

High priority target defined at Alice River Gold Project – Kapok Prospect

Encouraging results from regional drilling at Victoria Prospect

HIGHLIGHTS

- **AIRCORE RESULTS FROM MAIDEN KAPOK DRILLING** – First pass shallow aircore drilling of previously untested Kapok quartz vein outcrop returned strong gold mineralisation within a corridor over **50m** in width:
 - **15m @ 0.38g/t Au** from 0m inc. **4m @ 0.70g/t** from 4m (ARAC1278)
 - **15m @ 0.25g/t Au** from 0m inc. **3m @ 0.40g/t** from 0m (ARAC1276)
 - **16m @ 0.23g/t Au** from 0m inc. **6m @ 0.35g/t** from 4m (ARAC1277)
- **KAPOK STRUCTURE** – The Kapok Prospect is located in the northern section of the Alice River Fault Zone and is completely untested along strike to date. Drilling demonstrates continual upside as multiple new targets at Alice River continue to be delineated.
- **RC AND AIRCORE RESULTS FROM VICTORIA DRILLING** – Results from regional drilling on the Victoria Prospect have defined extensions to the gold mineralisation defined in 2024.

Pacgold Limited (ASX: PGO) ('Pacgold' or 'the Company') is pleased to announce significant gold in drilling results from its Alice River Gold Project ('the Project') in northeast Queensland.

Pacgold's Managing Director, Matthew Boyes, commented:

"The 2025 Alice River drilling program was completed in late October, and the project continues to deliver compelling results as we unlock the potential of this vast goldfield. The delineation of wide zones of continuous mineralisation at Kapok in the first pass aircore programme is really exciting, along with confirmation of gold-bearing structures at Victoria in areas under cover and never-before drilled. Together with the recently released high-grade Posie drilling results, the recent drilling continues to strengthen our understanding of the system and add confidence to what we believe has the potential a major gold discovery at Alice River."

2025 RC and Aircore Drilling Program

The 2025 drilling program was completed in late October with a total of 118 RC holes for 12,586m and 434 aircore holes for 4,608m. Results for the Central Target, Southern Target, Shadows and Posie Prospects have been reported previously. Results for the Kapok, Shadows and Victoria aircore drilling, the Victoria reverse circulation (RC) drilling programs are reported here.

Results for the White Lion and Jerry Dodds RC drilling programs will be reported in due course following receipt and compilation of drill sample assay results.

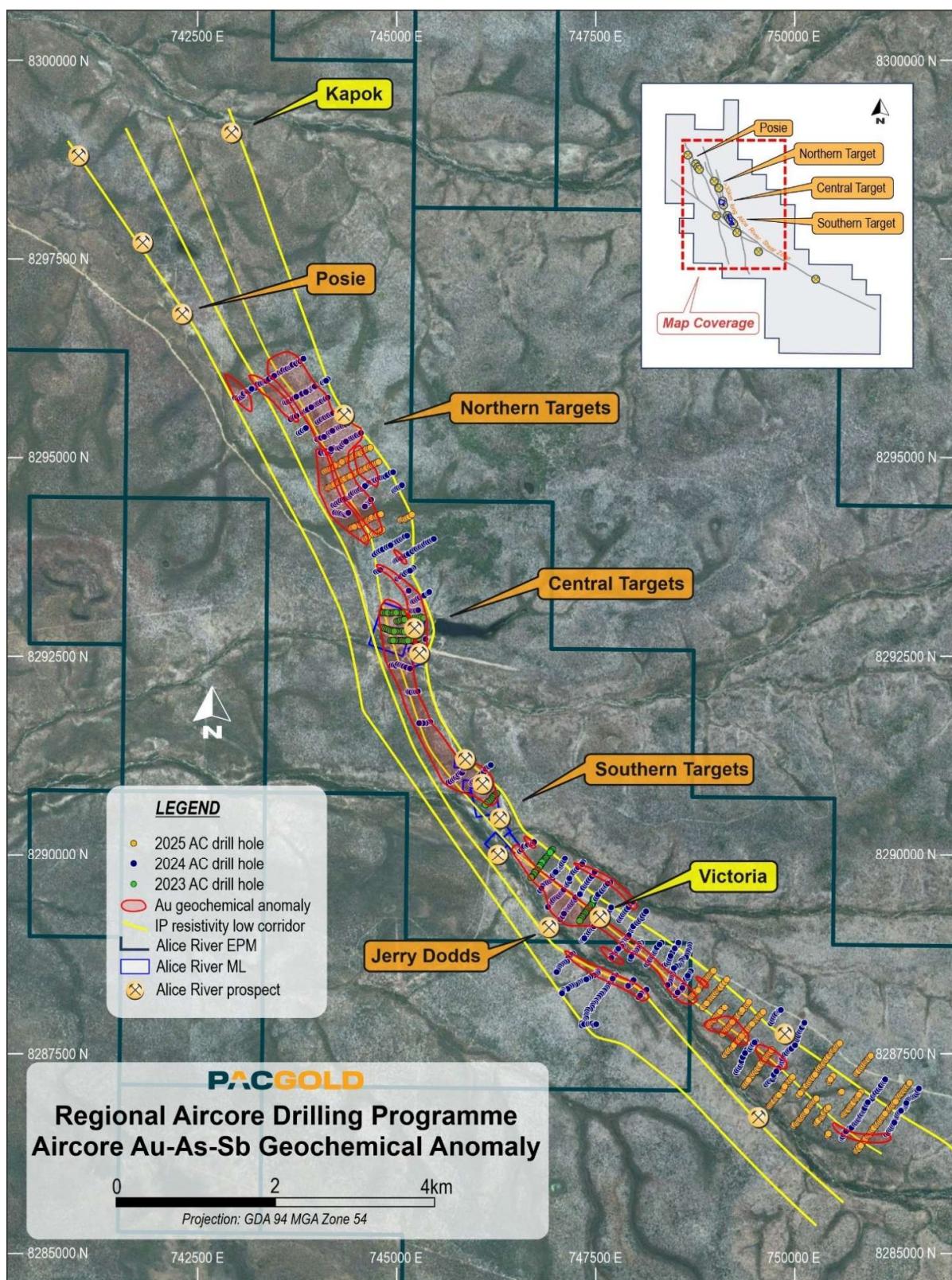


Figure 1: Alice River Prospect Location Plan showing extent of 2025 Aircore drilling and geochemical anomalm.

Kapok Prospect

The Kapok Prospect is located 6km NNW of the Central Target Mining Leases (MLs) and is interpreted to be within the Alice River Fault Zone. A limited first pass aircore drilling programme comprising five holes was undertaken at the Kapok Prospect in September, designed to test the sub-surface extent of an intermittently outcropping quartz vein which returned rock chip assay results up to 2.2g/t Au in 2023¹.

