ASX Announcement

ASX: AAR 18 NOVEMBER 2025

THEIA IN-FILL DRILLING CONFIRMS MULTIPLE ZONES OF HIGH-GRADE GOLD MINERALISATION

New high-grade target discovered west of Theia

HIGHLIGHTS

Theia In-Fill Drilling

- High-grade assay results received for the next 20 holes (2,080m) of a 99-hole (11,121-m) in-fill
 reverse circulation (RC) drill program undertaken on a 12-metre by 12-metre drill density at the
 Theia Deposit, part of Astral's 100%-owned Mandilla Gold Project near Kalgoorlie, including:
 - 22m at 1.65g/t Au from 44m, 19m at 3.53g/t Au from 73m, incl. 1m at 53.2g/t Au from 81m and 18m at 6.67g/t Au from 100m, incl. 1m at 97.5g/t Au from 105m (AMRC097)
 - 21m at 1.16g/t Au from 41m, 39m at 2.98g/t Au from 66m, incl. 1m at 10.4g/t Au from 78m, 1m at 15.5g/t Au from 83m, 1m at 13.2g/t Au from 95m and 1m at 21.1g/t Au from 102m (AMRC098)
 - 25m at 3.20g/t Au from 44m incl. 1m at 17.0g/t Au from 52m, 1m at 43.6g/t Au from 64m (AMRC087)
 - 27m at 3.23g/t Au from 37m incl. 1m at 35.3g/t Au from 51m (AMRC099)
 - 33m at 2.29g/t Au from 34m, incl. 1m at 12.0g/t Au from 38m, 1m at 11.5g/t Au from 64m (AMRC100)
 - 19m at 3.77g/t Au from 89m incl. 1m at 31.6g/t Au from 92m, 11m at 1.84g/t Au from 114m (AMRC095)
 - 6m at 7.77g/t Au from 86m incl. 1m at 38.5g/t Au from 86m and 13m at 1.96g/t Au from 103m (AMRC092)
 - 8m at 5.41g/t Au from 62m incl. 1m at 31.7g/t Au from 62m, 4m at 4.10g/t Au from 93m incl. 1m at 13.2g/t Au from 94m and 9m at 3.03g/t Au from 113m incl. 1m at 21.2g/t Au from 116m (AMRC094)
 - 17m at 1.43g/t Au from 51m, 16m at 0.96g/t Au from 88m, 7m at 4.27g/t Au from 112m incl. 1m at 22.5g/t Au from 113m (AMRC084)
 - 6m at 3.98g/t Au from 73m incl. 1m at 14.8g/t Au from 73m (AMRC093)
- These latest in-fill assay results continue to confirm consistent broad zones of high-grade gold mineralisation. The results average 56-gram x metres across the 20 drill-holes in this ASX Announcement.
- The completed program in-filled an 80-metre by 120-metre area of the Stage 1 open pit as contemplated in the Mandilla Pre-Feasibility Study (**Mandilla PFS**) announced on 25 June 2025, at sufficient drill density to potentially underpin Measured Resource classification. Assay results for 82 holes (9,108m) have now been received with results from the final 17 holes (2,013m) pending.

Theia West Exploration Target

- Assay results for a single line of six RC holes (1,332m) drilled immediately west of Theia have been returned. The holes were designed to test an undrilled structure oriented sub-parallel in the sediment package to the west of the Theia deposit. Best results include:
 - 1m at 24.8g/t Au from 94m (AMRC132); and
 - 8m at 1.06g/t Au from 199m and 3m at 3.97g/t Au from 213m incl. 1m at 10.4g/t Au from 213m (AMRC133).
- This line of drilling is very encouraging, intersecting an interpreted steeply-dipping gold mineralised structure in two holes which may potentially represent a controlling structure to the Mandilla mineralisation.
- This structure was targeted following a study of the foliations from diamond core within the Emu Rocks Granite, which was interpreted to imply a potential steeply-dipping structure to the west of Theia which is coincident with a weakly depressed linear magnetic feature.
- As soon as the extensional RC drilling program currently being undertaken at the Kamperman Deposit within the Feysville Gold Project is completed, the rig will be re-located to Mandilla to further test this newly discovered structure.

Astral Resources' Managing Director Marc Ducler said:

"Once again, in-fill drilling has reinforced the robust, high-grade nature of the Theia Stage 1 open pit.

"When you consider the wide high-grade in-fill results reported in this release – intercepts such as 19m at 3.53g/t Au, 18m at 6.67g/t Au, 39m at 2.98g/t Au, 25m at 3.20g/t Au, 27m at 3.23g/t Au, 33m at 2.29g/t Au and 19m at 3.77g/t Au – all within a starter pit with a strip ratio of less than 4:1, there is no doubt in our minds that Theia will be an incredible money-maker for Astral shareholders! Across these 20 holes, we have again averaged over 50-gram x metres of gold (56 gxm), further reinforcing our confidence in the windfall which the Theia starter pit can be.

"We are also very encouraged by the early drill results from Theia West. This was a conceptual target interpreted from detailed structural analysis of existing Theia drill core. These observations and interpretation of a coincident depressed linear magnetic feature inferred a potential controlling structure, sub-parallel and to the west of Theia.

"Intersecting two very high-grade zones of mineralisation in an undrilled area of a sedimentary package that was not previously considered prospective is very exciting and bodes well for future exploration success at Mandilla.

"We currently have two drill programs running.

"Firstly, at Theia, a diamond program is being undertaken testing the high-grade 230 shear (drilling completed) and, more recently, testing a potential parallel mineralised structure on the eastern flank. Both of these structural tests appear to have been successful, with assay results expected in early December.

"The second drill program is an extensional RC program currently underway at Kamperman. Once this is complete the RC rig will be relocated to Mandilla to continue to test the new Theia West target.

"Meanwhile, Astral continues to advance the Mandilla DFS which is due for completion in the June Quarter of 2026."

Astral Resources NL (ASX: AAR) (**Astral** or the **Company**) is pleased to report assay results for a further 20 holes (2,080m) of the recently completed 99-hole (11,121m) 12m by 12m in-fill drilling program at the flagship Theia Deposit, part of the 100%-owned Mandilla Gold Project (**Mandilla**), located approximately 70km south of Kalgoorlie in Western Australia (Figure 1).

With this announcement, assay results have now been received for 82 holes for 9,108 metres. Also reported in this announcement are assay results from six RC holes (1,332m) drilled to test a potential controlling structure sub-parallel to and immediately west of Theia.

This announcement also reports assay results from five RC holes (618m), part of a broader 56-hole (5,900m) exploration program which is yet to be completed and is designed to in-fill the area south of Theia and north of Iris to a 40-metre by 40-metre drill density.

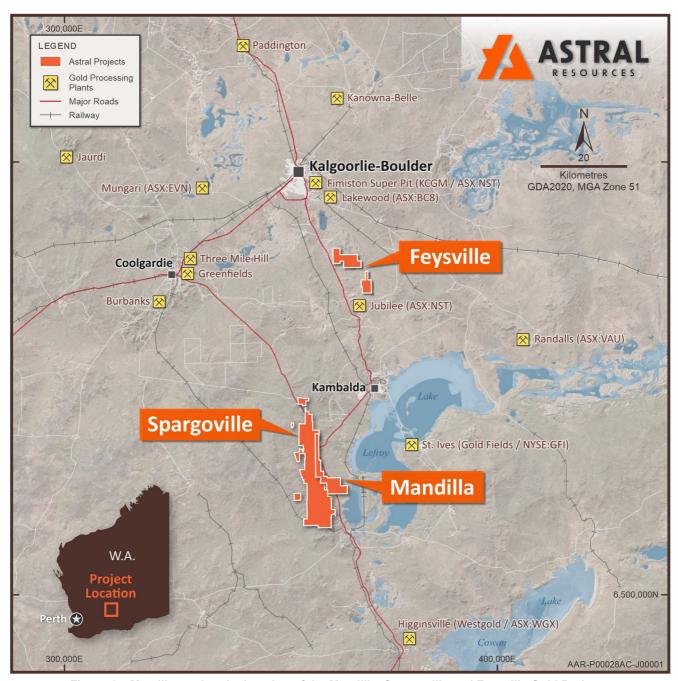


Figure 1 – Map illustrating the location of the Mandilla, Spargoville and Feysville Gold Projects.

