

25 November 2025

New High-Grade Antimony Zone Extends 1km North at Antimony Canyon Project

HIGHLIGHTS

- New "bonanza-grade" rock chip and channel sampling has returned 29.4% Sb from Little Emma, 25.24% Sb from the Pluto Workings, 17.94% Sb from the Gem Mine zone, with multiple samples exceeding 1% Sb across the Antimony Canyon Project (Appendix 1).
- Rock chip sampling has identified a substantial new zone of high-grade antimony extending mineralisation 1km north of the core Antimony Canyon Project area ("Northern Extension").
- High-grade results from this new Northern Extension zone include 3.59% Sb, 2.62% Sb, 2.38% Sb, and 2.18% Sb, coinciding with the extension of a coherent conductor visible in the CSAMT data extending north-northwest from Little Emma GEM workings (Figure 1, Appendix 1).
- Mineralisation in the Northern Extension zone is interpreted to be controlled by splays of the regional Paunsaugunt Fault, creating a significant new search area along strike.
- Systematic follow-up sampling across the central high-grade zone has returned multiple high-grade results, including 8.98% Sb, 3.93% Sb, 2.95% Sb, and 2.25% Sb (Appendix 1).
- Program confirms high-grade stibnite mineralisation is hosted within a specific, mappable
 'Salt n Pepper' sandstone tuff horizon at the Gem Mine, validating the Company's exploration model.
- Systematic channel sampling of the target 'Salt n Pepper' tuff horizon (9 samples) at Gem
 yielded an impressive average grade of 3.07% Sb, confirming a robust, high-grade
 mineralised body.
- Multi-element analysis of the channel samples confirms that the high-grade core is geochemically distinct, showing very low ratios of harmful mercury and arsenic, compared to antimony.
- Results demonstrate the scale of the Antimony Canyon system, which now spans over 3.5km of strike with multiple stacked mineralised horizons.

Trigg Minerals Limited (ASX: TMG, OTCQB: TMGLF) is pleased to announce further exceptional assay results from a systematic Phase 2 rock chip and channel sampling program at its 100%-owned Antimony Canyon Project (ACP) in Utah, USA (Table 1).

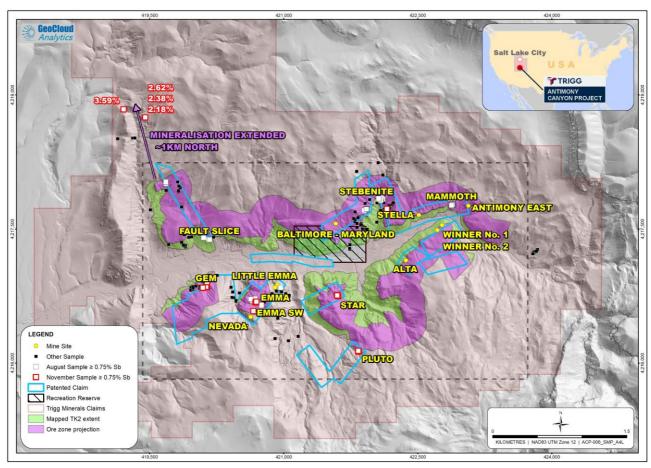


Figure 1. Results from Phase 2 rock and channel sampling completed in November, highlighting the location of all samples exceeding 0.75% Sb. Notably, this includes high-grade antimony mineralisation located approximately 1 km north of the core Antimony Canyon Project area.

The program has successfully achieved two key objectives: identifying a major northern extension to the mineralised system (Figure 1) and confirming bonanza-grade continuity within the historic Gem Mine area (Figure 2).

This new program, comprising 104 samples, was designed to follow up on the outstanding initial results announced on 14 August 2025 [High-grade channel samples at the Antimony Canyon Project, Utah] and to systematically test the mineralisation controls at several other high-priority areas, including the Gem and Star zones. The results have confirmed multiple high-grade antimony zones, with a peak assay of **29.4% Sb** returned from a channel sample within the Little Emma Mine.

Significantly, the program has confirmed that "bonanza-grade" mineralisation is closely associated with a specific, mappable geological unit—a 'Sandstone tuff' also called the 'Salt n Pepper' tuff. This confirmation provides a consistent, targetable signature for hydrothermal mineralisation and strongly supports the Company's exploration model.

The mineralised zones identified at Pluto and throughout the Northern Extension area lie outside the Company's previously mapped high-grade mineralised envelope along the Antimony Canyon Project. High-grade results from Pluto, located 50 metres beyond the current mapped boundary, and from the Northern Extension area over a kilometre to the north, highlight the conservative nature of the existing interpretation and reinforce the significant potential to expand the mineralised system beyond its current limits. These results also confirm that the Antimony Canyon Project remains one of the most important undeveloped high-grade antimony systems in the United States.