The drilling intersected several gold-bearing sheeted quartz veins in all five drillholes, and an interpreted footwall fault in northern-most hole ARAC1279 which appears to limit the mineralisation to the northeast. The limited nature of the drilling means the quartz vein zone is open in all directions and at depth and requires follow-up RC drilling to determine the strike and dip extents. Results include:

- **13m @ 0.11g/t Au from 0m (ARAC1275)**
- **15m @ 0.25g/t Au from 0m inc. 3m @ 0.40g/t from 0m (ARAC1276)**
- **16m @ 0.23g/t Au from 0m inc. 6m @ 0.35g/t from 4m (ARAC1277)**
- **15m @ 0.38g/t Au from 0m inc. 4m @ 0.70g/t from 4m (ARAC1278)**

All significant results are presented below in Appendix 3.

The drilling results are highly significant given this is the first drilling program to be completed on the prospect, and it is limited to only shallow aircore to a maximum vertical depth of 19m. Kapok is now considered a priority target for follow up RC drilling to be undertaken in Q2 2026, following resumption of access to the project after the North Queensland wet season.

Figures 1 and 2 below display the location of Kapok and the completed drilling, and Figure 3 is a schematic cross section with sample assay results. Significant results are presented in Appendix 3.

¹ PGO:ASX release 20 November 2023 “Multiple New Regional Structures Identified”

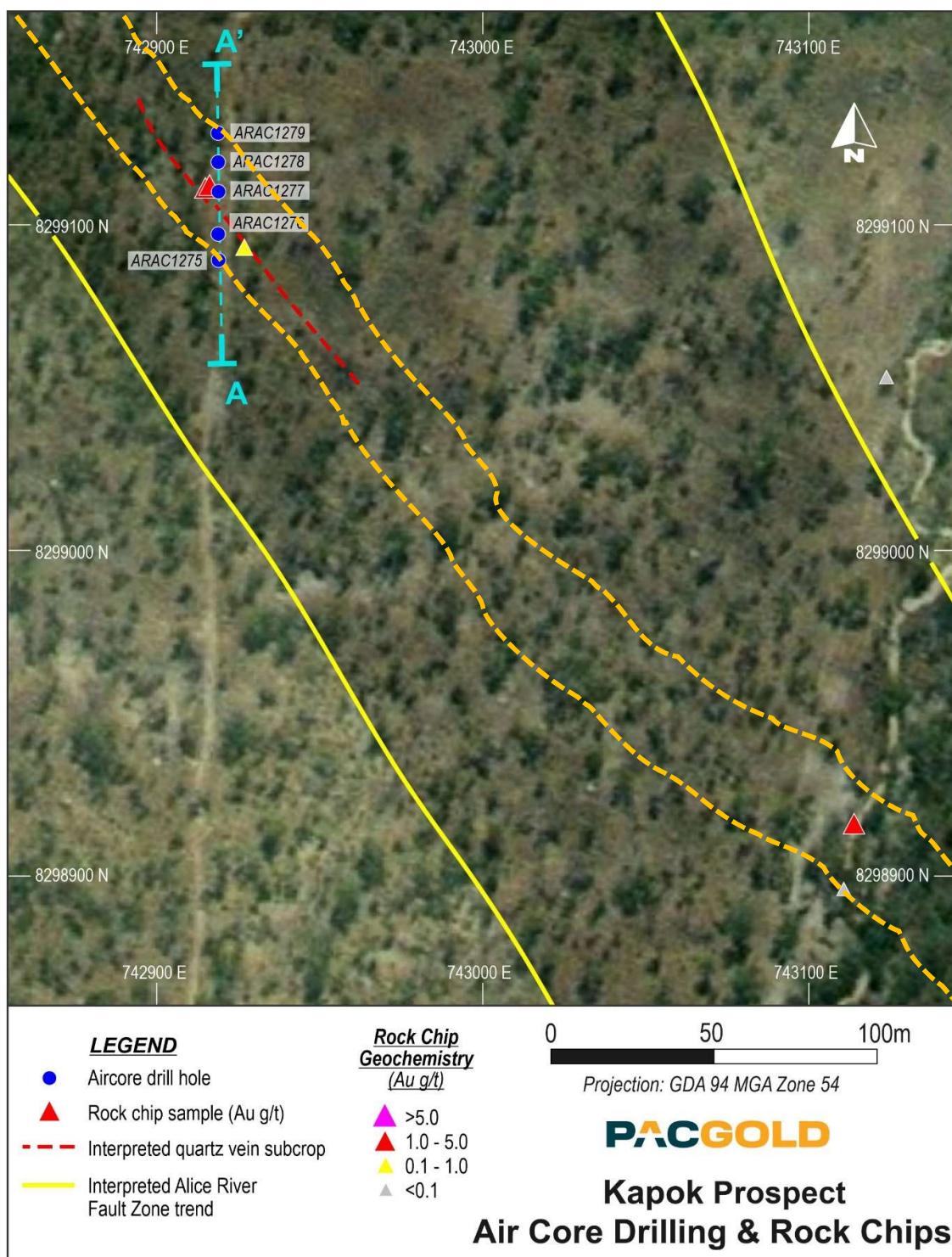


Figure 2: Kapok Prospect Location Plan with aircore drillholes and surface rock chip sample locations (2023), Interpreted mineralised corridor in orange