THEIA IN-FILL RC DRILL RESULTS

The Theia Deposit hosts an MRE of 33.3Mt at 1.1g/t Au for 1.2Moz of contained gold¹.

In the production case outlined in the Mandilla PFS, the Theia deposit contributes 1.1Moz or 75% of the 1.48Moz total. As a result, the Theia deposit is crucial to the overall success of the Mandilla Gold Project.

The 99-hole (11,121m) program of in-fill drilling, which has now been completed, aimed to increase the drill density over a panel of the Stage 1 Theia Pit, encompassing an area of 80 metres by 120 metres in size and to a depth of 150 metres, to 12-metre by 12-metre drill density.

Assay results for the first 17 holes (2,030m) were reported on 10 September 2025, a further 29 holes (3,233m) were reported on 15 October 2025, and a further 16 holes (1,765m) were reported on 23 October 2025.

This announcement reports results for a further 20 holes (2,080m), bringing results received to date to 82 holes (9,108m) or approximately 82% of the program.

A map showing the drill-hole collar locations on local area geology for the Theia in-fill is presented in Figure 2.

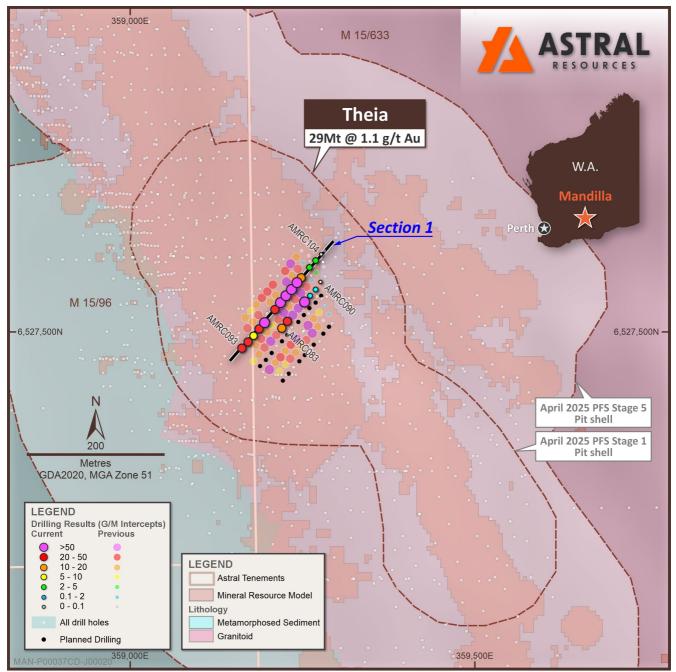


Figure 2 - Map of Theia illustrating drill collar locations of recent and historical drilling on local area geology.

Best results include:

- 17m at 1.43g/t Au from 51m, 16m at 0.96g/t Au from 88m and 7m at 4.27g/t Au from 112m incl. 1m at 22.5g/t Au from 113m in hole AMRC084;
- 25m at 3.20g/t Au from 44m incl. 1m at 17.0g/t Au from 52m and 1m at 43.6g/t Au from 64m in hole AMRC087;
- 10m at 0.98g/t Au from 99m in hole AMRC091;
- 6m at 7.77g/t Au from 86m incl. 1m at 38.5g/t Au from 86m and a further 13m at 1.96g/t Au from 103m in hole AMRC092;
- 6m at 3.98g/t Au from 73m incl. 1m at 14.8g/t Au from 73m in hole AMRC093;

- 8m at 5.41g/t Au from 62m incl. 1m at 31.7g/t Au from 62m, 6m at 1.30g/t Au from 80m, 4m at 4.10g/t Au from 93m incl. 1m at 13.2g/t Au from 94m and a further 9m at 3.03g/t Au from 113m incl. 1m at 21.2g/t Au from 116m in hole AMRC094;
- 8m at 1.22g/t Au from 68m, 19m at 3.77g/t Au from 89m incl. 1m at 31.6g/t Au from 92m and a further 11m at 1.84g/t Au from 114m in hole AMRC095;
- 11m at 1.03g/t Au from 60m and 34m at 0.81g/t Au from 82m in hole AMRC096;
- 22m at 1.65g/t Au from 44m, 19m at 3.53g/t Au from 73m incl. 1m at 53.2g/t Au from 81m and a further 18m at 6.67g/t Au from 100m incl. 1m at 97.5g/t Au from 105m in hole AMRC097;
- 21m at 1.16g/t Au from 41m and 39m at 2.98g/t Au from 66m incl. 1m at 10.4g/t Au from 78m, 1m at 15.5g/t Au from 83m, 1m at 13.2g/t Au from 95m and 1m at 21.1g/t Au from 102m in hole AMRC098;
- 27m at 3.23g/t Au from 37m incl. 1m at 35.3g/t Au from 51m and a further 4m at 1.39g/t Au from 69m and 1m at 7.62g/t Au from 83m in hole AMRC099;
- 33m at 2.29g/t Au from 34m incl. 1m at 12.0g/t Au from 38m and 1m at 11.5g/t Au from 64m in hole AMRC100; and
- 18m at 0.72g/t Au from 30m in hole AMRC101.

A cross-section (Section 1) that encompasses drill-holes AMRC093 through to AMRC104 is set out in Figure 3 (see Figure 2 for section location). This cross-section highlights the latest drilling, which was designed to in-fill a specific part of the Resource to a 12-metre by 12-metre spacing to the 200mRL.

The 2025 MRE, along with gram-metre intercepts for each hole, are also shown.

The final pit design (Stage 5) is located well outside the field of view of this cross-section.

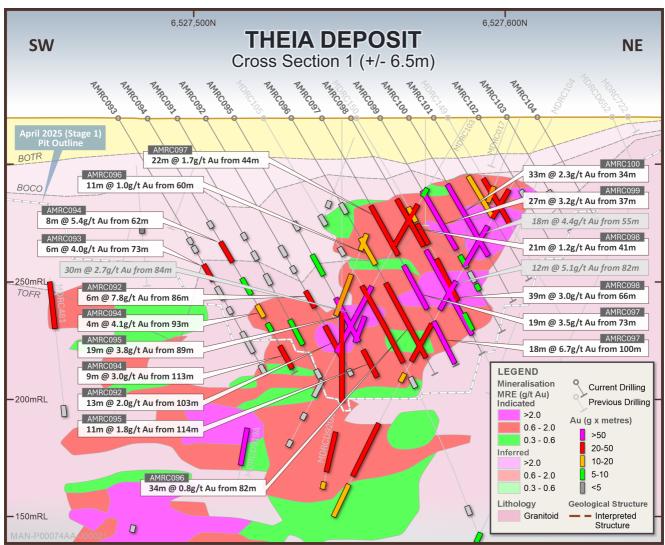


Figure 3 – Cross-section through Theia illustrating drill trace, assay results and geological interpretation (see Figure 3 for section location).