Table 1. Significant channel and rock chip results (UTM WGS 84 Z12)

Sample	East WGS84	North WGS84	Prospect	Comments	Sb%
2026173	420694	4216686	Lt Emma	Sand tuff alt++ Vn Stb +++. Grab Sample	29.39
2026190	421834	4216136	Pluto	Bx alt++ gypse+ patches stb angular/rounded clasts	25.24
1939604	420684	4216677	Lt Emma	Sandy tuff with moderate feox in fracture planes, Stb veinlet	18.69
2026197	421597	4216755	Star	Dark Silt/argilic patches of stb Vt Stb	12.87
1939330	421610	4216748	Star	Light grey sandy tuff, horizontal and vertical stibnite veins, near collapsed old mine?	8.98
1939331	421599	4216759	Star	Underground old mine sample, stibnite veins and parches on sandy tuff, strong sulphur and gypsum, az mine 280, 12m longitud mine	7.11
2026172	420685	4216679	Lt Emma	Sand tuff alt++ Vn Vt Stb Lil Emma	7.04
2026174	421842	4216129	Pluto	Pluto Mine, sand tuff feox in patches , stb in patches++. Sample in 3.30 m to the mine in the right wall.	3.79
2026194	420660	4216580	Nevada	Sand tuff alt+++ Vn Vt stb	3.71
2026167	419208	4218837	Northern Extension	sand tuff alt ++ fx ox ++ hem+ lim+ , stb vt and patches	3.59
2026169	419208	4218837	Northern Extension	sand tuff alt++ fx ox++ hem ++ lim++. Tan Jack	2.62
2026176	421833	4216126	Pluto	Sandstone tuff, moderate Stb patches, weak-moderate FeOx patches, weak gypsum veinlets.	2.43
1939472	419449	4218746	Northern Extension	0.8m chip sample of Dark grey sandy tuff, gypsum veinlets, brown- orange oxides	2.38
1939471	419449	4218747	Northern Extension	0.6m chip sample of grey sandy tuff, strong gypsum, stibnite veinlet, orange-brown oxides	2.18
2026196	421597	4216755	Star	Star mine , sand tuff Si++ VtVN stb kao+ gypsum + Si+	1.46

All results exceeding 1% Sb.

Managing Director, Mr Andre Booyzen, stated:

"These new results are outstanding, with "bonanza grades" of 29% antimony, which is a fantastic outcome, but doing so within a systematic channel sampling program is even more significant. It confirms that the high grades reported in our first program are not isolated incidents but are part of a robust, high-grade mineralising system.

While the "bonanza grades" at the Little Emma, Gem, Pluto and Star Mines are spectacular and confirm the high-grade nature of our core asset, the discovery of high-grade mineralisation a full kilometre to the north is a game-changer.

Identifying high-grade antimony associated with a CSAMT conductor in the newly defined northern extension supports our district-scale exploration model. It indicates that the mineralising system is much more widespread than the historic footprint implies.

What is especially exciting from a technical point of view is the team's success in 'cracking the code' on the geological controls. We have now confirmed that the 'Salt n Pepper' tuff is our main host rock for high-grade stibnite. This is a game-changer for exploration. It shifts the project from reconnaissance to delineation."

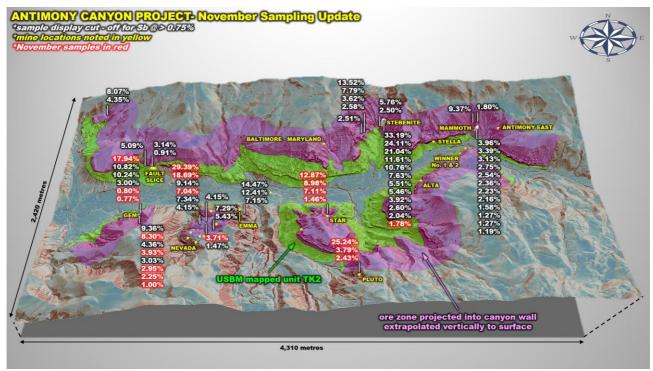


Figure 2. High-grade samples exceeding 0.75% Sb on the Company's Antimony Canyon Project. Recent channel sampling from today's release is highlighted in red, and for previous results refer ASX announcement on 14 August 2025.

PHASE 2 RESULTS AND GEOLOGICAL DISCUSSION

A total of 104 new rock chip and channel samples were collected during the follow-up program. Unlike the initial reconnaissance, this Phase 2 work focused on systematic, measured-width channel sampling, particularly within the Little Emma, Gem, Star, Pluto, and Nevada Mines and the adjacent "Fault Slice" zones, to determine the controls, geometry, and true width of mineralisation. Samples were submitted to American Assay Laboratories in Sparks, Nevada.