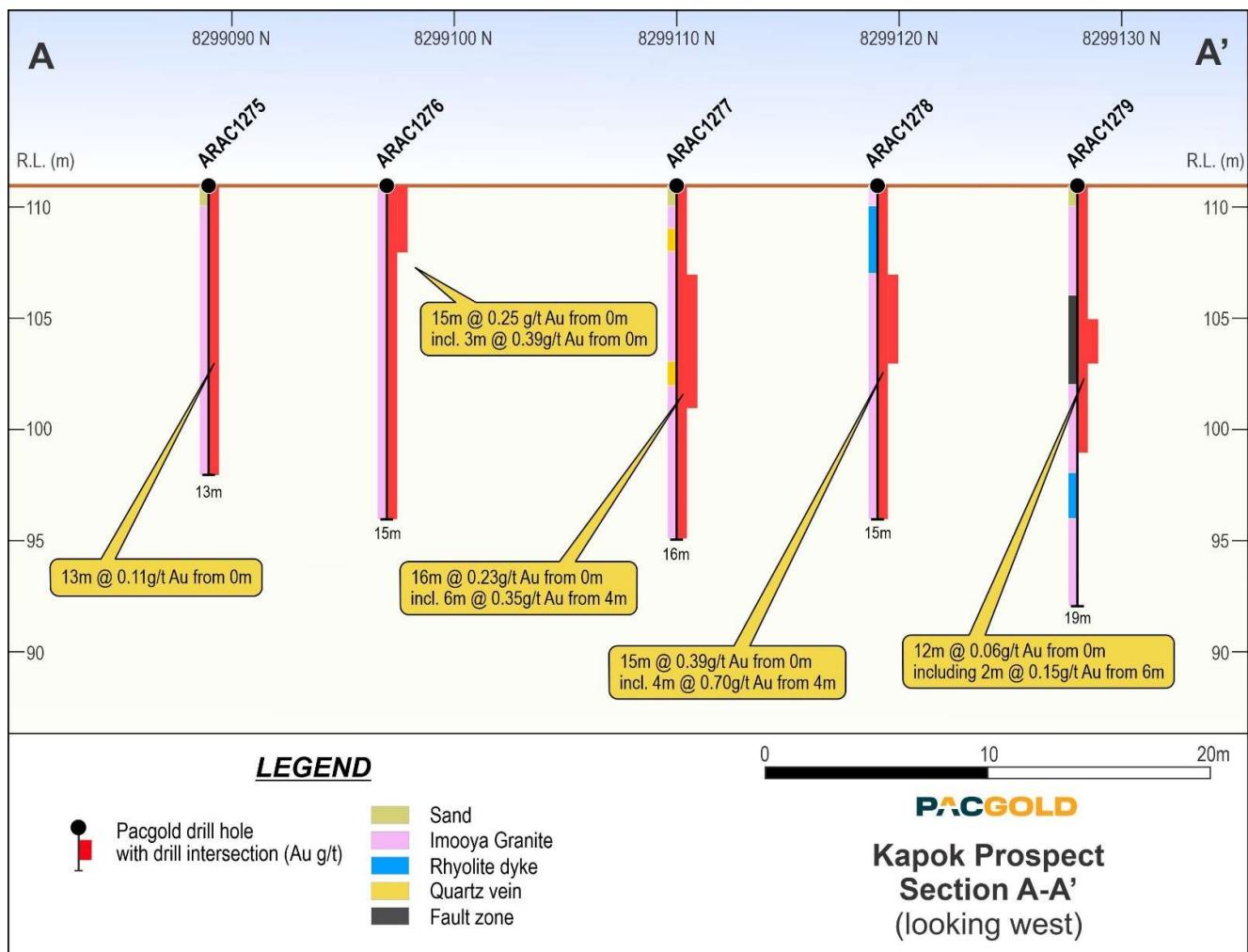


Figure 3: First pass Kapok aircore drill fence completed to test previously mapped and sampled quartz vein subcrop and float.

Victoria Prospect

The Victoria Prospect is located 1km ESE of the Southern Target MLs and covers a 5km section of the Alice River Fault Zone (ARFZ). The prospect is entirely covered by recent sand and shallow sandstone and is along the immediate strike extent of gold-bearing quartz veining exposed in historical shallow mining on the Southern Target MLs.

Previous systematic wide-spaced aircore and RC drilling of the Victoria Prospect in 2024 intersected encouraging gold-bearing quartz veining.^{2 3}

² PGO:ASX release 9 December 2023 "Aircore Drilling Completed at Alice River Gold Project"

³ PGO:ASX release 20 February 2024 "12km Geochemical Anomaly now delineated in Regional Drilling at Alice River"

In 2025 the aircore drilling program focussed on extending the Au-As-Sb geochemical anomalism defined in 2024 3km to the ESE, along with infilling specific anomalies. This was then followed up with wide-spaced RC drilling to test the 2024 anomalies and determine the continuity and basement host to the geochemical results.

Interpretation of the 2025 aircore results defined a number of new coexistent Au-As-Sb zones along the ARFZ, and indicates good potential for further significant basement quartz-vein hosted gold mineralisation. Figure 1 displays the extent of the new Au-As-Sb anomalism.

An RC drilling program was undertaken at Victoria in September 2025 to test a number of geochemical anomalies defined by the aircore drilling in 2024. Drilling comprised 20 angled holes on seven sections over a strike length of 2.4km. A number of drillholes returned low level gold mineralisation in basement-hosted quartz veining beneath the shallow aircore drilling. The results are considered to be worthy of follow up and infill drilling in 2026. Significant results are presented below in Appendix 4, and Figures 4 to 6 present the drillhole locations and selected cross sections.