A strong correlation of the assays results with the MRE model within the Stage 1 Mandilla PFS pit has been a feature of the in-fill program to date.

As illustrated in the cross section, this has continued with these latest results.

THEIA WEST EXPLORATION TARGET RESULTS

The Theia West exploration target is a hypothetical target derived from a structural review undertaken on diamond drill core from the Theia Deposit.

The review hypothesised that a controlling structure sub-parallel to the west of Theia, in what was previously considered a low-prospectivity package of sedimentary rocks, may be responsible for the gradual steepening of the foliations observed in the drill core. This steepening was observed to persist through the granite/sediment contact.

This observation combined with a coincident depressed linear magnetic feature, over two kilometres in length, led to the planning of two lines of six RC holes (2,570m) with holes spaced at 120 metres to an average depth of 215 metres. At this stage, only one of these drill lines has been completed.

Pleasingly, high-grade gold mineralisation was intersected in hole AMRC132 with **1m at 24.8g/t Au** from 94m and in hole AMRC133 a further 120 metres to the south-west with **8m at 1.06g/t Au** from 199m and **3m at 3.97g/t Au** from 213m, including **1m at 10.4g/t Au** from 213m.

Given the strike length of the linear magnetic feature, Theia West has the potential to be a significant exploration target for Astral.

As a priority, the 120-metre drill spacing of the first drill line will be in-filled and, if successful, strike extension tests to the north and south will immediately follow.

A map showing the drill-hole collar locations on regional magnetics for the Theia West exploration target is presented in Figure 4.

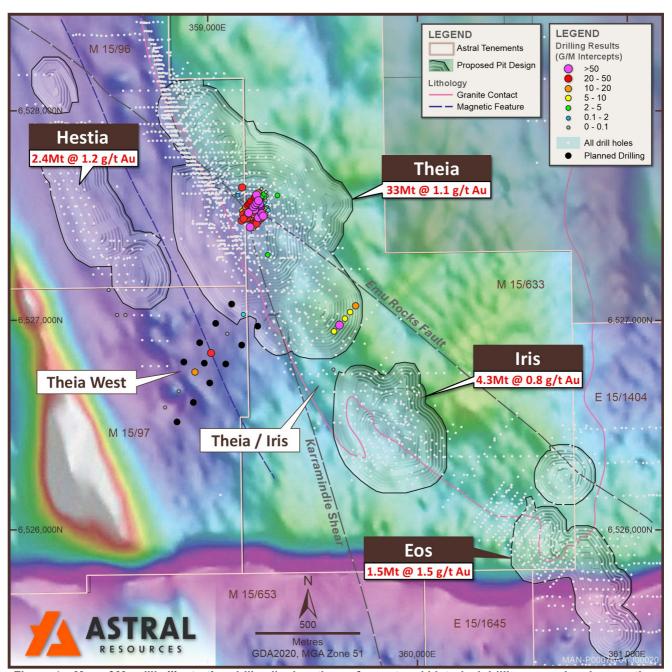


Figure 4 – Map of Mandilla illustrating drill collar locations of recent and historical drilling on regional magnetics.

THEIA-IRIS BRIDGE EXTENSIONAL DRILLING RESULTS

A 56-hole/ 5,900-metre RC program has been planned to in-fill the area south of Theia and north of Iris. To date, five holes for 618 metres have been completed.

This area has previously returned shallow gold mineralisation; however, with section spacing currently at 120 metres, drilling was planned to in-fill this to 40-metre by 40-metre spacing.

This is a low priority program, undertaken to ensure that RC rig productivity was maintained throughout the Theia in-fill program.

Notwithstanding this, the assay results received from the first line of drilling have been encouraging, with best results including:

- 6m at 12.9g/t Au from 51m including 1m at 70.4g/t Au from 55m in hole AMRC128;
- 10m at 1.70g/t Au from 24m in hole AMRC125;
- 5m at 1.96g/t Au from 96m in hole AMRC127; and
- 7m at 0.94g/t Au from 118m in hole AMRC128.

This program will be progressed in-between higher priority extensional and in-fill programs.

A map showing the drill-hole collar locations on regional magnetics for the Theia-Iris bridge extensional drilling is also presented in Figure 4 above.

HESTIA EXTENSIONAL/ STERILISATION DRILLING RESULTS

Three RC holes for 688 metres were drilled south of Hestia to follow up on moderate gold mineralisation reported in sterilisation drilling conducted following the acquisition of the Spargoville tenements. These results were announced to the ASX on 3 September 2025.

The three holes were designed to extend two lines of previous drilling further to the west as down-dip tests. No significant mineralisation was encountered.

A map showing the drill-hole collar locations on regional magnetics for the Hestia extensional drilling is also presented in Figure 4 above.

EXPLORATION UPDATE

Mandilla Gold Project

Diamond drilling is ongoing at Theia with a 3,000m program underway. To date, four holes have been completed for 997 metres.

Part of the DD program was designed to test an interpreted high-grade structure (the 230 shear) within the Theia Deposit. Three holes (685m) were drilled into this structure, each of them successfully intersecting the shear, which is characterised by detextured and variably foliated zones with strong chlorite alteration and strong sulphide mineralisation, consistent with previous drill intersections. The core has been processed and dispatched for analysis with assays pending.

A second component to the DD program was to test for a potential parallel mineralised structure on the eastern flank of Theia. To date, one hole has been completed to a depth of 402 metres with visual observations confirming quartz veining and sulphides, typical of the dominant style of mineralisation at Theia. The core is currently being processed and will be dispatched for analysis in the coming days.

A further 11 RC holes (2,420m) have been planned at Theia West to in-fill the 120-metre spacing between RC holes AMRC132 and AMRC133, as well as testing along strike. This is expected to commence immediately following completion of the Kamperman drill program.

Feysville Gold Project

An RC drill program has commenced at Feysville, with a 17-hole (3,000m) program underway at the Kamperman Deposit. The program comprises several different in-fill and extensional tests including delineation of the high-grade mineralisation in the footwall of the southern Kamperman lode and potential high-grade parallel vein lodes to the west. To date, 15 holes (2,578m) have been completed.

Given the prospectivity of the new Theia West target, the proposed 30-hole (4,000-m) regional program at Feysville has been postponed with the RC rig to be relocated to Mandilla once the Kamperman program has been completed.

ABOUT THE MANDILLA GOLD PROJECT

The Mandilla Gold Project is situated in the northern Widgiemooltha greenstone belt, approximately 70 kilometres south of the significant mining centre of Kalgoorlie, Western Australia.

The area hosts world-class deposits such as the Golden Mile Super Pit in Kalgoorlie, owned by Northern Star Resources Limited (ASX: NST), and the St Ives Gold Mine approximately 20 kilometres to the south-east of Kambalda, owned by Gold Fields Limited, as well as the Beta Hunt Gold Mine immediately to the south of Kambalda, owned by Westgold Resources Limited (ASX: WGX).

Mandilla is covered by existing Mining Leases which are not subject to any third-party royalties other than the standard WA Government gold royalty.

The Mandilla Gold Project includes the Theia, Iris, Eos and Hestia deposits.

Gold mineralisation at Theia and Iris is comprised of structurally controlled quartz vein arrays and hydrothermal alteration close to the western margin of the Emu Rocks Granite and locally in contact with sediments of the Spargoville Group.