The new sampling has marked a significant breakthrough in understanding the geological controls on mineralisation. Most high-grade samples, including those with 29.39% Sb, 18.69% Sb, 17.94% Sb, 8.30% Sb, 3.93% Sb, and 2.95% Sb, were all hosted within a distinct lithological unit described by field crews as the "Salt n Pepper tuff".

This unit is thought to be the same "felsic lapilli tuff horizon" identified in the initial investigation, and its brittle nature led to extensive fracturing, creating the permeability for high-grade hydrothermal fluids. Mineralisation appears as acicular stibnite veins, veinlets, and patches within this tuff, often associated with gypsum, iron oxides, and argillic alteration.

Detailed, systematic channel sampling was conducted across the 'Salt n Pepper' tuff horizon where it is exposed in and around the historic workings. This work aimed to move beyond the 'grab sample' nature of reconnaissance and provide a representative grade and width for this significant mineralised body. Table 1 summarises the results from this systematic sampling of the 'Salt n Pepper' tuff horizon, indicating a robust, high-grade mineralisation body.

Significant Northern Extension

Mapping and sampling have identified a new cluster of high-grade antimony mineralisation approximately 1 km north of the core Antimony Canyon Project area (Figure 1). This area lies near Russell Hollow and is referred to as the "Northern Extension". It returned multiple high-grade assays, including 3.59% Sb, 2.62% Sb, 2.38% Sb, and 2.18% Sb.

Geologically, this extension is important as it lies along the projected path of a regional CSAMT conductor measuring about 2.5 km by 1 km, extending from the Little Emma–GEM workings. This feature aligns with mapped splay faults of the Paunsaugunt fault zone, as detailed in the Company's 4 November release (CSAMT Survey Defines a Coherent, Large-Scale Hydrothermal Antimony System). Notably, the westernmost sample—returning the highest antimony value in the cluster at 3.59% Sb—sits directly above the projected extension of the Paunsaugunt Fault and the Navajo hogback. The hogback formed when eastward compression during the Sevier orogeny tilted Jurassic sedimentary layers, including the resistant Navajo Sandstone, along structures now interpreted as splays of the Paunsaugunt fault zone. The Paunsaugunt Fault and its subsidiary splays were later reactivated during the Laramide Orogeny or during subsequent Basin and Range extension.

The mineralisation occurs within fault-damaged zones of the overlying Flagstaff Formation, confirming that the central north–south structural corridor has served as a significant pathway for hydrothermal fluid flow. This finding highlights the potential of a newly identified, 1 km-long extension zone that has not yet undergone modern exploration.

Geochemical Characterisation

Geochemical investigation of recent surface and underground sampling at the Antimony Canyon Project has examined relationships among antimony (Sb) and associated elements including arsenic (As) and mercury (Hg) (Appendix 1).

The data show that, although these elements are spatially associated within the broader hydrothermal system, they are not uniformly coupled. Within the higher-grade zones interpreted to lie closer to feeder structures, multi-element ratios indicate relatively low Hg and As compared to Sb.

These geochemical patterns are consistent with the zonation around the interpreted feeder system described in the Company's 4 November 2025 ASX release, *CSAMT Survey Defines a Coherent, Large-Scale Hydrothermal Antimony System*, and provide an early framework for distinguishing different geochemical domains within the mineralised system.

Results and Next Steps

These recent results from several historic mines at the Antimony Canyon Project, including Little Emma, Gem, Nevada, Star and Pluto, strongly support the hydrothermal model outlined in the Company's previous announcements. The "Salt n Pepper" tuff horizon represents the favourable stratabound unit (the structural/chemical trap), while high-grade, stibnite-filled fractures record a later hydrothermal fluid pulse. Systematic mapping and sampling of this unit are crucial for defining the scale and continuity of mineralisation.

The confirmation of high-grade mineralisation near the Paunsaugunt Fault in the Northern Extension validates Trigg's CSAMT interpretation. The fault system may act as a primary pathway for deep-seated fluids, which then deposit stibnite where they intersect reactive and brittle "Salt n Pepper" tuff horizons.

The Company is now finalising plans for a maiden drilling campaign. The program will be designed to:

- 1. Test the depth extension of the bonanza-grade shoots at the Gem Emma Mine Zone.
- 2. Validate the stratigraphic continuity of the host tuff units across the 3.5km project area.

The success of this program has finalised a suite of high-confidence, drill-ready targets at the Gem – Emma Mine zone. The Company is now focused on planning a maiden drilling program, designed to:

- Test the continuity of the high-grade 'Salt n Pepper' tuff horizon at depth below the historic workings;
- Test the strike extent of the mineralisation along the 3.5 km mineralised footprint; and,
- Provide the first-ever modern drill data from the project, paving the way for a potential future resource estimate.