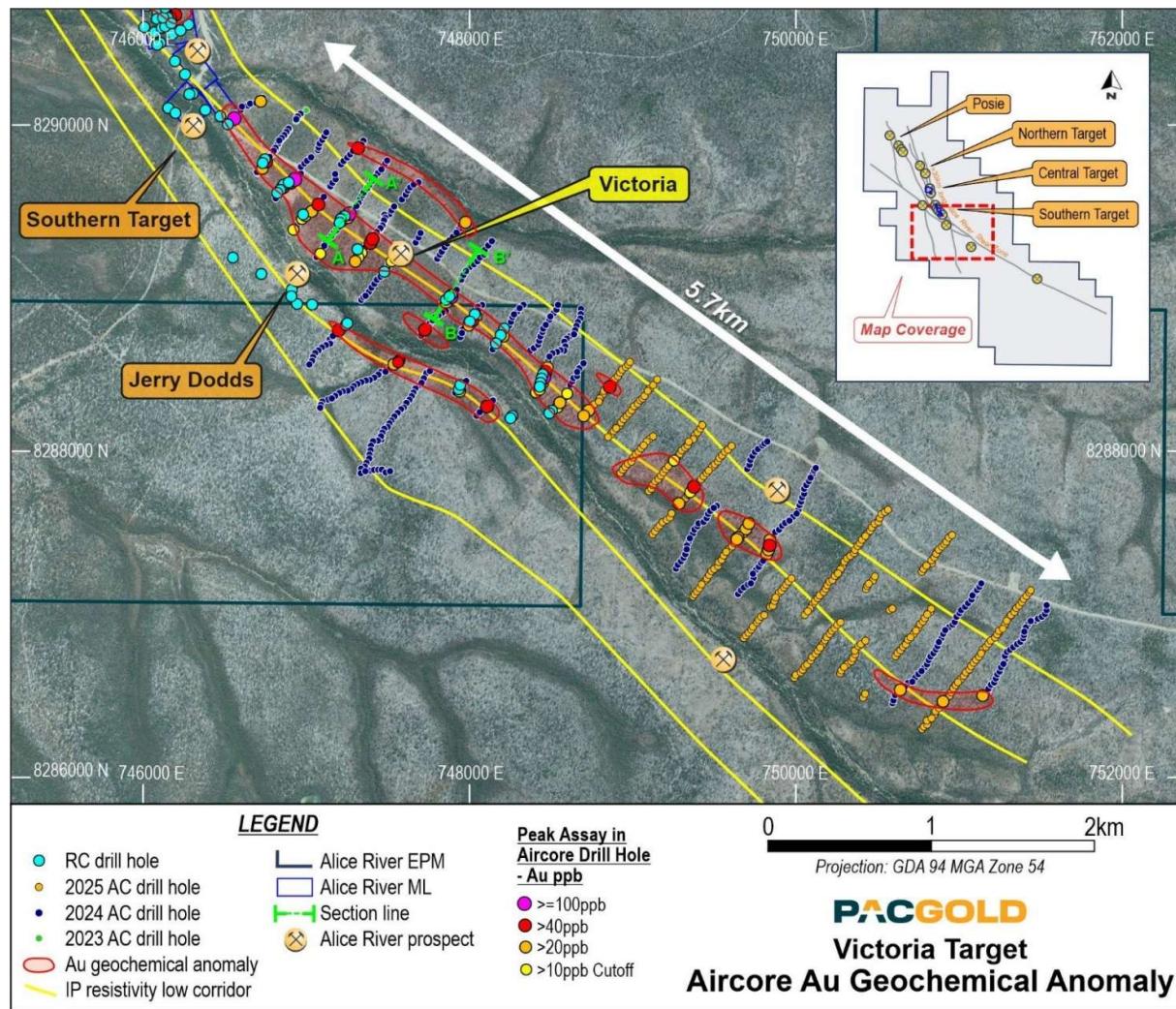


Figure 4: Victoria Drilling showing 2025 RC drillholes testing the Au-As-Sb anomalies along the ARFZ. The geochemical anomalism remains open along strike to the SE.

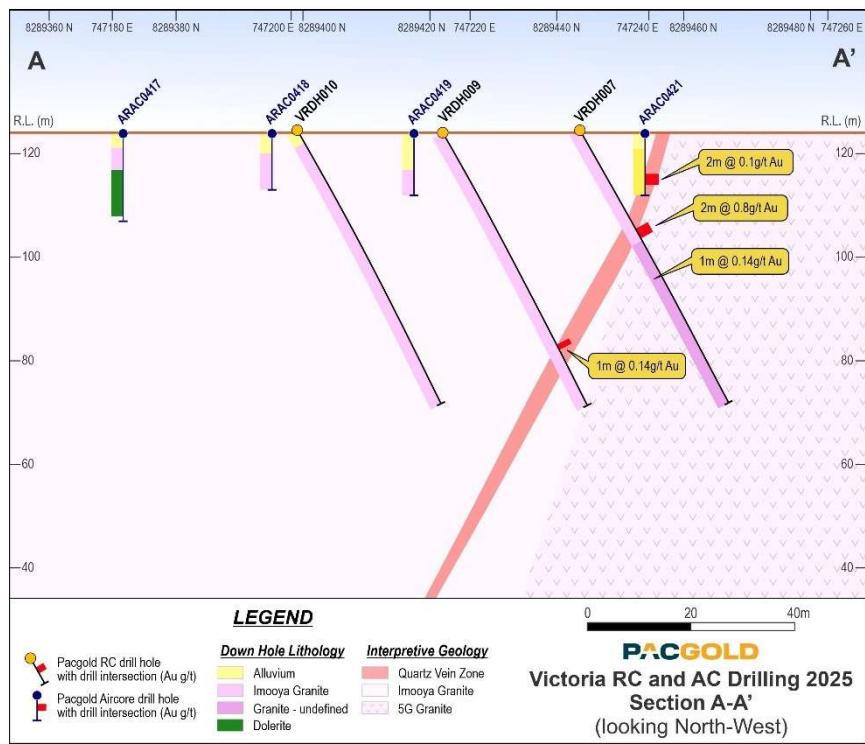


Figure 5: Victoria RC Drilling section A – A' (refer to Figure 4 for section location).

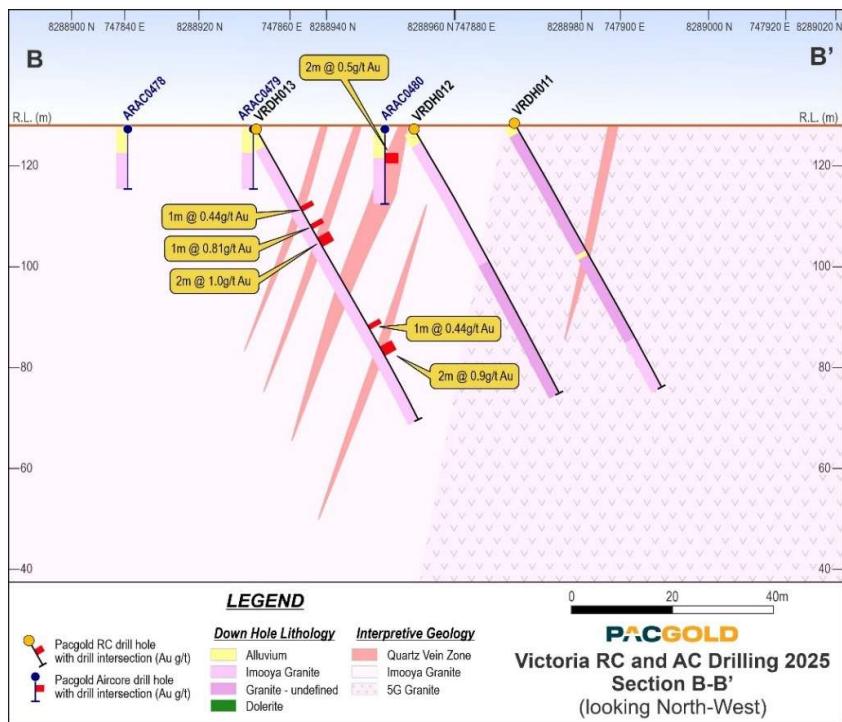


Figure 6: Victoria RC Drilling section B – B' (refer to Figure 4 for section location).

Next Steps

The results of the RC and Aircore drilling completed in 2025 at Victoria and Kapok continue to build the scale of the Alice River Project, and the aircore geochemical drilling has now defined Au-As-Sb anomalism on the ARFZ over an interpreted strike length in excess of 15km, with considerable scope to define additional gold Resources with continued RC drilling in 2026.

The results of the RC drilling Jerry Dodds and White Lion Prospects in October are awaited and will be compiled and reported on once received. Cultural Heritage surveys have been completed in October in preparation for regional AC and RC drilling in Q2 2026.

This announcement is approved by the Pacgold Limited Board of Directors.

For more information contact:

Matthew Boyes
Managing Director
mboyes@pacgold.com.au
+61 (0) 498 189 338

About Pacgold Limited:

Pacgold is an ASX-listed mineral exploration and development company (ASX: PGO) with highly prospective projects situated in South Australia and North Queensland.