Significant NW to WNW-trending structures along the western flank of the project are interpreted from aeromagnetic data to cut through the granitic intrusion. These structures are considered important in localising gold mineralisation at Theia, which has a mineralised footprint extending over a strike length of more than 1.6km.

A second sub-parallel structure hosts gold mineralisation at the Iris deposit. The mineralised footprint at Iris extends over a strike length of approximately 600 metres, combining with Theia to form a mineralised zone extending over a strike length of more than 2.2 kilometres.

At Eos, located further to the south-east, a relatively shallow high-grade mineralised palaeochannel deposit has been identified which extends over a length of approximately 600 metres. A primary gold source is also present, with further drilling required to determine both the nature and structural controls on mineralisation and its extent.

Mineralisation delineated over approximately 800 metres of strike at the Hestia deposit, located approximately 500 metres west of Theia, is associated with a shear zone adjacent to a mafic/sediment contact, interpreted to be part of the major north-south trending group of thrust faults known as the Spargoville Shear Corridor.

Locally, the Spargoville Shear Corridor hosts the historically mined Wattle Dam gold mine (266koz at 10.6g/t Au) and, further to the north, the Ghost Crab/Mt Marion mine (>1Moz).

The mineralisation at Hestia, which is present in a different geological setting to the bedrock mineralisation at Theia and Iris, remains open both down-dip and along strike.

In April 2025, Astral announced a Mineral Resource Estimate (MRE) of 42Mt at 1.1 g/t Au for 1.43Moz of contained gold¹ for the Mandilla Gold Project.

Metallurgical testing undertaken on each of the main deposits at Mandilla – Theia, Iris, Eos and Hestia – has demonstrated high gravity recoverable gold, fast leach kinetics and exceptional overall gold recoveries with low reagent consumptions and coarse grinding^{2,3}.

In June 2025, Astral announced the results of a Preliminary Feasibility Study for Mandilla (Mandilla PFS), which also included the mining of gold deposits at Feysville. It was based on a standalone project comprising seven open pit mines feeding a 2.75Mtpa processing facility, producing 95koz per year for the first 12 years. The base case gold price assumption for the Mandilla PFS was A\$4,250/oz and demonstrated a Net Present Value (8% discount rate) (NPV₈) of \$1.4 billion⁴. At a A\$6,250 gold price, the NPV₈ increases to \$2.9 billion⁶.

Four open-pit mines at Mandilla were included in the Mandilla PFS (Theia, Hestia, Eos and Iris), and three open-pits mines at Feysville (Kamperman, Think Big and Rogan Josh).

A map of Mandilla illustrating both the local area geology and mineral deposits is set out in Figure 5.

¹ - Mandilla JORC 2012 Mineral Resource Estimate: 31Mt at 1.1g/t Au for 1,034koz Indicated Mineral Resources and 11Mt at 1.1g/t Au for 392koz Inferred Mineral Resources (refer to Astral ASX announcement dated 3 April 2025)

² ASX Announcement 6 June 2022 "Outstanding metallurgical test-work results continue to de-risk Mandilla."

³ ASX Announcement 17 September 2024 "Outstanding metallurgical results further de-risk Mandilla."

⁴ Mandilla Project Pre-Feasibility Study – Maiden Ore Reserve (refer to Astral ASX Announcement dated 25 June 2025)

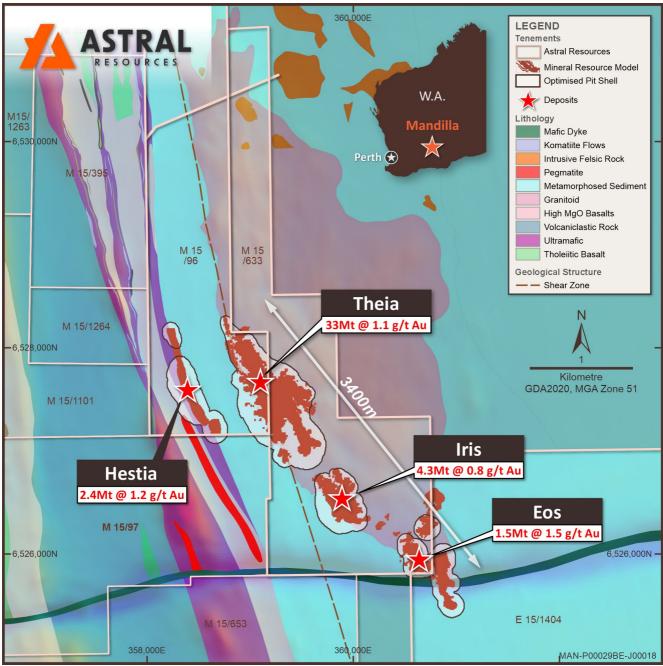


Figure 5 – Map of Mandilla Gold Project on local area geology.

CONSOLIDATED MINERAL RESOURCE & ORE RESERVE ESTIMATES

Group Ore Reserve Estimates

The Group's consolidated JORC 2012 Ore Reserve Estimate as at the date of this report is detailed in Table 1 below.

Table 1 - Group Ore Reserves

		Probable			Total Ore Reserve	
Project	Tonnes	Grade	Metal	Tonnes	Grade	Metal
	(Mt)	(Au g/t)	(oz Au)	(Mt)	(Au g/t)	(oz Au)
Mandilla ⁵	34.3	0.9	1,000,000	34.3	0.9	1,000,000
Feysville ⁵	2.3	1.2	88,000	2.3	1.2	88,000
Total	36.6	0.9	1,082,000	36.6	0.9	1,082,000

Ore Reserves are a subset of Mineral Resources.

Ore Reserves are estimated using a gold price of AUD \$3,000 per ounce.

The preceding statement of Ore Reserves conforms to the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code) 2012 Edition. All tonnages reported are dry metric tonnes. Minor discrepancies may occur due to rounding to appropriate significant figures.

The Ore Reserves for Mandilla are reported at a cut-off grade of 0.30 g/t Au lower cut-off and Feysville are reported at a cut-off grade of 0.40 g/t Au lower cut-off.

Group Mineral Resource Estimates

The Group's consolidated JORC 2012 Mineral Resource Estimate as at the date of this report is detailed in Table 2 below.

Table 2 - Group Mineral Resources

		Indicated			Inferred		Total	Mineral Res	ource
Project	Tonnes	Grade	Metal	Tonnes	Grade	Metal	Tonnes	Grade	Metal
	(Mt)	(Au g/t)	(oz Au)	(Mt)	(Au g/t)	(oz Au)	(Mt)	(Au g/t)	(oz Au)
Mandilla ⁶	31	1.1	1,034,000	11	1.1	392,000	42	1.1	1,426,000
Feysville ⁷	4	1.3	144,000	1	1.1	53,000	5	1.2	196,000
Spargoville ⁸	2	1.3	81,000	1	1.6	58,000	3	1.4	139,000
Total	36	1.1	1,259,000	14	1.2	502,000	50	1.1	1,761,000

The preceding statement of Mineral Resources conforms to the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code) 2012 Edition. All tonnages reported are dry metric tonnes. Minor discrepancies may occur due to rounding to appropriate significant figures

The Mineral Resources for Mandilla, Feysville and Spargoville are reported at a cut-off grade of 0.39 g/t Au lower cut-off and is constrained within pit shells derived using a gold price of AUD \$3,500 per ounce for Mandilla and Spargoville and AUD\$2,500 per ounce for Feysville.