ENDS

The announcement was authorised for release by the Board of Trigg Minerals Limited.

For more information, please contact:

Andre Booyzen

Trigg Minerals Limited

Managing Director

info@trigg.com.au

+61 (08) 6256 4403

Kristin Rowe

NWR Communications

Investor Relations

kristin@nwrcommunications.com.au

+61 (0) 404 889 896

ABOUT TRIGG MINERALS

Trigg Minerals Limited (ASX: TMG, OTCQB: TMGLF) is advancing critical mineral development in Tier-1 US jurisdictions, with a strategic vision to become a vertically integrated, conflict-free supplier to Western economies.

Its flagship Antimony Canyon Project in Utah, USA, is one of the country's largest and highest-grade undeveloped antimony systems—historically mined but never subjected to modern exploration. The recently secured Tennessee Mountain Tungsten Project in Nevada further strengthens Trigg's position in critical minerals, adding scale and diversification within a Tier-1 jurisdiction.

With a proven leadership team, active government engagement, and smelter development underway, Trigg is strategically positioned to lead the resurgence of antimony and tungsten supply from reliable Western sources.

For further information regarding Trigg Minerals Limited, please visit the ASX platform (ASX: TMG) or the Company's website at www.trigg.com.au.

DISCLAIMERS

Competent Persons Statement

The information in this announcement that relates to Exploration Results is based on, and fairly represents, information compiled by Mr Jonathan King, a Member of the Australian Institute of Geoscientists (AIG). Mr. King is a Director of Geoimpact Pty Ltd and serves as an independent geological consultant to Trigg Minerals Limited. Mr King has sufficient experience relevant to the style of mineralisation, type of deposit, and activity being undertaken to qualify as a Competent Person under the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Mr King consents to the inclusion in this announcement of the matters based on his information, in the form and context in which they appear.

Forward Looking Statements

This report contains forward-looking statements that involve several risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more risks or uncertainties materialise, or underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward-looking statements if these beliefs, opinions, and estimates should change or to reflect other future developments.

Previously Reported Information

The information in this report that references previously reported Exploration Results is extracted from the Company's ASX market announcements released on the date noted in the body of the text where that reference appears. The previous market announcements are available to view on the Company's website or the ASX website (www.asx.com.au).

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

APPENDIX 1: ROCK and CHANNEL SAMPLING RESULTS (UTM WGS84 Z12N)

Sample	East WGS84	North WGS84	Comments	Sb ppm	As ppm	Hg ppm
1939316	419222	4218830	0.5m chip across block of stibnite veinled tuff, massive stibinite, s-shears + blebs on isegange features	6210	556	3.5
1939317	422899	4217776	0.4mchip sample of silicified dark gray tuff, stibnite dissem	2219	856	20.9
1939318	420908	4217565	Grab sample of cross bedded gray tuff sandstone intercalated in conglomerate	32	35	3.1
1939319	420898	4217444	Gray matrix supported breccia	50	88	1.1
1939320	421523	4216472	0.9m chip sample of Sandy tuff, semi-competent, limonite veinlets above	12	422	0.9
1939322	421518	4216475	1.4m chip sample of gray carbonaceous sandstone, intercalated with conglomerate, bands of yellow oxides sulphides, gypsum veinlets 0.3m chip sample on gray white Sandy tuff, conglomerate interbedded, bands of oxides, just	21	343	1.1
1939323	421432	4216771	above conglomerate	59	803	4.2
1939324	421687	4216399	0.8m chip sample of very fractures Sandy tuff 1mm up to 7 cm, Bedding horizontal oxides	41	1180	2.9
1939325	421741	4216439	1.2m chip sample of grey sandy tuff, strong yellow oxides sulphides, , gypsum, FeOx on vertical fractures, 1.2m sandy tuff Bedding inside conglomerate	110	606	4.5
1939326	421743	4216491	0.4m chip sample of light gray sandy tuff, orange oxides bands, parches of brown oxides, just above of conglomerate	161	1380	7.4
1939327	421672	4216643	Grab sample of gray-green sandy tuff, mod-strong orange-brown feox, serme like old working	369	2978	5.9
1939328	421608	4216672	1m chip sample of gray welded tuff, sulphure veinlets, parches of brown-orange oxides	365	755	7.9
1939329	421604	4216682	0.3m chip sample of gray tuff, yellow, white and orange clays	1288	1901	5.3
1939330	421610	4216748	Light grey sandy tuff, horizontal and vertical stibnite veins, near collapsed old mine?	89794	2419	17.9
1939331	421599	4216759	Underground old mine sample, stibnite veins and parches on sandy tuff, strong sulphur and gypsum, az mine 280, 12m longitud mine	71096	300	4.5
1939447	419176	4218954	1.5m chip sample of Sandstone tuff yellow and white clays, hydrothermal alt? Weak FeOx in fractures	172	411	1.9
1939448	419183	4218951	0.9m chip sample, Same than last, but more oxidation	119	391	0.8
1939449	419225	4218926	1.4m chip sample of white-gray tuffaceos sandstone, intercalated oxidized conglomerate, gypsum veinlets with oxides	1116	415	3.1
1939450	419272	4218877	1.6m chip sample of polimictic subrounded conglomerate, qz veinlets	292	120	2.3
1939451	419270	4218875	0.8m chip sample, sandy tuff intercalarse with polimictic conglomerate, ox patches on conglomerarse, weathering gypsum	146	254	2.3

