	0.02
GL22	362004.85	6601536.3	80.08	8.77	0.94	1	2.87	3.39	2.51	0.26	0.06	0.07	0.03	0.04	0	0.02
GL23	361974.37	6601708.4	73.11	9.44	2.31	3.74	5.53	3.09	2	0.48	0.08	0.12	0.07	0.03	0	0.02
GL24	361883.99	6601611.4	80.94	8.69	0.95	1.16	1.58	4.29	2.04	0.25	0.01	0.06	0.03	0.04	0	0.01
GL25	361757.42	6601556.6	75.27	9.89	2.27	2.48	3.4	3.9	2.13	0.47	0.02	0.09	0.06	0.03	0	0.02
GL26	361609.64	6601515.6	80.11	8.77	0.95	1.02	2.58	3.6	2.55	0.26	0.02	0.07	0.03	0.04	0	0.02
GL27	361465.58	6601498.6	79.96	9.09	0.96	1.02	2.5	3.88	2.2	0.26	0.02	0.06	0.03	0.04	0	0.02
GL28	361335.09	6601466.2	80.89	8.81	0.93	1.08	1.74	3.18	3	0.26	0.01	0.05	0.03	0.05	0	0.02
GL29	361230.3	6601388.4	80.15	9.04	0.9	0.89	2.74	3.65	2.28	0.24	0.02	0.05	0.03	0.04	0	0.02
GL30	361105.48	6601764.5	79.65	9.25	1.01	0.89	2.19	3.83	2.77	0.27	0.01	0.06	0.04	0.04	0	0.02
GL31	361254.88	6601824	81.36	8.88	0.88	0.65	1.2	3.65	3.04	0.24	0.01	0.05	0.03	0.04	0	0.01
GL32	361442.5	6601871	79.87	9.29	1.02	0.92	1.91	3.35	3.18	0.32	0.01	0.07	0.04	0.04	0	0.02
GL33a	361653.38	6601985.8	75.46	11.47	1.14	1.05	1.71	4.81	3.89	0.34	0.01	0.06	0.04	0.06	0	0.02
GL33b	361653.38	6601985.8	99.54	0.13	0.16	0.02	0.02	0.04	0.06	0.01	0.01	0	0	0	0	0
GL34	361952.48	6601960	80.56	8.84	0.98	0.89	1.97	4.78	1.54	0.3	0.01	0.08	0.03	0.03	0	0.01
GL35	361793.4	6601893.4	79.44	8.59	2.42	0.99	2.47	3.27	2.1	0.55	0.01	0.1	0.04	0.03	0	0.02
GL36	361641.97	6601804.2	75.91	8.49	1.97	4.35	4.98	2.5	1.23	0.38	0.01	0.1	0.06	0.03	0	0.02
GL37	361472.45	6601736.1	77.32	9.67	1.53	2.31	2.75	4.02	1.87	0.36	0.01	0.08	0.06	0.04	0	0.02
GL38	361349.94	6601740.6	81.26	8.33	0.95	0.78	1.89	3.64	2.69	0.31	0.01	0.08	0.04	0.04	0	0.02
GL39	3611190	6601716	81.47	8.56	0.86	0.75	2.16	3.9	1.95	0.24	0.01	0.05	0.03	0.03	0	0.02
GL40	361811.46	6601537.9	87.13	4.26	1.16	1.19	3.66	1.74	0.56	0.18	0.01	0.06	0.03	0.01	0	0.01
GL41	361816.43	6601519.1	68.73	10.92	3.26	4.08	7.11	3.93	1.19	0.53	0.01	0.14	0.06	0.02	0	0.03
GL42	361816.43	6601519.1	69.11	10.79	3.3	4.44	6.18	4.12	1.3	0.53	0.01	0.13	0.06	0.02	0	0.02
GL43	361793.35	6601533	80.63	8.31	0.94	0.85	1.81	4.24	1.72	0.17	1.25	0.04	0.03	0.03	0	0.01
GL44	361781.24	6601537.1	67.3	11.67	3.07	4.51	6.19	4.88	1.38	0.58	0.19	0.14	0.06	0.03	0	0.03
GL45	361855.43	6601142.4	82.21	7.2	1.21	1.58	2.76	4.23	0.4	0.29	0.01	0.05	0.04	0	0	0.02
GL46	361850.65	6601140.7	96.46	1.63	0.68	0.33	0.17	0.01	0.62	0.05	0.01	0.02	0.01	0	0	0
GL47	361846.61	6601133.5	93.94	3.11	0.47	0.64	0.34	0.03	1.32	0.07	0.01	0.04	0.01	0.01	0	0
GL48	361846.61	6601133.5	97.24	1.29	0.51	0.25	0.11	0.03	0.51	0.03	0.01	0.01				