⁵ - Mandilla Project Pre-Feasibility Study – Maiden Ore Reserve (refer to Astral ASX Announcement dated 25 June 2025)

^{6 -} Mandilla JORC 2012 Mineral Resource Estimate: 31Mt at 1.1g/t Au for 1,034koz Indicated Mineral Resources and 11Mt at 1.1g/t Au for 392koz Inferred mineral Resources (refer to Astral ASX announcement dated 3 April 2025)

^{7 -} Feysville JORC 2012 Mineral Resource Estimate: 4Mt at 1.3g/t Au for 144koz Indicated Mineral Resources and 1Mt at 1.1g/t Au for 53koz Inferred Mineral Resources (refer to Astral ASX announcement dated 1 November 2024).

^{8 -} Spargoville JORC 2012 Mineral Resource Estimate: 2Mt at 1.3g/t Au for 81koz Indicated Mineral Resources and 1Mt at 1.6g/t Au for 58koz Inferred Mineral Resources (refer to Astral ASX announcement dated 7 May 2025).

APPROVED FOR RELEASE

This announcement has been authorised for release by the Managing Director.

For further information:

Investors
Marc Ducler
Managing Director

Astral Resources +61 8 9382 8822 Media

Nicholas Read Read Corporate +61 419 929 046

Competent Person's Statements

Mandilla

The information in this announcement that relates to exploration targets and exploration results for the Mandilla Gold Project is based on, and fairly represents, information and supporting documentation compiled by Ms Julie Reid, who is a full-time employee of Astral Resources NL. Ms Reid is a Competent Person and a Member of The Australasian Institute of Mining and Metallurgy. Ms Reid has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ms Reid consents to the inclusion in this report of the material based on this information, in the form and context in which it appears.

The information in this announcement that relates to the Ore Reserves for the Mandilla Gold Project were announced in the Company's ASX announcement dated 25 June 2025 titled "Mandilla Project Pre-Feasibility Study — Maiden Ore Reserve". The Company confirms that it is not aware of any new information or data that materially affects the information included in the ASX announcement dated 25 June 2025 and all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms the form and context in which Competent Persons' findings are presented have not materially changed from previous market announcements. The reports are available to view on the ASX website and on the Company's website at www.astralresources.com.au.

The information in this announcement that relates to the Mineral Resources for the Mandilla Gold Project reported in this announcement were announced in the Company's ASX announcement dated 3 April 2025 titled "Group Mineral Resource Increases to 1.62 million ounces with Indicated Resources at the Mandilla Gold Project Exceeding One Million Ounces". The Company confirms that it is not aware of any new information or data that materially affects the information included in the ASX announcement dated 3 April 2025 and all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms the form and context in which Competent Persons' findings are presented have not materially changed from previous market announcements. The reports are available to view on the ASX website and on the Company's website at www.astralresources.com.au.

The information in this announcement that relates to metallurgical test work for the Mandilla Gold Project reported in this announcement were announced in the Company's ASX announcements dated 28 January 2021, 6 June 2022, 17 September 2024 and 5 March 2025. The Company confirms that it is not aware of any new information or data that materially affects the information included in the ASX announcements dated 28 January 2021, 6 June 2022, 17 September 2024 and 5 March 2025 and all material assumptions and technical parameters in the relevant market announcement continue to apply and have not materially changed. The Company confirms the form and context in which Competent Persons' findings are presented have not materially changed from previous market announcements. The reports are available to view on the ASX website and on the Company's website at www.astralresources.com.au.

Feysville

The information in this announcement that relates to exploration targets and exploration results for the Feysville Gold Project is based on, and fairly represents, information and supporting documentation compiled by Ms Julie Reid, who is a full-time employee of Astral Resources NL. Ms Reid is a Competent Person and a Member of The Australasian Institute of Mining and Metallurgy. Ms Reid has sufficient experience that is relevant to the style of

mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ms Reid consents to the inclusion in this report of the material based on this information, in the form and context in which it appears.

The information in this announcement that relates to the Ore Reserves for the Feysville Gold Project were announced in the Company's ASX announcement dated 25 June 2025 titled "Mandilla Project Pre-Feasibility Study — Maiden Ore Reserve". The Company confirms that it is not aware of any new information or data that materially affects the information included in the ASX announcement dated 25 June 2025 and all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms the form and context in which Competent Persons' findings are presented have not materially changed from previous market announcements. The reports are available to view on the ASX website and on the Company's website at www.astralresources.com.au.

The information in this announcement that relates to the Mineral Resources for the Feysville Gold Project reported in this announcement were announced in the Company's ASX announcement dated 1 November 2024 titled "Astral's Group Gold Mineral Resource Increases to 1.46Moz with Updated Feysville MRE". The Company confirms that it is not aware of any new information or data that materially affects the information included in the ASX announcement dated 1 November 2024 and all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms the form and context in which Competent Persons' findings are presented have not materially changed from previous market announcements. The reports are available to view on the ASX website and on the Company's website at www.astralresources.com.au.

The information in this announcement that relates to metallurgical test work for the Feysville Gold Project reported in this announcement were announced in the Company's ASX announcement dated 22 May 2025. The Company confirms that it is not aware of any new information or data that materially affects the information included in the ASX announcement dated 22 May 2025 and all material assumptions and technical parameters in the relevant market announcement continue to apply and have not materially changed. The Company confirms the form and context in which Competent Persons' findings are presented have not materially changed from previous market announcements. The reports are available to view on the ASX website and on the Company's website at www.astralresources.com.au.

Spargoville

The information in this announcement that relates to the Mineral Resources for the Spargoville Project were announced in the Company's ASX announcement dated 7 May 2025 titled "Astral's Group Gold Mineral Resource Increases to 1.76Moz with the inclusion of Spargoville Gold Project". The Company confirms that it is not aware of any new information or data that materially affects the information included in the ASX announcement dated 7 May 2025 and all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms the form and context in which Competent Persons' findings are presented have not materially changed from previous market announcements. The reports are available to view on the ASX website and on the Company's website at www.astralresources.com.au.

Previously Reported Results

Exploration Results

The information in this announcement that relates to Exploration Results is extracted from the ASX Announcements (Original Announcements), which have been previously announced on the Company's ASX Announcements Platform and the Company's website at www.astralresources.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the Original Announcements and that all material assumptions and technical parameters underpinning the estimates in the Original Announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original announcement.

Pre-Feasibility Study

The information in this announcement that relates to the production target for the Mandilla Gold Project was reported by Astral in accordance with ASX Listing Rules and the JORC Code (2012 edition) in the announcement "Mandilla Project Pre-Feasibility Study – Maiden Ore Reserve" released to the ASX on 25 June 2025. A copy of that announcement is available at www.asx.com.au. Astral confirms it is not aware of any new information or data that materially affects the information included in that market announcement and that all material assumptions and technical parameters underpinning the production target, and the related forecast financial information derived from the production target in that market announcement continue to apply and have not materially changed. Astral confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from that market announcement.

Forward Looking Statements

This announcement may contain certain "forward looking statements" which may not have been based solely on historical facts but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have a reasonable basis.

However, forward looking statements are subject to risks, uncertainties, assumptions, and other factors which could cause actual results to differ materially from future results expressed, projected or implied by such forward looking statements. Such risks include, but are not limited to exploration risk, resource risk, metal price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks in the countries and states in which we operate, and government regulation and judicial outcomes.

For more detailed discussion of such risks and other factors, see the Company's other filings. Readers should not place undue reliance on forward looking information. The Company does not undertake any obligation to release publicly any revisions to any "forward looking statement" to reflect events or circumstances after the date of this announcement, or to reflect the occurrence of unanticipated events, except as may be required under applicable securities laws.