	Foot	North	I		٨٥	Ц«
Sample	East WGS84	WGS84	Comments	Sb ppm	As ppm	Hg ppm
			1.5m chip sample of Polimictic conglomerate,			
			some ox dissem sulphides? , gypsum and qz			
1939452	419267	4218873	veinlets	1447	266	2.4
			1.3m chip sample of gray greenish tuffaceous sandstone, sb nuggets? With Orange, yellow			
			oxidation halos, 6 gypsum paralelo veins, fine			
1939453	419271	4218868	sulphides oxides dissem	43	9391	4.0
			Gran sample on carbonacious gray sandstone?			
			With calcite fractures fill, some tuffaceous			
1939454	419312	4218876	sandstone subrounded fragments, FeOx on fractures	37	127	1.9
1000404	410012	4210070	Chanel erick photo, 1.1m chip sample on gray	07	127	1.0
			altered carbonaceous sandstone, oxides on			
1939455	419353	4218843	fractures, calcite patches	17	89	2.0
			1.1m chip sample of polimictic conglomerate with			
			carbonaceous sandy tuff matrix, oxides patches			
1939456	419402	4218829	and on fractures	21	131	1.7
			0.6m chip sample of white gray sandy tuff, oxides in			
1939457	419404	4218827	fractures, gypsum at upper Contact with conglomerate (below previous one)	125	529	1.6
1939437	419404	4210027	1.2m chip sample of gray-yellowish sandy tuff,	125	529	1.0
1939458	419436	4218765	gypsum veins	35	199	2.8
			0.5m chip sample of white clays (dickite)? Altered			
1939459	419439	4218766	sandy tuff, weak oxides, gypsum	50	81	2.6
			0.2m chip sample strong oxidized brown-orange			
1939460	419439	4218765	breccia of same outcrop, strong gypsum	19	736	3.6
			0.3m chip sample on gray yellowish sandy tuff,			
1939462	419439	4218764	strong sulphure oxides in fractures	36	244	3.3
			1m chip sample of gray sandy tuff, FeOx, gypsum			
1939463	419463	4218769	veins, layered oxides, qz veins 1.4m chip sample of gray altered sandy tuff,	53	889	4.6
			layered oxides on fractures, gypsum veins parallel			
1939464	419465	4218763	to bedding?	25	389	3.6
			1m chip sample on gray altered sandy tuff, some			
1939465	419468	4218761	oxides layered, gypsum veins, and clays altered	44	1356	6.0
			0.5m chip sample of gray white material sandy tuff,			
1939466	419446	4218745	weak oxidation, strong gypsum	103	195	4.8
			0.6m chip sample of same last one but less			
1939467	419446	4218746	gypsum and more oxidation	296	813	4.1
1000100	440447	4040740	0.6m chip sample orange sandy tuff, strong ox,	470	407	4.0
1939468	419447	4218746	weak gypsum, more competent than previous ones	173	487	4.6
1939469	419448	4218750	1.3m chip sample of gray sandy tuff, mod gypsum,, weak-mod FeOx on fractures	100	614	5.1
1909409	413440	4210/30	1.3m chip sample of sandy tuff, strong oxidation,	182	014	3.1
1939470	419449	4218748	strong gypsum	230	267	3.0
			0.6m chip sample of gray sandy tuff, strong			
1939471	419449	4218747	gypsum, stibnite veinlet, orange-brown oxides 21745 118		118	3.8
			0.8m chip sample of Dark gray sandy tuff, gypsum			
1939472	419449	4218746	veinlets, brown-orange oxides	23762	339	5.3
			0.5m chip sample of gray-green sandy tuff, mod			
1939473	419399	4218777	orange oxides, mod gypsum	17	639	1.1
1939474	419398	4218777	1.2m chip sample, Same last one, but more oxides	31	122	2.1