SampleID	Easting	Northing	SiO2	Al2O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	S	MnO	P2O5	BaO	Cr2O3	SrO
GL51	361839.61	6601148.6	70.66	11.84	1.7	2.85	4.28	7.3	0.69	0.51	0.01	0.06	0.08	0	0	0.02
GLWPS1	361388.72	6601308.2	68.36	11.56	1.87	1.56	8.85	6.23	0.85	0.37	0.1	0.16	0.05	0.01	0	0.02
GLWPS2	361388.72	6601308.2	64.47	10.9	4.43	5.87	6.19	5.52	1.74	0.52	0.01	0.31	0.04	0.01	0	0.02
GLWPS3	361388.72	6601308.2	71.42	10.66	1.39	0.35	8.42	6.88	0.38	0.31	0.01	0.1	0.04	0	0	0.03
GLWPS4	361388.72	6601308.2	69.36	12.7	1.13	1.01	6.66	7.67	0.74	0.35	0.21	0.08	0.05	0.01	0	0.03
GLWPS5	361388.72	6601308.2	68.69	9.73	1.67	1.32	9.99	7.15	0.82	0.34	0.02	0.21	0.04	0.01	0	0.02
GLWPS6	361388.72	6601308.2	69.58	10.37	1.78	0.65	9.08	5.78	0.59	0.29	1.68	0.13	0.04	0	0	0.03
GLWPS7	361388.72	6601308.2	68.93	12.56	1.38	1.07	6.95	7.29	1.03	0.37	0.23	0.11	0.05	0.01	0	0.02
GLWPS8	361388.72	6601308.2	68.05	11.77	2.42	0.99	6.67	6.97	0.77	0.37	1.78	0.1	0.08	0	0	0.03
GLWPS9	361388.72	6601308.2	95.47	1.08	1.05	0.76	0.94	0.52	0.06	0.03	0.01	0.07	0	0	0	0
GLWPS10	361388.72	6601308.2	69.46	11.47	1.68	2.13	7.01	7.23	0.41	0.37	0.01	0.17	0.03	0	0	0.02
GLWPS11	361388.72	6601308.2	72.6	11.06	1.36	0.71	6.11	6.91	0.72	0.33	0.04	0.1	0.04	0.01	0	0.02
GLWPS12	361388.72	6601308.2	71.96	11.46	1.4	0.71	6.2	6.8	0.94	0.28	0.1	0.1	0.03	0.01	0	0.02
GLWPS13	361388.72	6601308.2	72.85	9.87	1.92	1.63	6.62	5.67	0.73	0.34	0.14	0.16	0.04	0	0	0.02
GLWPN1	361387.18	6601334.6	76.99	9.34	0.76	0.45	4.34	6.27	0.46	0.29	1.01	0.04	0.04	0	0	0.02
GLWPN2	361387.18	6601334.6	77.36	8.14	1.24	0.4	6.99	4.62	0.38	0.26	0.42	0.1	0.06	0	0	0.02
GLWPN3	361387.18	6601334.6	69.1	12.24	1.28	0.68	8.24	7.41	0.41	0.4	0.06	0.11	0.05	0	0	0.03
GLWPN4	361387.18	6601334.6	71.18	10.78	1.38	1.19	7.02	6.86	0.75	0.31	0.35	0.1	0.05	0.01	0	0.02
GLWPN5	361387.18	6601334.6	70.01	10.85	1.61	0.73	7.7	6.21	1.05	0.32	1.3	0.11	0.09	0.01	0	0.02
GLWPN6	361387.18	6601334.6	98.6	0.17	0.29	0.22	0.3	0.05	0.02	0.01	0.32	0.02	0	0	0	0
GLWPN7	361387.18	6601334.6	72.49	10.86	1.09	0.27	6.29	7.37	0.7	0.28	0.49	0.07	0.07	0	0	0.02
GLWPN8	361387.18	6601334.6	69.64	10.57	2.32	1.59	7.68	6.45	0.6	0.28	0.64	0.16	0.05	0	0	0.02
GLWPN9	361387.18	6601334.6	72.55	11.34	1.26	1.25	4.38	7.22	1.23	0.38	0.25	0.08	0.04	0.02	0	0.02
GLWPN10	361387.18	6601334.6	72.52	11.64	0.98	0.76	5.11	7.59	0.67	0.34	0.27	0.06	0.04	0.01	0	0.02
GLWPN11	361387.18	6601334.6	74	10.39	1.06	0.97	4.13	8.22	0.71	0.34	0.04	0.06	0.04	0	0	0.02
GLWPN12	361387.18	6601334.6	74.09	11.31	0.66	0.73	4.7	7.5	0.53	0.33	0.04	0.05	0.04	0.01	0	0.02