Appendix 1 – Drill Hole Details

Mandilla Gold Project

Table 3 – Drill hole data

Hole ID	Type	Hole Depth	GDA (North)	GDA (East)	GDA RL	Dip	MGA Azmith
AMRC083	RC	(m) 125	6,527,504	359,219	319.5	-60	40
AMRC084	RC	125	6,527,514	359,227	319.5	-60	40
AMRC087	RC	115	6,527,542	359,252	319.6	-60	40
AMRC088	RC	105	6,527,551	359,260	319.6	-60	40
AMRC089	RC	95	6,527,560	359,268	319.6	-60	40
AMRC090	RC	85	6,527,571	359,275	319.7	-60	40
AMRC091	RC	125	6,527,493	359,178	319.5	-60	40
AMRC092	RC	125	6,527,503	359,186	319.6	-60	40
AMRC093	RC	125	6,527,475	359,161	319.5	-60	40
AMRC094	RC	125	6,527,484	359,170	319.5	-60	40
AMRC095	RC	125	6,527,512	359,194	319.6	-60	40
AMRC096	RC	125	6,527,531	359,209	319.7	-60	40
AMRC097	RC	120	6,527,541	359,217	319.7	-60	40
AMRC098	RC	115	6,527,551	359,225	319.8	-60	40
AMRC099	RC	105	6,527,560	359,233	319.8	-60	40
AMRC100	RC	90	6,527,570	359,241	319.9	-60	40
AMRC101	RC	80	6,527,577	359,247	319.9	-60	40
AMRC102	RC	65	6,527,592	359,259	319.9	-60	40
AMRC103	RC	55	6,527,602	359,268	320.0	-60	40
AMRC104	RC	50	6,527,611	359,276	320.0	-60	40
AMRC122	RC	200	6,527,024	358,607	326.0	-60	90
AMRC123	RC	240	6,527,024	358,567	326.0	-60	90
AMRC124	RC	248	6,527,144	358,527	325.0	-60	90
AMRC125	RC	90	6,527,068	359,704	317.0	-60	40
AMRC126	RC	120	6,527,038	359,678	317.0	-60	40
AMRC127	RC	132	6,527,007	359,653	317.0	-60	40
AMRC128	RC	132	6,526,976	359,627	318.0	-60	40
AMRC129	RC	144	6,526,946	359,601	318.0	-60	40
AMRC130	RC	222	6,527,027	359,169	319.2	-55	40
AMRC131	RC	222	6,526,935	359,092	319.7	-55	40
AMRC132	RC	220	6,526,843	359,015	320.2	-55	40
AMRC133	RC	230	6,526,752	358,938	320.9	-55	40
AMRC134	RC	218	6,526,660	358,861	323.2	-55	40
AMRC135	RC	220	6,526,583	358,796	323.1	-55	40

Table 4 – Drilling Intersections

	I abl	e 4 – Drilling In	tersections		Cuada a/A
Hole ID	Location	From (m)	To (m)	Length (m)	Grade g/t Au
AMRC083	Theia	43	44	1	0.69
		66	68	2	0.77
		78	103	25	0.54
		110	124	14	0.70
AMRC084	Theia	42	43	1	1.08
		51	68	17	1.43
		72	80	8	0.55
		88	104	16	0.96
		112	119	7	4.27
		Include	s 1.0m at 22.5	g/t from 113	metres
AMRC087	Theia	44	69	25	3.20
				0g/t from 52	
			es 1.0m at 43.	6g/t from 64	metres
AMRC088	Theia	33	34	1	0.85
		44	49	5	0.34
AMRC089	Theia	44	45	1	0.73
AMRC090	Theia		N		
AMRC091	Theia	57	58	1	0.34
		66	68	2	0.73
		77	80	3	0.51
		99	109	10	0.98
		123	125	2	0.54
AMRC092	Theia	64	67	3	0.74
		74	75	1	1.98
		86	92	6	7.77
				5g/t from 86 i	
		103	116	13	1.96
		124	125	1	4.00
AMRC093	Theia	60	61	1	0.44
		64	65	1	0.47
		73	79	6	3.98
				8g/t from 73 i	
		84	88	4	0.52
		94	95	1	0.68
		106	114	8	0.36
		122	124	2	0.60
AMRC094	Theia	52	53	1	0.40
		62	70	8	5.41
		Include	es 1.0m at 31.	7g/t from 62	metres

		00	0.0		4.20
		80	86	6	1.30
		93 Include	97 es 1.0m at 13.	4 2a/t from 94	4.10
		102	104	2	2.74
		113	122	9	3.03
			s 1.0m at 21.2	•	
AMRC095	Theia	52	54	2	1.64
		68	76	8	1.22
		89	108	19	3.77
		Include	es 1.0m at 31.	6g/t from 92	metres
		114	125	11	1.84
AMRC096	Theia	43	46	3	0.71
		60	71	11	1.03
		82	116	34	0.81
AMRC097	Theia	44	66	22	1.65
		73	92	19	3.53
		Include	es 1.0m at 53.	2g/t from 81	metres
		100	118	18	6.67
		Include	s 1.0m at 97.5	g/t from 105	metres
AMRC098	Theia	41	62	21	1.16
		66	105	39	2.98
		Include	es 1.0m at 10.	4g/t from 78	metres
		Include	es 1.0m at 15.	5g/t from 83	metres
		Include	es 1.0m at 13.	2g/t from 95	metres
		Include	s 1.0m at 21.1	lg/t from 102	metres
AMRC099	Theia	37	64	27	3.23
		Include	es 1.0m at 35.	3g/t from 51	metres
		69	73	4	1.39
		77	80	3	0.44
		83	84	1	7.62
AMRC100	Theia	34	67	33	2.29
			es 1.0m at 12.		
		Include	es 1.0m at 11.		
AMRC101	Theia	30	48	18	0.72
AMRC102	Theia	37	43	6	0.80
AMRC103	Theia	37	40	3	1.12
AMRC104	Theia	NSI			
AMRC122	Hestia South	NSI			
AMRC123	Hestia South	NSI			
AMRC124	Hestia South	NSI			
AMRC125	Theia East	24	34	10	1.70

AMRC126	Theia East	108	111	3	2.25	
AMRC127	Theia East	39	40	1	0.75	
		89	93	4	0.64	
		96	101	5	1.96	
		104	105	1	1.60	
AMRC128	Theia East	51	57	6	12.93	
		Include	es 1.0m at 70.	4g/t from 55	metres	
		60	65	5	0.29	
		111	113	2	2.58	
AMRC129	Theia East	118	125	7	0.94	
AMRC130	Theia West	58	59	1	0.34	
		155	156	1	0.13	
		220	221	1	0.21	
AMRC131	Theia West		N	SI		
AMRC132	Theia West	83	84	1	0.43	
		94	95	1	24.83	
AMRC133	Theia West	137	139	2	0.18	
		199	207	8	1.06	
		213	216	3	3.97	
		Include	s 1.0m at 10.4	4g/t from 213	metres	
		223	225	2	0.81	
AMRC134	Theia West	NSI				
AMRC135	Theia West	NSI				