To accelerate its transition to a producer, Pacgold is acquiring the [White Dam Gold Operation](#) in South Australia. This significant acquisition includes established open-pit mines, a heap leach facility, and a fully operational gold extraction plant. This turnkey operation provides Pacgold with a clear pathway to generating near-term revenue and cash flow, funding future growth and exploration.

The core of Pacgold's exploration efforts is centered in Queensland. The flagship, 100% owned [Alice River Gold Project](#) covers 377km² and is situated within a large, intrusion-related gold system that shows geological similarities to major international deposits. Complementing this is the [St George Gold-Antimony Project](#), where the company can earn up to a 100% interest in a 905km² tenement package located within an important and developing antimony province.

Competent Persons Statement

The information in this announcement that relates to Exploration Results is based on, and fairly represents, information compiled or reviewed by Mr Geoff Lowe, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Lowe is the Company's Exploration Manager and holds shares and options in the Company. Mr Lowe has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Lowe consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

APPENDIX 1. 2025 AIRCORE DRILLING COLLAR TABLE

Hole_ID	Prospect	Status	AMGE	AMGN	RL	Hole Type	Depth (m)	Azimuth	Dip
ARAC0806	The Shadows	Complete	744086.2	8294822.9	131.0	Aircore	9	-	-90
ARAC0807	The Shadows	Complete	744107.6	8294833.8	131.0	Aircore	9	-	-90
ARAC0808	The Shadows	Complete	744132.2	8294842.7	131.0	Aircore	12	-	-90
ARAC0809	The Shadows	Complete	744155.0	8294854.0	131.0	Aircore	12	-	-90
ARAC0810	The Shadows	Complete	744176.2	8294866.9	131.0	Aircore	17	-	-90
ARAC0811	The Shadows	Complete	744199.4	8294878.1	131.0	Aircore	9	-	-90
ARAC0812	The Shadows	Complete	744218.0	8294896.1	131.0	Aircore	9	-	-90
ARAC0813	The Shadows	Complete	744243.5	8294900.6	131.0	Aircore	12	-	-90
ARAC0814	The Shadows	Complete	744270.0	8294909.3	131.0	Aircore	9	-	-90
ARAC0815	The Shadows	Complete	744284.7	8294929.7	131.0	Aircore	12	-	-90
ARAC0816	The Shadows	Complete	744307.9	8294942.8	131.0	Aircore	12	-	-90
ARAC0817	The Shadows	Complete	744327.2	8294955.1	131.0	Aircore	18	-	-90
ARAC0818	The Shadows	Complete	744351.2	8294966.5	131.0	Aircore	30	-	-90
ARAC0819	The Shadows	Complete	744375.9	8294976.2	131.0	Aircore	9	-	-90
ARAC0820	The Shadows	Complete	744398.8	8294984.8	131.0	Aircore	12	-	-90
ARAC0821	The Shadows	Complete	744421.1	8294996.1	131.0	Aircore	9	-	-90
ARAC0822	The Shadows	Complete	744442.0	8295011.8	131.0	Aircore	12	-	-90
ARAC0823	The Shadows	Complete	744462.5	8295025.6	131.0	Aircore	9	-	-90
ARAC0824	The Shadows	Complete	744486.2	8295035.3	131.0	Aircore	9	-	-90
ARAC0825	The Shadows	Complete	744508.5	8295047.7	131.0	Aircore	9	-	-90
ARAC0826	The Shadows	Complete	744532.8	8295050.4	131.0	Aircore	9	-	-90
ARAC0827	The Shadows	Complete	744550.6	8295068.2	131.0	Aircore	12	-	-90
ARAC0828	The Shadows	Complete	744571.0	8295079.6	131.0	Aircore	9	-	-90
ARAC0829	The Shadows	Complete	744597.7	8295092.2	131.0	Aircore	12	-	-90
ARAC0830	The Shadows	Complete	744613.4	8295107.0	131.0	Aircore	12	-	-90
ARAC0831	The Shadows	Complete	744639.0	8295115.1	131.0	Aircore	12	-	-90
ARAC0832	The Shadows	Complete	744660.6	8295121.8	131.0	Aircore	12	-	-90
ARAC0833	The Shadows	Complete	744123.8	8294616.8	131.0	Aircore	20	-	-90
ARAC0834	The Shadows	Complete	744142.2	8294621.7	131.0	Aircore	12	-	-90
ARAC0835	The Shadows	Complete	744163.1	8294638.5	131.0	Aircore	15	-	-90
ARAC0836	The Shadows	Complete	744186.5	8294643.8	131.0	Aircore	15	-	-90
ARAC0837	The Shadows	Complete	744206.9	8294658.5	131.0	Aircore	9	-	-90
ARAC0838	The Shadows	Complete	744229.1	8294676.2	131.0	Aircore	9	-	-90
ARAC0839	The Shadows	Complete	744251.4	8294686.2	131.0	Aircore	15	-	-90