GLEPN1	361550.32	6601352.7	63.88	12.8	2.64	3.29	9.95	5.12	1.12	0.66	0.23	0.18	0.09	0.01	0	0.04
GLEPN2	361550.32	6601352.7	65.5	11.47	2.7	3.23	6.9	6.6	0.6	0.42	2.36	0.1	0.06	0	0	0.04
GLEPN3	361550.32	6601352.7	65.07	12.05	3.11	4.64	5.56	6.41	0.59	0.55	1.78	0.12	0.08	0	0	0.04
GLEPN4	361550.32	6601352.7	64.45	12.85	2.56	3.37	8.64	5.59	1.19	0.63	0.4	0.17	0.1	0.01	0	0.04
GLEPN5	361550.32	6601352.7	63.85	13.45	2.58	3.91	8.51	5.28	1.16	0.63	0.32	0.18	0.09	0.01	0	0.05
GLEPN6	361550.32	6601352.7	65.61	12.79	2.37	3.63	7.18	6.52	0.85	0.53	0.27	0.12	0.08	0	0	0.04
GLEPN7	361550.32	6601352.7	67.51	12.02	2.3	4.11	5.2	7.01	0.92	0.58	0.13	0.12	0.08	0	0	0.03
GLEPN8	361550.32	6601352.7	65.58	12.32	2.51	3.74	8.13	5.71	1.03	0.6	0.08	0.16	0.08	0.01	0	0.04
GLEPN9	361550.32	6601352.7	64.72	12.44	2.79	3.45	8.91	5.49	1.03	0.66	0.23	0.15	0.08	0.01	0	0.05
GLEPN10	361550.32	6601352.7	73.65	8.15	1.64	1.47	5.81	8.15	0.42	0.51	0.02	0.09	0.07	0	0	0.02
GLEPN11	361550.32	6601352.7	64.73	12.24	2.59	3.85	8.77	5.97	0.83	0.65	0.04	0.18	0.1	0.01	0	0.04
GLEPN12	361550.32	6601352.7	66.32	11.36	2.86	4.22	6.95	5.59	0.44	0.56	1.43	0.13	0.07	0	0	0.05
GLEPS1	361549.25	6601319.3	69.57	9.41	2.5	2.97	7.38	6.61	0.55	0.72	0.04	0.12	0.09	0	0	0.04
GLEPS2	361549.25	6601319.3	76.67	6.91	2.21	4.29	5.71	3.05	0.49	0.32	0.12	0.19	0.03	0	0	0.01
GLEPS3	361549.25	6601319.3	66.92	11.94	2.33	5.53	4.17	7.27	1	0.6	0.02	0.11	0.08	0.01	0	0.02
GLEPS4	361549.25	6601319.3	72.96	6.48	1.42	2.39	9.03	6.28	0.69	0.47	0.02	0.18	0.06	0.01	0	0.02
GLEPS5	361549.25	6601319.3	63.68	11.88	2.82	3.5	8.33	5.4	1.33	0.65	2.13	0.17	0.08	0.01	0	0.03
GLEPS6	361549.25	6601319.3	65.39	12.93	2.69	4.46	5.65	6.99	0.99	0.62	0.02	0.14	0.08	0.01	0	0.03
GLEPS7	361549.25	6601319.3	70.1	11.54	1.89	3.37	4.58	6.9	0.74	0.62	0.02	0.11	0.08	0.01	0	0.02
GLEPS8	361549.25	6601319.3	65.66	12.78	2.8	3.58	6.39	6.89	0.91	0.7	0.02	0.13	0.09	0.01	0	0.04
GLEPS9	361549.25	6601319.3	65.91	12.54	2.31	3.24	7.43	6.87	0.75	0.68	0.02	0.12	0.09	0.01	0	0.04
GLEPS10	361549.25	6601319.3	66.51	11.98	2.46	4.44	6.24	6.2	1.05	0.63	0.23	0.15	0.08	0.01	0	0.03
GLEPS11	361549.25	6601319.3	70.46	10.38	1.92	2.87	7.02	5.73	0.65	0.39	0.31	0.15	0.07	0	0	0.03
GLEPS12	361549.25	6601319.3	62.13	12.89	3.29	3.45	10.7	5.87	0.65	0.67	0.04	0.18	0.07	0	0	0.05
GLEPS13	361549.25	6601319.3	65.24	12.34	2.96	3.12	6.77	7.07	0.69	0.71	0.84	0.13	0.09	0.01	0	0.03

JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<p><i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i></p>	<ul style="list-style-type: none"> • Samples were collected by hand from waste dumps and surrounding outcrops adjacent to historic open pit mines. • Samples were weighed and photographed. • The co-ordinates of the sample location were obtained with a hand-held GPS.