Appendix 2 – JORC 2012 Table 1

Mandilla Gold Project

Section 1 – Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	The project has been sampled using industry standard drilling techniques including diamond drilling (DD), and reverse circulation (RC) drilling and air-core (AC) drilling. The sampling described in this release has been carried out on the 2019, 2020, 2021, 2022, 2023, 2024 and 2025 DD, RC and AC drilling. All DD holes were drilled and sampled. The DD core is orientated, logged geologically and marked up for assay at a maximum sample interval of 1.2 metre constrained by geological or alteration boundaries. Drill core is cut in half by a diamond saw and half HQ or NQ2 core samples submitted for assay analysis. DD core was marked up by AAR geologists. The core was cut on site with AAR's CoreWise saw. All samples were assayed by MinAnalytical/ALS/Intertek with company standards blanks and duplicates inserted at 25 metre intervals. All RC holes were drilled and sampled. The samples are collected at 1m intervals via a cyclone and splitter system and logged geologically. A four-and-a-half-inch RC hammer bit was used ensuring plus 20kg of sample collected per metre. All RC samples were collected in bulka bags in the AAR compound and trucked weekly to MinAnalytical/ALS in Kalgoorlie via Hannans Transport. All samples transported were submitted for analysis. Transported material of varying thickness throughout project was generally selectively sampled only where a paleochannel was evident. All samples were assayed by MinAnalytical/ALS with company standards blanks and duplicates inserted at 25 metre intervals. AC- 1m samples were collected from individual 1m sample piles. Sample weights were between 2 and 3 kg Historical - The historic data has been gathered by a number of owners since the 1980s. There is a lack of detailed information available pertaining to the equipment used, sample techniques, sample sizes, sample preparation and assaying methods used to generate these data sets. Down hole surveying of the drilling where documented has been undertaken using Eastman single shot cameras (in some of the hist
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	Diamond drilling was cored using HQ and NQ2 diamond bits All RC holes were drilled using face sampling hammer reverse circulation technique with a four-and-a-half inch bit

		All AC holes were drilled to blade refusal.		
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	DD: Diamond drilling collects uncontaminated fresh core samples which are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling. RC: Definitive studies on RC recovery at Mandilla have not been undertaken systematically, however the combined weight of the sample reject and the sample collected indicated recoveries in the high nineties percentage range. Poor recoveries are recorded in the relevant sample sheet. No assessment has been made of the relationship between recovery and grade. Except for the top of the hole, while collaring there is no evidence of excessive loss of material and at this stage no information is available regarding possible bias due to sample loss. RC: RC face-sample bits and dust suppression were used to minimise sample loss. Drilling airlifted the water column above the bottom of the hole to ensure dry sampling. RC samples are collected through a cyclone and cone splitter, the rejects deposited on the ground, and the samples for the lab collected to a total mass optimised for photon assay (2.5 to 4 kg). AC: Poor recoveries are recorded in the relevant sample sheet.		
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level	AC samples are collected through a cyclone, the rejects deposited on the ground, and the samples for the lab collected. All chips and drill core were geologically logged by company geologists, using their current company logging scheme. The majority		
	of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. • Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. • The total length and percentage of the relevant intersections logged.	of holes (80%+) within the mineralised intervals have lithology information which has provided sufficient detail to enable reliable interpretation of wireframe. The logging is qualitative in nature, describing oxidation state, grain size, an assignment of lithology code and stratigraphy code by geological interval.		
		DDH: Logging of diamond drill core records lithology, mineralogy, mineralisation, weathering, colour and other features of the samples, and structural information from oriented drill core. All recent core was photographed in the core trays, with individual photographs taken of each tray both dry, and wet, and photos uploaded to the AAR Server.		
		RC: Logging of RC chips records lithology, mineralogy, mineralisation, weathering, colour and other features of the samples. All samples are wet-sieved and stored in a chip tray.		
		AC samples were logged for colour, weathering, grain size, lithology, alteration veining and mineralisation where possible		
Sub-sampling techniques and sample preparation		HQ and NQ2 diamond core was halved and the right side sampled. RC holes were drilled and sampled. The samples are collected at 1m intervals via a cyclone and splitter system and logged geologically. A four-and-a-half inch RC hammer bit was used ensuring plus 20kg of sample collected per metre.		
	technique.	Historical - The RC drill samples were laid out in one metre intervals. Spear samples were taken and composited for analysis as described above. Representative samples from each 1m interval were collected and retained as described above. No documentation of the sampling of RC chips is available for the Historical Exploration drilling		
		Recent RC drilling collects 1 metre RC drill samples that are channelled through a rotary cone-splitter, installed directly below a rig mounted cyclone, and an average 2-3 kg sample is collected in pre-numbered calico bags, and positioned on top of the rejects cone. Wet samples are noted on logs and sample sheets. Standard Western Australian sampling techniques applied. There has been no statistical work carried out at this stage.		

	 Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	MinAnalytical/ALS assay standards, blanks and checks were inserted at regular intervals. Standards, company blanks and duplicates were inserted at 25 metre intervals. RC: 1 metre RC samples are split on the rig using a cone-splitter, mounted directly under the cyclone. Samples are collected to 2.5 to 4kg which is optimised for photon assay. Sample sizes are appropriate to the grain size of the material being sampled. Unable to comment on the appropriateness of sample sizes to grain size on historical data as no petrographic studies have been undertaken. Sample sizes are considered appropriate to give an indication of mineralisation given the particle size and the preference to keep the sample weight below a targeted 4kg mass which is the optimal weight to ensure representivity for photon assay. There has been no statistical
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	work carried out at this stage. Photon Assay technique at MinAnalytical Laboratory Services/ALS, Kalgoorlie and Intertek, Maddington. Samples submitted for analysis via Photon assay technique were dried, crushed to nominal 85% passing 2mm, linear split and a nominal 500g sub sample taken (method code PAP3512R) The 500g sample is assayed for gold by PhotonAssay (method code PAAU2) along with quality control samples including certified reference materials, blanks and sample duplicates. The MinAnalytical/ALS PhotonAssay Analysis Technique: - Developed by CSIRO and the Chrysos Corporation, This Photon Assay technique is a fast and chemical free alternative to the traditional fire assay process and utilizes high energy x-rays. The process is non-destructive on and utilises a significantly larger sample than the conventional 50g fire assay. MinAnalytical/ALS has thoroughly tested and validated the PhotonAssay process with results benchmarked against conventional fire assay. The National Association of Testing Authorities (NATA), Australia's national accreditation body for laboratories, has issued Min Analytical with accreditation for the technique in compliance with TSO/TEC 17025:2018-Testing. Certified Reference Material from Geostats Pty Ltd submitted at 75 metre intervals approximately. Blanks and duplicates also submitted at 75m intervals giving a 1:25 sample ratio. Referee sampling has not yet been carried out.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Geology Manager or Senior Geologist verified hole position on site. Standard data entry used on site, backed up in South Perth WA. No adjustments have been carried out. However, work is ongoing as samples can be assayed to extinction via the PhotonAssay Analysis Technique
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Pre October 2023, DD and RC drill holes were picked up by Minecomp using a Leica RTK GPS. Since October 2023 Southern Cross Surveys were contracted to pick up all latest drilling collars using GSNS with manufacturers specifications +/- 10mm N,E and +/-15mm RL from Survey Control established from Landgate SSMs in RTK. AC Hole collar locations were recorded with a handheld GPS in MGA Zone 51S. RL was initially estimated then holes, once drilled were translated onto the surveyed topography wire frame using mining software. These updated RL's were then loaded into the database.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral 	Grid: GDA94 Datum UTM Zone 51 Diamond drilling at Theia is at 40-40m to 40-80m spacing. Iris and Hestia have a number of selective diamond holes within each deposit. RC Drill hole spacing at Theia is a maximum of 40 x 40m. And approaching 20 x 20m within the central areas. This current program is

Orientation of data in relation to geological structure	Resource and Ore Reserve estimation procedure(s) and classifications applied. • Whether sample compositing has been applied. • Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	intended to close the spacing within a defined 80x120m panel to 12x12m. Iris and Hestia are generally 40x40 spacing with selected areas at 40x20m at Iris. Eos bedrock drilling is currently 80 x 40m spacing. AC Drill hole spacing is 10 to 50m on section, with 40m sectional spacing (approximate). The spacing is appropriate for the stage of exploration All drill holes have been drilled normal to the interpreted strike. Most of the current holes at Theia are drilled on a 040 azimuth with minor variations applied where drill-hole spacing is limited. Other holes not drilled at 040 azimuth have been completed. Some holes have been drilled at other azimuths to test cross cutting structures and to hit western targets, avoiding surface infrastructure.
Sample security	The measures taken to ensure sample security.	All samples taken daily to AAR yard in Kambalda West, then transported to the Laboratory in batches of up to 10 submissions
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been carried out at this stage.