Sample	East WGS84	North WGS84	Comments	Sb ppm	As ppm	Hg ppm
1000 175	440007	4040770	0.9m chip sample of gray-green conglomerates	400	40	0.4
1939475	419397	4218779	tuff, gypsum veins, orange-brown oxides	106	49	2.4
1939476	419397	4218781	0.8m chip sample, same last one 0.8m chip sample of green-white clayd altered tuff,	46	166	1.9
1939477	419395	4218782	strong clayed gypsum, fine ox dissem	60	519	3.0
1939478	419394	4218784	1.2m chip sample , same last one	13	58	1.8
1939479	419395	4218787	1.5m chip sample, same last one, more ox fill fractures	104	61	0.6
1939480	419396	4218790	1m chip sample of gray-green sandy tuff, strong clayed gypsum, brown oxides in fractures	75	20	0.8
1939482	419396	4218790	1m chip sample Same last one	2	26	2.1
1939483	419399	4218795	0.7m chip sample on gray-green tuff, parallel vertical fractures oxides filled, weak clayed gypsum	14	47	2.3
1000404	440000	4040705	0.6m chip sample, same last one, but strong	24	F0	0.1
1939484	419398	4218795	gypsum 0.7m chip sample same last one, more competent	34	58	2.1
1939485	419399	4218797	previous one	2	26	-0.5
1939486	419398	4218797	0.8m chip sample, below previous, less competent	8	93	2.1
1939487	419397	4218797	1.1m chip sample of gray-yellowish tuff, mod sulphide oxides on rock, mod clayed gypsum	12	313	2.1
1939488	419395	4218799	0.7m chip sample yellow gray tuff , strong sulfur on rock, more competent rock, mod clayed gypsum	14	357	2.0
1939489	419393	4218800	0.7m chip sample, same last one, but more gypsum content	13	426	2.2
1939490	419393	4218799	Same last one, just below	11	304	2.3
1939491	419308	4218770	1.5m chip sample of conglomerates tuff, 80% matrix, red oxides patches and in fractures	29	526	3.1
1939492	419311	4218783	0.3m chip sample of red bed conglomerate, strong oxides on matrix	63	1281	2.3
1939493	419305	4218783	0.8m chip sample of conglomerates tuff, 80% matrix, red oxide patches and fractures	27	421	3.0
1939494	419229	4218830	0.6m chip sample of Conglomerates sandy tuff? 60-70% matrix, mod brown oxides in matrix	20	235	1.9
1939495	419221	4218832	1m chip sample of grey sandy tuff, weak gypsum, contact with oxidation zones , next to stebnite vein	29	170	2.4
1939496	419219	4218853	1.5m chip sample of white clayed sandy tuff , bands of brown oxides and patches	26	1510	1.0
1939497	419214	4218851	1.5m chip sample , same last one	29	188	4.5
4000400	440040	4040040	1.5m chip sample of white clayed conglomeratic sandy tuff, bands and patches of brown oxides,	7.4		4.0
1939498	419216	4218840	gypsum 1.5m chip sample of white clayed tuff, brown-	74	290	1.8
			orange oxides patches, gypsum veins, brown	_		
1939499	419213	4218846	oxides bands	66	402	2.5
1939500	419213	4218844	1.3m chip sample , same last one	65	295	2.3
1939601	420686	4216687	Sandstone tuff with FeOx in fractures, stb patches	682	553	3.2
1939602	420686.9234	4216677.554	Sandstone tuff weak feox in fracture planes.	3114	662	3.6
1939603	420685.861	4216677.342	Sandy tuff with weak Fe Ox in patches	4617	796	3.6