	<p><i>Include reference to measures taken to ensure sample retrospectivity and the appropriate calibration of any measurement tools or systems used.</i></p>	<ul style="list-style-type: none"> • Samples were collected by hand from outcrops on a roughly 150x100m grid and from the waste dumps surrounding historic workings.
	<p><i>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i></p>	<ul style="list-style-type: none"> • Hand-selected samples were selected on a representative basis.
Drilling techniques	<p><i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i></p>	<ul style="list-style-type: none"> • No drilling data is reported
Drill sample recovery	<p><i>Method of recording and assessing core and chip sample recoveries and results assessed.</i></p>	<ul style="list-style-type: none"> • No drilling data is reported
	<p><i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i></p>	<ul style="list-style-type: none"> • No drilling data is reported

	<i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i>	<ul style="list-style-type: none"> • No drilling data is reported
Logging	<i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i>	<ul style="list-style-type: none"> • No drilling data is reported
	<i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i>	<ul style="list-style-type: none"> • No drilling data is reported
	<i>The total length and percentage of the relevant intersections logged.</i>	<ul style="list-style-type: none"> • No drilling data is reported
Sub-sampling techniques and sample preparation	<i>If core, whether cut or sawn and whether quarter, half or all core taken.</i>	<ul style="list-style-type: none"> • No drilling data is reported
	<i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i>	<ul style="list-style-type: none"> • No drilling data is reported
	<i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i>	<ul style="list-style-type: none"> • No drilling data is reported. • Samples were collected by hand from various points around the waste dumps surrounding historic workings.
	<i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i>	<ul style="list-style-type: none"> • Samples were collected by hand from the waste dumps surrounding historic workings. • As the samples are not in-situ they are only considered to be indicative but not representative of potential deposit scale mineralisation.