Section 2 - Reporting of Exploration Results

Criteria	Section 2 - Reporting of JORC Code Explanation	Exploration	courto	Commentary	
Mineral tenement and	Type, reference name/number, location and	Tenement	Status	Location	Interest Held (%)
land tenure status	ownership including agreements or material issues with third parties such as joint	E 15/1404	Granted	Western Australia	100
	ventures, partnerships, overriding royalties, native title interests, historical sites,	M 15/96	Granted	Western Australia	Gold Rights 100
	wilderness or national park and environmental settings.	M 15/633	Granted	Western Australia	Gold Rights 100
	The security of the tenure held at the time	E 15/1958	Granted	Western Australia	100
	of reporting along with any known impediments to obtaining a licence to	P 15/6759	Granted	Western Australia	100
	operate in the area.	P 15/6760	Granted	Western Australia	100
		Department	of Mines, Ind	d standing with the W ustry Regulation and 9 e WA government 2.5	Safety.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Several procompleted in (WMC). In evaluation was tested I and diamonoveins within undertaken 1990-91-20 magnetic su undertaken 1994-95 – evaluation was tested I granite conticutorial (20-25m) micromorally During 1995 were drilled sheared granged 1996-97 - Acompleted by area. WID3 1997-1998-drilling was series with the completed by the conticutorial stress of the completed by th	grams of RC part the area bet early 1988 a sate 1988 early dilling. Gol a shallowly di with geologica RC holes and rvey and soil extensive AC part and surrouneralisation was 1-96 - Three A 500m south conte felsic sed 69 hole AC part proved to be 215 returned 17 RC infill hocompleted. A	percussion, diamond a ween 1988-1999 by Wignificant soil anomaly 1989 with a series of diametric mineralisation was i pping shear zone. 19 al mapping and 3 diamed 26 AC were drilled to anomaly. 1991-94 - not programme to investiged lineament appears to anomaly sediments, Sharas identified, which contact the Mandilla soil and iment contact. The more sediments of the mandilla soil and iment contact. The ineffective due to the more sediments of the more sediments of the more sediments of the sedim	and air core drilling were Vestern Mining Corporation Vestern Mining Vestern Vestern Mining Ve
Geology	Deposit type, geological setting and style of mineralisation.	The Mandilla of Kalgoorlie Australia. The gold rights), (wholly-own Regional G Mandilla is less it uated in Kalgoorlie T Archaean Yi Mandilla is leeastern Zule trending ma Spargoville lithologies (t Flag Group) faulting and Shear (possimineralisation has intruded	a Gold Projecte, and about 2 ne deposit is le M15/96 (AAR ed by AAR). eology ocated within the Coolgarderrain within tilgarn Block. ocated between bika Shear. Projor D29 thrust Trend contain the Coolgardie forming a D1 shearing. Flatibly the Karra on along the wold the felsic vol	t (Mandilla) is located 5km south-west of Ka bocated on granted Mir I gold rights) and Explorate the south-west of the lie Domain, on the we he Wiluna-Norseman en the western Kunan oject mineralisation is faults known as the "S four linear belts of me Group) with interven 10 anticline modified anking the Spargoville mindie Shear) appear vestern flank of the En	approximately 70km south imbalda in Western hing Leases M15/633 (AAR oration Lease E15/1404 Lefroy Map Sheet 3235. It stern margin of the Greenstone Belt, alling Shear, and the related to north-south Spargoville Trend". The hafic to ultramafic hing felsic rocks (the Black and repeated by intense D2 Trend to the east, a D2 is to host the Mandilla hing Rocks Granite, which ary rocks of the Black Flag

 $^{^{9}}$ D2 – Propagation of major crustal NNW thrust faults. 10 D1 – Crustal shortening.

ASX: AAR | 25 astralresources.com.au

Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole	deflections present. At these locations, granite stockworks have formed significant heterogeneity in the system and provide structural targets for mineralisation. The Mandilla mineralisation is interpreted to be such a target. Local Geology and Mineralisation Mandilla is located along the SE margin of M15/96 extending into the western edge of M15/633. It comprises an east and west zone, both of which are dominated by supergene mineralisation between 20 and 50 m depth below surface. Only the east zone shows any significant evidence of primary mineralisation, generally within coarse granular felsic rocks likely to be part of the granite outcropping to the east. Minor primary mineralisation occurs in sediments. The nature of gold mineralisation at Mandilla is complex, occurring along the western margin of a porphyritic granitoid that has intruded volcanoclastic sedimentary rocks. Gold mineralisation appears as a series of narrow, high grade quartz veins with relatively common visible gold, with grades over the width of the vein of up to several hundreds of grams per tonne. Surrounding these veins are lower grade alteration haloes. These haloes can, in places, coalesce to form quite thick zones of lower grade mineralisation. The mineralisation manifests itself as large zones of lower grade from ~0.5 – 1.5g/t Au with occasional higher grades of +5g/t Au over 1 or 2 metres. Further to the west of Theia close to the mafic/sediment contact a D2 shear sub parallels the Mandilla shear. Quartz veining and sulphides have been identified within the sediments close to the contact with high mag basalt within sheared siltstones and shales. In addition to the granite-hosted mineralisation, a paleochannel is situated above the granite/sediment contact that contains significant gold mineralisation. An 800 m section of the paleochannel was mined by AAR in 2006 and 2007, with production totalling 20,573 ounces.
	 down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	No data aggregation methods have been used. A 100ppb Au lower cut off has been used to calculate grades for AC drilling A 0.3g/t Au lower cut off has been used to calculate grades for RC drilling, with maximum internal dilution of 5m. A cutoff grade of >0.5g*m has been applied for reporting purposes in the tables of results. This has not been applied.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	

Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	The overall mineralisation trend strikes to the north-west at about 325°, with a sub-vertical dip. However, extensive structural logging from diamond core drilling of the quartz veins within the mineralised zones shows that the majority dip gently (10° to 30°) towards SSE to S (160° to 180°). The majority of drilling is conducted at an 040 azimuth and 60° dip to intersect the mineralisation at an optimum angle. A number of deeper holes have been oriented drilled at -60 to 150°. The Hestia mineralisation is associated with a shear zone striking around 350°. The drill orientation at 090 azimuth and 60° dip is optimal for intersecting the mineralisation. AC drilling
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Please refer to the maps and cross sections in the body of this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Balanced reporting has been applied.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other substantive exploration data.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Additional metallurgical testing may be required as the Mandilla Gold Project is progressed from preliminary feasibility to definitive feasibility for Hestia, Iris and Eos.