Hole_ID	Prospect	Status	AMGE	AMGN	RL	Hole Type	Depth (m)	Azimuth	Dip
ARAC0840	The Shadows	Complete	744273.3	8294698.3	131.0	Aircore	12	-	-90
ARAC0841	The Shadows	Complete	744293.7	8294710.5	131.0	Aircore	12	-	-90
ARAC0842	The Shadows	Complete	744320.5	8294718.7	131.0	Aircore	11	-	-90
ARAC0843	The Shadows	Complete	744339.8	8294732.4	131.0	Aircore	12	-	-90
ARAC0844	The Shadows	Complete	744364.7	8294743.5	131.0	Aircore	12	-	-90
ARAC0845	The Shadows	Complete	744391.2	8294756.0	131.0	Aircore	9	-	-90
ARAC0846	The Shadows	Complete	744410.3	8294764.5	131.0	Aircore	12	-	-90
ARAC0847	The Shadows	Complete	744432.4	8294777.8	131.0	Aircore	9	-	-90
ARAC0848	The Shadows	Complete	744456.6	8294781.8	131.0	Aircore	9	-	-90
ARAC0849	The Shadows	Complete	744477.1	8294799.3	131.0	Aircore	9	-	-90
ARAC0850	The Shadows	Complete	744499.3	8294813.5	131.0	Aircore	9	-	-90
ARAC0851	The Shadows	Complete	744523.2	8294820.8	131.0	Aircore	15	-	-90
ARAC0852	The Shadows	Complete	744544.0	8294832.3	131.0	Aircore	9	-	-90
ARAC0853	The Shadows	Complete	744564.7	8294841.7	131.0	Aircore	15	-	-90
ARAC0854	The Shadows	Complete	744589.9	8294851.7	131.0	Aircore	9	-	-90
ARAC0855	The Shadows	Complete	744609.6	8294865.7	131.0	Aircore	15	-	-90
ARAC0856	The Shadows	Complete	744633.7	8294873.9	131.0	Aircore	15	-	-90
ARAC0857	The Shadows	Complete	744653.3	8294890.2	131.0	Aircore	12	-	-90
ARAC0858	The Shadows	Complete	744676.3	8294896.1	131.0	Aircore	9	-	-90
ARAC0859	The Shadows	Complete	744697.2	8294909.6	131.0	Aircore	12	-	-90
ARAC0860	The Shadows	Complete	744722.8	8294920.5	131.0	Aircore	9	-	-90
ARAC0861	The Shadows	Complete	744743.6	8294933.0	131.0	Aircore	15	-	-90
ARAC0862	The Shadows	Complete	744766.8	8294943.9	131.0	Aircore	12	-	-90
ARAC0863	The Shadows	Complete	744420.6	8294108.3	131.0	Aircore	15	-	-90
ARAC0864	The Shadows	Complete	744436.7	8294118.0	131.0	Aircore	9	-	-90
ARAC0865	The Shadows	Complete	744460.7	8294124.9	131.0	Aircore	20	-	-90
ARAC0866	The Shadows	Complete	744482.5	8294134.1	131.0	Aircore	18	-	-90
ARAC0867	The Shadows	Complete	744508.6	8294142.9	131.0	Aircore	9	-	-90
ARAC0868	The Shadows	Complete	744530.4	8294147.8	131.0	Aircore	21	-	-90
ARAC0869	The Shadows	Complete	744555.4	8294167.5	131.0	Aircore	12	-	-90
ARAC0870	The Shadows	Complete	744574.7	8294181.6	131.0	Aircore	15	-	-90
ARAC0871	The Shadows	Complete	744599.5	8294191.9	131.0	Aircore	9	-	-90
ARAC0872	The Shadows	Complete	744620.9	8294202.8	131.0	Aircore	15	-	-90
ARAC0873	The Shadows	Complete	744639.4	8294220.8	131.0	Aircore	15	-	-90
ARAC0874	The Shadows	Complete	744662.6	8294227.3	131.0	Aircore	18	-	-90
ARAC0875	The Shadows	Complete	744681.4	8294241.1	131.0	Aircore	15	-	-90
ARAC0876	The Shadows	Complete	744706.1	8294244.3	131.0	Aircore	15	-	-90
ARAC0877	The Shadows	Complete	744734.3	8294256.2	131.0	Aircore	15	-	-90
ARAC0878	The Shadows	Complete	744752.5	8294273.1	131.0	Aircore	21	-	-90
ARAC0879	The Shadows	Complete	744778.9	8294278.0	131.0	Aircore	15	-	-90
ARAC0880	The Shadows	Complete	744793.9	8294284.9	131.0	Aircore	15	-	-90
ARAC0891	The Shadows	Complete	744591.2	8293973.4	130.0	Aircore	18	-	-90
ARAC0892	The Shadows	Complete	744612.5	8293987.3	130.0	Aircore	23	-	-90
ARAC0893	The Shadows	Complete	744634.1	8293998.5	130.0	Aircore	12	-	-90
ARAC0894	The Shadows	Complete	744699.7	8294032.4	130.0	Aircore	12	-	-90

Hole_ID	Prospect	Status	AMGE	AMGN	RL	Hole Type	Depth (m)	Azimuth	Dip
ARAC0895	The Shadows	Complete	744728.6	8294036.3	130.0	Aircore	18	-	-90
ARAC0896	The Shadows	Complete	744749.5	8294047.1	130.0	Aircore	15	-	-90
ARAC0897	The Shadows	Complete	744773.1	8294057.7	130.0	Aircore	18	-	-90
ARAC0898	The Shadows	Complete	744792.2	8294070.2	130.0	Aircore	15	-	-90
ARAC0899	The Shadows	Complete	744813.5	8294086.9	130.0	Aircore	12	-	-90
ARAC0909	The Shadows	Complete	745041.3	8294212.6	130.0	Aircore	9	-	-90
ARAC0910	The Shadows	Complete	745058.5	8294220.9	130.0	Aircore	9	-	-90
ARAC0911	The Shadows	Complete	745083.9	8294221.4	130.0	Aircore	9	-	-90
ARAC0912	The Shadows	Complete	745107.3	8294227.9	130.0	Aircore	9	-	-90
ARAC0913	The Shadows	Complete	745127.7	8294243.5	130.0	Aircore	9	-	-90
ARAC0914	The Shadows	Complete	745151.3	8294253.4	130.0	Aircore	9	-	-90
ARAC0915	The Shadows	Complete	745170.5	8294264.4	130.0	Aircore	6	-	-90
ARAC0916	The Shadows	Complete	745185.1	8294279.3	130.0	Aircore	9	-	-90
ARAC0917	Victoria	Complete	748689.0	8288205.3	124.0	Aircore	12	-	-90
ARAC0918	Victoria	Complete	748700.6	8288221.6	124.0	Aircore	12	-	-90
ARAC0919	Victoria	Complete	748717.4	8288241.9	124.0	Aircore	27	-	-90
ARAC0920	Victoria	Complete	748734.6	8288254.3	124.0	Aircore	9	-	-90
ARAC0921	Victoria	Complete	748752.6	8288276.3	124.0	Aircore	9	-	-90
ARAC0922	Victoria	Complete	748782.7	8288293.8	124.0	Aircore	9	-	-90
ARAC0923	Victoria	Complete	748787.2	8288312.8	124.0	Aircore	12	-	-90
ARAC0924	Victoria	Complete	748807.5	8288339.4	124.0	Aircore	9	-	-90
ARAC0925	Victoria	Complete	748811.9	8288359.1	124.0	Aircore	9	-	-90
ARAC0926	Victoria	Complete	748841.7	8288371.5	124.0	Aircore	15	-	-90
ARAC0927	Victoria	Complete	748850.1	8288392.1	124.0	Aircore	18	-	-90
ARAC0928	Victoria	Complete	748862.4	8288411.9	124.0	Aircore	9	-	-90
ARAC0929	Victoria	Complete	748877.9	8288431.2	124.0	Aircore	9	-	-90
ARAC0930	Victoria	Complete	748898.7	8288449.4	124.0	Aircore	9	-	-90
ARAC0931	Victoria	Complete	748912.1	8288469.8	124.0	Aircore	9	-	-90
ARAC0932	Victoria	Complete	748926.5	8288489.2	124.0	Aircore	12	-	-90
ARAC0933	Victoria	Complete	748947.0	8288506.0	124.0	Aircore	12	-	-90
ARAC0934	Victoria	Complete	748962.0	8288521.0	124.0	Aircore	9	-	-90
ARAC0935	Victoria	Complete	748972.0	8288537.0	124.0	Aircore	6	-	-90
ARAC0937	Victoria	Complete	748838.0	8288076.2	124.0	Aircore	9	-	-90
ARAC0938	Victoria	Complete	748858.3	8288091.0	124.0	Aircore	9	-	-90
ARAC0939	Victoria	Complete	748873.0	8288112.8	124.0	Aircore	9	-	-90
ARAC0940	Victoria	Complete	748888.3	8288131.0	124.0	Aircore	9	-	-90
ARAC0941	Victoria	Complete	748907.3	8288146.4	124.0	Aircore	9	-	-90
ARAC0942	Victoria	Complete	748918.5	8288165.7	124.0	Aircore	42	-	-90
ARAC0943	Victoria	Complete	748934.6	8288185.7	124.0	Aircore	24	-	-90
ARAC0944	Victoria	Complete	748951.8	8288203.7	124.0	Aircore	9	-	-90
ARAC0945	Victoria	Complete	748968.1	8288220.8	124.0	Aircore	12	-	-90
ARAC0946	Victoria	Complete	748983.3	8288240.7	124.0	Aircore	12	-	-90
ARAC0947	Victoria	Complete	748998.6	8288265.5	124.0	Aircore	12	-	-90
ARAC0948	Victoria	Complete	749019.9	8288281.5	124.0	Aircore	9	-	-90
ARAC0949	Victoria	Complete	749035.3	8288302.2	124.0	Aircore	9	-	-90