	<i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i>	<ul style="list-style-type: none"> • The samples are considered to be indicative but not representative of potential deposit scale mineralisation.
	<i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i>	<ul style="list-style-type: none"> • Samples are collected as rock chip (~1cm) to macro-scale hand specimens (~5cm -10cm) . Samples averaged 1.6kg in weight.
Quality of assay data and laboratory tests	<i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i>	<ul style="list-style-type: none"> • Analyses were carried out by ALS Sweden using methods AA23, ME-MS61 and Cu OG62. • Rare Earth Element analyses were carried out by ALS Sweden using the ME-MS81 (Lithium Borate Fusion – ICP-MS) method • The analyses also included whole geochemistry in addition to base metals, gold, silver and suite of other elements.

		<ul style="list-style-type: none"> The CP has sited the relevant original laboratory reports.
	<p><i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i></p>	<ul style="list-style-type: none"> No geophysical tools have been utilised.
	<p><i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i></p>	<ul style="list-style-type: none"> Field duplicates and standards were not used due to the reconnaissance nature of the sampling. Laboratory standards, duplicates and blanks all returned values within the target range.
Verification of sampling and assaying	<p><i>The verification of significant intersections by either independent or alternative company personnel.</i></p>	<ul style="list-style-type: none"> No drilling data is reported
	<p><i>The use of twinned holes.</i></p>	<ul style="list-style-type: none"> No drilling data is reported
	<p><i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i></p>	<ul style="list-style-type: none"> No drilling data is reported
	<p><i>Discuss any adjustment to assay data.</i></p>	<ul style="list-style-type: none"> No adjustments have been made.
	<p><i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i></p>	<ul style="list-style-type: none"> No drilling data is reported
Location of data points	<p><i>Specification of the grid system used.</i></p>	<ul style="list-style-type: none"> WGS84 UTM Zone 33V
	<p><i>Quality and adequacy of topographic control.</i></p>	<ul style="list-style-type: none"> 1m resolution LIDAR data has been used and is adequate at this stage of the project.
	<p><i>Data spacing for reporting of Exploration Results.</i></p>	<ul style="list-style-type: none"> Sampling was carried out at random points on the waste dumps.
Data spacing and distribution	<p><i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve</i></p>	<ul style="list-style-type: none"> There has not been any attempt or intent to assume grade continuity for use in a mineral resource estimate

	<i>estimation procedure(s) and classifications applied.</i>	
	<i>Whether sample compositing has been applied.</i>	<ul style="list-style-type: none"> Samples were not composited prior to laboratory test work.
Orientation of data in relation to geological structure	<i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i>	<ul style="list-style-type: none"> In situ rock chip samples were collected on 150x100m grid that was aligned Sampling was carried out at random points on the waste dumps.
	<i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i>	<ul style="list-style-type: none"> No drilling data is reported
Sample security	<i>The measures taken to ensure sample security.</i>	<ul style="list-style-type: none"> Rock chip samples were dispatched directly from the McKnight Resources sample storage to the laboratory.
Audits or reviews	<i>The results of any audits or reviews of sampling techniques and data.</i>	<ul style="list-style-type: none"> No audits have been conducted.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i>	<ul style="list-style-type: none"> The Glava nr 100 permit is located within the Arvika Principality of the Värmland region of southern Sweden. The registered holder of the Glava nr 100 permit is McKnight Resources AB. SHP has secured an exclusive option to acquire 100% of the Glava 100 permit from McKnight, subject to completion of technical, financial, and legal due diligence to SHP's satisfaction.
	<i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i>	<ul style="list-style-type: none"> There are no known impediments to the security of the tenure.