	East	North			As	Hg
Sample	WGS84	WGS84	Comments	Sb ppm	ppm	ppm
			Sandytuff with moderate feox in fracture planes,			
1939604	420684.3735	4216677.023	Stb veinlet	186873	540	31.8
			Sandstone tuff alt +++ gypse/kao fx ox +++ hm+++			
2026166	419208	4218837	lim+ vt stb Sandtuff alt ++ fx ox ++ hem+ lim+ , stb vt and	248	654	3.3
2026167	419208.15	4218837.15	patches	35918	935	5.1
2026168	419208.2	4218837.2	Sandtuff alt++ fxox ++ hem+ lim+ vt stb	386	1190	3.6
2026169	419208.25	4218837.25	Sandtuff alt++ fx ox++ hem ++ lim++. Tan Jack	26159	218	3.8
			Sandtuff alt+++ gypse/kao feox+++ hm++ lim+ vt			
2026170	419208.3	4218836.3	stb	60	1385	5.2
2026171	419208	4218776	Sand sit vt +++ qtz	677	221	2.3
2026172	420685	4216679	Sandtuff alt++ Vn Vt Stb Lil Emma	70389	4401	6.0
2026173	420694	4216686	Sandtuff alt++ Vn Stb +++. Grab Sample	293932	857	14.3
			Pluto Mine, Sandtuff feox in patches, stb in			
2026174	421842.42	4216129.48	patches++. Sample in 3.30 m to the mine in the right wall.	37939	2602	13.4
2026175	421838.659	4216134.637	Sandstone tuff, weak FeOx in horizons	766	1330	4.2
2020170			Sandstone tuff, moderate Stb patches, weak-	, , , ,	2000	
2026176	421833.436	4216126.107	moderate FeOx patches, weak gypsum veinlets.	24269	5006	72.2
			Sandstone tuff, weak-moderate Fe Ox horizons and			
2026177	421833.737	4216124.698	patches, weak gypsum vt.	2093	4787	48.0
2020170	401000 100	4016104.000	Sandstone tuff, weak feox patches and gypsum	1004	400	2.2
2026178	421833.106	4216124.002	veinlets, below the last sample	1024	439	3.3
2026179	421833.592	4216123.644	Sandstone tuff, weak-moderate feox horizons and patches, weak gypsum vt.	257	1028	3.9
			Sandstone tuff with grey colour ,incipient feox in			
2026181	421833.686	4216124.727	fracture planes	897	178	2.8
			Sandstone carbunoceous (limestone?) weak Fe Ox			
2026182	421842.89	4216123.101	in patches, Stb patches? Sandstone tuff, weak feox and incipient carbonates	1479	491	3.3
2026183	421824.468	4216156.79	in fractures	396	101	1.9
			Competent Carbonaceous tuff sandstone, feox in			
2026184	421828.635	4216166.017	veinlets(2 cm) ATS veinlets (pyrolusite?)	179	691	2.3
2026185	421828.932	4216176.434	Sandstone tuff , weak gypsum, clay and feox	247	582	3.1
2026186	421844.3905	4216121.182	Sandstone tuff, moderate FeOx in fracture planes./	375	1902	5.9
2026187	419627	4217917	Limestone? For chemistry blank?	224	112	2.0
			Pluto, Bet wash layer fx ox +++ hm ++ goet + lim-			
2026188	421764	4216092	0.3 m	2258	2975	28.4
2026189	421768	4216093	Sedtuff (clastic) alt++ fx ox+++/ox +++ hm++ lim+, chl-kao? Gypsem	1987	5721	3.9
2020100	721700	7210000	Bx alt++ gypse+ patches stb angular/rounded	100/	0/21	5.5
2026190	421834	4216136	clasts	252350	6606	31.8
2026191	421835	4216138	Pluto mine Sedtuff alt++ Vn Vt stb gray spot/gypse+	1285	3286	12.6
2026192	421838	4216125	Sedtuff alt++ fx ox+++ hm++ lim++ goet+	1141	2784	5.0
0000155	404041	40404:5	F+1 BxFx Ox++ hm ++ lim ++ goe+ other side of	0005	4===	40.5
2026193	421841	4216118	JP131	2000	1777	16.0
2026194	420660	4216580	Sand tuff alt+++ Vn Vt stb limestone zone in travertine fx o+++ hm ++ lim ++	37113	2630	19.9
2026195	416565	4224059	xrf >100 ppm	247	209	2.1

Sample	East WGS84	North WGS84	Comments	Sb ppm	As ppm	Hg ppm
			Star mine , Sandtuff Si++ VtVN stb kao+ gypsum +			
2026196	421597	4216755	Si+	14639	441	3.9
2026197	421597	4216755	Dark Silt/argilic patches of stb Vt Stb	128657	442	8.2
2026198	4214449	42166525	Star Atm25-Jp156	1510	78	1.7
			Star. Dissolution clast zone - vuggy texture clast are			
2026199	421497	4216495	ox++ mtx ox-	220	215	1.6
			Sandstone tuff (Snp) alt gypsum -grey zone - vt stb			
2026138	420144	4216901	? (<1 cm), alt organic? Gypse	179431	529	7.5
2026147	420131	4216850.34	Gem Mine, Same Ox ++ Stb vt	83032	1914	4.7
2026152	420094	4216837.95	Sandstuff (Snp) mt gypse + Vn Vt Stb Fx Ox +	39265	673	3.9
2026142	420137	4216854.71	Sandstone (Shp) Alt+++ gypsa ox +/- Vn Vt Stb	29469	929	3.3
2026146	420131	4216850.18	Same Stb vt	22488	1731	2.6

APPENDIX 2: JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as when coarse gold presents inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 This announcement reports on new rock chip and channel samples from the Antimony Canyon Project. Samples were collected as both point 'grab' samples from outcrops and 'channel' samples over measured widths (0.2m to 1.5m). Channel samples were cut using a hammer and chisel across the mineralised structure to ensure a representative cross-section. Sampling was conducted on mineralised exposures. Channel samples are considered representative of the interval sampled as they were cut systematically across the face. Grab samples are selective by nature.
Drilling techniques	Drill type and details (e.g. core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	No drilling is being reported.