Hole_ID	Prospect	Status	AMGE	AMGN	RL	Hole Type	Depth (m)	Azimuth	Dip
ARAC0950	Victoria	Complete	749051.4	8288313.2	124.0	Aircore	9	-	-90
ARAC0951	Victoria	Complete	749062.5	8288328.3	124.0	Aircore	9	-	-90
ARAC0952	Victoria	Complete	749082.1	8288359.5	124.0	Aircore	9	-	-90
ARAC0953	Victoria	Complete	749097.7	8288375.8	124.0	Aircore	9	-	-90
ARAC0954	Victoria	Complete	749114.9	8288394.7	124.0	Aircore	9	-	-90
ARAC0955	Victoria	Complete	749140.0	8288430.0	124.0	Aircore	12	-	-90
ARAC0956	Victoria	Complete	748914.7	8287856.2	124.0	Aircore	12	-	-90
ARAC0957	Victoria	Complete	748928.6	8287875.1	124.0	Aircore	9	-	-90
ARAC0958	Victoria	Complete	748943.9	8287894.0	124.0	Aircore	9	-	-90
ARAC0959	Victoria	Complete	748960.9	8287912.3	124.0	Aircore	9	-	-90
ARAC0960	Victoria	Complete	748981.3	8287923.8	124.0	Aircore	9	-	-90
ARAC0961	Victoria	Complete	748993.2	8287950.3	124.0	Aircore	9	-	-90
ARAC0962	Victoria	Complete	749008.5	8287969.5	124.0	Aircore	9	-	-90
ARAC0963	Victoria	Complete	749026.3	8287985.9	124.0	Aircore	9	-	-90
ARAC0964	Victoria	Complete	749041.8	8288006.6	124.0	Aircore	9	-	-90
ARAC0965	Victoria	Complete	749056.6	8288024.0	124.0	Aircore	9	-	-90
ARAC0966	Victoria	Complete	749075.1	8288046.4	124.0	Aircore	9	-	-90
ARAC0967	Victoria	Complete	749092.6	8288063.4	124.0	Aircore	14	-	-90
ARAC0968	Victoria	Complete	749114.7	8288079.9	124.0	Aircore	12	-	-90
ARAC0970	Victoria	Complete	749089.0	8287743.3	124.0	Aircore	9	-	-90
ARAC0971	Victoria	Complete	749103.5	8287758.1	124.0	Aircore	9	-	-90
ARAC0972	Victoria	Complete	749112.6	8287780.8	124.0	Aircore	9	-	-90
ARAC0973	Victoria	Complete	749127.8	8287804.8	124.0	Aircore	9	-	-90
ARAC0974	Victoria	Complete	749147.1	8287817.6	124.0	Aircore	9	-	-90
ARAC0975	Victoria	Complete	749162.1	8287838.2	124.0	Aircore	9	-	-90
ARAC0976	Victoria	Complete	749177.6	8287859.1	124.0	Aircore	9	-	-90
ARAC0977	Victoria	Complete	749193.5	8287878.1	124.0	Aircore	9	-	-90
ARAC0978	Victoria	Complete	749208.1	8287896.5	124.0	Aircore	9	-	-90
ARAC0979	Victoria	Complete	749224.3	8287916.3	124.0	Aircore	12	-	-90
ARAC0980	Victoria	Complete	749244.6	8287934.3	124.0	Aircore	9	-	-90
ARAC0981	Victoria	Complete	749260.9	8287951.3	124.0	Aircore	9	-	-90
ARAC0982	Victoria	Complete	749278.3	8287970.6	124.0	Aircore	9	-	-90
ARAC0983	Victoria	Complete	749291.0	8287993.5	124.0	Aircore	9	-	-90
ARAC0984	Victoria	Complete	749312.3	8288011.0	124.0	Aircore	9	-	-90
ARAC0985	Victoria	Complete	749326.5	8288025.2	124.0	Aircore	9	-	-90
ARAC0986	Victoria	Complete	749333.9	8288047.1	124.0	Aircore	9	-	-90
ARAC0987	Victoria	Complete	749362.2	8288062.4	124.0	Aircore	9	-	-90
ARAC0988	Victoria	Complete	749370.5	8288086.0	124.0	Aircore	9	-	-90
ARAC0989	Victoria	Complete	749388.3	8288103.9	124.0	Aircore	9	-	-90
ARAC0990	Victoria	Complete	749405.2	8288128.0	124.0	Aircore	9	-	-90
ARAC0991	Victoria	Complete	749417.9	8288148.4	124.0	Aircore	9	-	-90
ARAC0992	Victoria	Complete	749113.0	8287479.3	124.0	Aircore	9	-	-90
ARAC0993	Victoria	Complete	749126.7	8287496.3	124.0	Aircore	12	-	-90
ARAC0994	Victoria	Complete	749142.5	8287519.4	124.0	Aircore	12	-	-90
ARAC0995	Victoria	Complete	749156.2	8287531.2	124.0	Aircore	9	-	-90