Exploration done by other parties	<i>Acknowledgment and appraisal of exploration by other parties.</i>	<ul style="list-style-type: none"> Mining took place for a few years but ceased before the end of World War II. East Pit <p>The largest and normally partially water-filled trench in the older eastern field, measures 45m north-south and has a greatest width of 8m. In 1990 at the south-east corner of the</p>

Criteria	JORC Code explanation	Commentary
		<p>main excavation, water pumping was carried out exposing a small shaft. The quarry is at most 4m- 5m deep, with the shaft to approximately 14m.</p> <ul style="list-style-type: none"> • West Pit <p>Mining has been concentrated to a 60m long and maximum 7m wide shallow excavation trending north-south. The excavation is filled with water. Close to the south is a water-filled single shaft with the surface dimensions of 3m x 3m, from which local driving must have taken place. Maximum depth of the mine stated not to exceed 10m.</p> <ul style="list-style-type: none"> • The ore mineralization is fracture bound and was first discovered in 1880. • Historically the Glava copper fields were first investigated by an English company in the 1870's, but no work of importance was carried out. In 1907-8 the mine field was confiscated by the mining company Nordlanden and finally in 1911 by mining bailiff Gustaf Wik in Glava, who during the first World War sold the mining rights to John Rettig in Stockholm. • In the years 1916-1918, 2280 tons of rock were mined in the east of the field part. The yield was reportedly 49 tons of ore with 10.5% copper and 500 tons of enrichment ore. The gold content of the copper field ore was not yet known, and consequently no precious metal extraction took place. • From the 1980's to present sporadic exploration comprising rock chip sampling has been completed by McKnight Resources AB.
Geology	<p><i>Deposit type, geological setting and style of mineralisation.</i></p>	<ul style="list-style-type: none"> • The bedrock consists of gneissic and partly schistose, strongly metamorphosed volcanics. There is probably also granodiorite. The most common metamorphic minerals are albite, hornblende, chlorite and epidote. In addition, there is also garnet, limespar, hematite and prehnite. Small amounts of early formed magnetite are also included. To the south this unit underlies a thin strip of marble-like limestone. • The copper mineralization is present in near vertical fractures with general north-south strike. The cracks are interrupted in some cases. The width usually varies between a few millimetres and a few decimetres. However, the mining in the eastern part of the deposit must have taken place on one significantly wider crack filling. Aggregates of copper ore from here are said to have weighed several kilograms. • The larger fractures and cracks consist mainly of quartz, while cracks narrower than 3mm to 4mm are dominated by ore minerals. Most common among these is bornite, while chalcocite occurs more sparingly. Chalcopyrite forms segregations in the bornite in a few places. Digenite often occurs together with the bornite in the form of younger interweaving. Covellite is found in the form of grains in the

Criteria	JORC Code explanation	Commentary
		chalcocite and the bornite. The digenite has been partially converted to chalcocite. This mineral, in turn, is older than covellite.
Drillhole Information	<p><i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i></p>	<ul style="list-style-type: none"> • No drilling data is reported
Data aggregation methods	<p><i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i></p>	<ul style="list-style-type: none"> • No drilling data is reported
	<p><i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i></p>	<ul style="list-style-type: none"> • No drilling data is reported • Assay results of REE are reported in ppm. • The conversion of elemental analysis (REE parts per million) to stoichiometric oxide (REO parts per million) is not considered appropriate at this stage of the project.
	<p><i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i></p>	<ul style="list-style-type: none"> • No metal equivalents were used or reported.
Relationship between mineralisation widths and intercept lengths	<p><i>These relationships are particularly important in the reporting of Exploration Results.</i></p> <p><i>If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported.</i></p> <p><i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i></p>	<ul style="list-style-type: none"> • No drilling data is reported
Diagrams	<p><i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include but not be limited to a plan view of drill-hole collar locations and appropriate sectional views.</i></p>	<ul style="list-style-type: none"> • See body of announcement

Criteria	JORC Code explanation	Commentary
Balanced reporting	<p><i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i></p>	<ul style="list-style-type: none"> • All available sampling information was used. • All results are reported transparently in the report.
Other substantive exploration data	<p><i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i></p>	<ul style="list-style-type: none"> • All new and relevant data have been reported.
Further work	<p><i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i></p>	<ul style="list-style-type: none"> • A full review of the results to date will be undertaken prior to any future programs being executed.
	<p><i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i></p>	<ul style="list-style-type: none"> • See body of announcement