JORC Code explanation	Commentary
 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Not applicable, as no drill data is being reported for these prospects.
 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All samples were geologically logged for lithology, alteration, and mineralisation at the point of collection.
 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in- 	 Samples were prepared and analysed at American Assay Laboratories (AAL) in Sparks, Nevada. Preparation involved drying, crushing to -10 mesh, and pulverising a 250g split to 85% passing -200 mesh.
	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled. • The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. • For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 All samples were digested using a 5-acid method and analysed by ICP-OES (Agilent 5100/5110). Analyses were calibrated for antimony concentrations between 2 ppm and 10,000 ppm (method code IO-4AB12). Samples returning >10,000 ppm Sb were reanalysed using ore-grade calibrations. Samples returning >1,000 ppm Sb were further analysed for a full 51-element suite (method code IO-4AB51) to characterise
		-
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 The Competent Person has verified the significant results. No adjustments have been made to the data.

Criteria	JORC Code explanation	Commentary
	 Discuss any adjustment to assay data. 	
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Sample locations were recorded using a handheld GPS (WGS84 Zone 12N).
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Sampling was reconnaissance in nature, focused on exposed mineralisation and historic workings. At the historical Mines sampled, including the Gem, Little Emma, Pluto, Stebenite, Star, and Nevada Mines, sampling was systematic across the exposed face. These historical mines all lie on the Company's patented claims. Sampling at the Northern Extension involves grab sampling of exposed mineralisation.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Channel samples were taken perpendicular to the mineralised structures where possible to approximate true width. Not applicable: no drilling conducted.
Sample security	The measures taken to ensure sample security.	Samples were bagged, tagged, photographed, and transported by Trigg personnel directly to the laboratory.

Criteria	JORC Code explanation	Commentary
Audits or	The results of any audits or reviews	No formal audit has been conducted
reviews	of sampling techniques and data.	No other external audits are known.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting and any known impediments to obtaining a licence to operate in the area. 	 The project comprises unpatented and patented lode claims held by Antimony Canyon Sovereign Reserve, Inc., a subsidiary of Trigg Minerals. The project is located in Utah, USA. The Company's claims are registered with both the respective counties of Garfield and Piute and the BLM. The claims are in good standing. The Company is not aware of any known impediments to obtaining a licence to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historic mining occurred between 1880 and the 1960s. The U.S. Bureau of Mines (USBM) conducted extensive historical investigation in the 1940s. No modern drilling has been conducted before Trigg's involvement.
Geology	Deposit type, geological setting and style of mineralisation.	 The deposit is a hybrid orogenic-epithermal antimony system hosted in the Paleocene Flagstaff Formation. Mineralisation is controlled by N-S faults (Paunsaugunt splays) and stratabound within brittle tuff horizons ("Salt n Pepper" tuff).

Criteria	JORC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: a easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No drilling reported. Sample locations for grab and channel samples are provided in Appendix 1.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 No aggregation applied. No metal equivalents have been reported. Samples exceeding the upper detection limit for Sb (>10,000 ppm) were re-assayed using ore-grade methods to ensure accuracy of the high-grade populations. Raw assay results are reported, though converted to a percentage by dividing the raw assay (in ppm) by 10,000. No drilling is being reported.

Criteria	JORC Code explanation	Commentary
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	Channel samples represent apparent widths across outcrop faces.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures 1 and 2 in the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	 All significant high-grade results have been reported to highlight the potential of the system. A full table of results (including lower grades) is available in Appendix 1.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential	 The discovery of the "Northern Extension" associated with the CSAMT Conductor and the Paunsaugunt Fault is new substantive data reported here. Previously reported results from August 2025 (up to 33.2% Sb) validate the high-grade nature of the district. Multielement geochemical analysis has identified the presence of arsenic (As) and

Criteria	JORC Code explanation	Commentary
	deleterious or contaminating substances.	 mercury (Hg) associated with antimony mineralisation. Analysis indicates distinct zonation of these elements. Some prospects, e.g. the Star Mine, exhibit high antimony grades with relatively low As and Hg (typically <10 ppm Hg), whereas other areas, such as the Pluto Mine area, contain elevated Hg values (up to 72.2 ppm in Sample 2026176) associated with high-grade stibnite. Preliminary interpretation suggests arsenic is not in solid solution with stibnite in high-grade zones and may occur in separate mineral phases. No metallurgical test work has yet been undertaken on the sampled material; any metallurgical implications of these geochemical patterns remain to be tested.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Maiden drilling program planned to test depth extensions at Gem and the Emma Mines.