Hole_ID	Prospect	Status	AMGE	AMGN	RL	Hole Type	Depth (m)	Azimuth	Dip
ARAC0996	Victoria	Complete	749174.1	8287551.9	124.0	Aircore	9	-	-90
ARAC0997	Victoria	Complete	749199.0	8287566.5	124.0	Aircore	9	-	-90
ARAC0998	Victoria	Complete	749217.9	8287581.2	124.0	Aircore	12	-	-90
ARAC0999	Victoria	Complete	749228.0	8287606.7	124.0	Aircore	9	-	-90
ARAC1002	Victoria	Complete	749280.7	8287666.9	124.0	Aircore	12	-	-90
ARAC1003	Victoria	Complete	749294.1	8287680.7	124.0	Aircore	12	-	-90
ARAC1004	Victoria	Complete	749313.7	8287700.3	124.0	Aircore	6	-	-90
ARAC1005	Victoria	Complete	749327.1	8287720.7	124.0	Aircore	6	-	-90
ARAC1006	Victoria	Complete	749342.3	8287739.9	124.0	Aircore	9	-	-90
ARAC1007	Victoria	Complete	749361.4	8287755.2	124.0	Aircore	15	-	-90
ARAC1008	Victoria	Complete	749376.5	8287776.9	124.0	Aircore	15	-	-90
ARAC1009	Victoria	Complete	749392.7	8287796.0	124.0	Aircore	32	-	-90
ARAC1010	Victoria	Complete	749408.6	8287816.3	124.0	Aircore	9	-	-90
ARAC1011	Victoria	Complete	749425.2	8287835.8	124.0	Aircore	9	-	-90
ARAC1012	Victoria	Complete	749443.6	8287855.4	124.0	Aircore	9	-	-90
ARAC1013	Victoria	Complete	749456.5	8287869.5	124.0	Aircore	9	-	-90
ARAC1014	Victoria	Complete	749475.7	8287890.9	124.0	Aircore	9	-	-90
ARAC1015	Victoria	Complete	749493.4	8287908.8	124.0	Aircore	9	-	-90
ARAC1016	Victoria	Complete	749511.7	8287925.7	124.0	Aircore	9	-	-90
ARAC1017	Victoria	Complete	749521.5	8287946.0	124.0	Aircore	9	-	-90
ARAC1018	Victoria	Complete	749538.2	8287963.6	124.0	Aircore	9	-	-90
ARAC1019	Victoria	Complete	749555.8	8287985.5	124.0	Aircore	9	-	-90
ARAC1020	Victoria	Complete	749575.5	8287998.4	124.0	Aircore	9	-	-90
ARAC1021	Victoria	Complete	749597.4	8288020.0	124.0	Aircore	9	-	-90
ARAC1022	Victoria	Complete	749359.8	8287095.7	124.0	Aircore	14	-	-90
ARAC1023	Victoria	Complete	749369.5	8287109.9	124.0	Aircore	7	-	-90
ARAC1024	Victoria	Complete	749384.0	8287128.3	124.0	Aircore	9	-	-90
ARAC1025	Victoria	Complete	749398.7	8287147.3	124.0	Aircore	9	-	-90
ARAC1026	Victoria	Complete	749413.1	8287171.3	124.0	Aircore	11	-	-90
ARAC1027	Victoria	Complete	749436.2	8287194.4	124.0	Aircore	9	-	-90
ARAC1028	Victoria	Complete	749444.9	8287207.8	124.0	Aircore	9	-	-90
ARAC1029	Victoria	Complete	749459.2	8287227.5	124.0	Aircore	9	-	-90
ARAC1030	Victoria	Complete	749472.8	8287251.4	124.0	Aircore	9	-	-90
ARAC1031	Victoria	Complete	749490.1	8287266.0	124.0	Aircore	9	-	-90
ARAC1032	Victoria	Complete	749513.7	8287282.8	124.0	Aircore	9	-	-90
ARAC1033	Victoria	Complete	749518.3	8287307.6	124.0	Aircore	12	-	-90
ARAC1034	Victoria	Complete	749536.3	8287321.1	124.0	Aircore	9	-	-90
ARAC1035	Victoria	Complete	749549.0	8287347.8	124.0	Aircore	12	-	-90
ARAC1036	Victoria	Complete	749563.7	8287369.8	124.0	Aircore	8	-	-90
ARAC1037	Victoria	Complete	749582.0	8287386.2	124.0	Aircore	9	-	-90
ARAC1038	Victoria	Complete	749600.3	8287404.2	124.0	Aircore	9	-	-90
ARAC1039	Victoria	Complete	749613.7	8287424.1	124.0	Aircore	9	-	-90
ARAC1040	Victoria	Complete	749625.6	8287444.4	124.0	Aircore	12	-	-90
ARAC1041	Victoria	Complete	749643.0	8287466.5	124.0	Aircore	12	-	-90
ARAC1042	Victoria	Complete	749657.1	8287483.8	124.0	Aircore	12	-	-90

Hole_ID	Prospect	Status	AMGE	AMGN	RL	Hole Type	Depth (m)	Azimuth	Dip
ARAC1043	Victoria	Complete	749673.8	8287504.6	124.0	Aircore	9	-	-90
ARAC1044	Victoria	Complete	749691.2	8287519.6	124.0	Aircore	12	-	-90
ARAC1045	Victoria	Complete	749705.0	8287544.8	124.0	Aircore	27	-	-90
ARAC1046	Victoria	Complete	749672.7	8286840.4	124.0	Aircore	6	-	-90
ARAC1047	Victoria	Complete	749685.5	8286856.8	124.0	Aircore	9	-	-90
ARAC1048	Victoria	Complete	749701.4	8286873.6	124.0	Aircore	9	-	-90
ARAC1049	Victoria	Complete	749717.8	8286892.8	124.0	Aircore	9	-	-90
ARAC1050	Victoria	Complete	749728.2	8286910.0	124.0	Aircore	9	-	-90
ARAC1051	Victoria	Complete	749753.0	8286937.0	124.0	Aircore	9	-	-90
ARAC1052	Victoria	Complete	749762.6	8286952.0	124.0	Aircore	9	-	-90
ARAC1053	Victoria	Complete	749778.0	8286972.4	124.0	Aircore	6	-	-90
ARAC1054	Victoria	Complete	749797.5	8286981.3	124.0	Aircore	6	-	-90
ARAC1056	Victoria	Complete	749834.1	8287031.1	124.0	Aircore	12	-	-90
ARAC1057	Victoria	Complete	749850.4	8287038.2	124.0	Aircore	12	-	-90
ARAC1058	Victoria	Complete	749860.1	8287069.6	124.0	Aircore	12	-	-90
ARAC1059	Victoria	Complete	749867.9	8287090.8	124.0	Aircore	9	-	-90
ARAC1060	Victoria	Complete	749887.3	8287118.1	124.0	Aircore	12	-	-90
ARAC1061	Victoria	Complete	749903.4	8287131.0	124.0	Aircore	9	-	-90
ARAC1062	Victoria	Complete	749918.5	8287150.9	124.0	Aircore	9	-	-90
ARAC1063	Victoria	Complete	749930.7	8287167.9	124.0	Aircore	9	-	-90
ARAC1064	Victoria	Complete	749946.5	8287188.3	124.0	Aircore	9	-	-90
ARAC1065	Victoria	Complete	749965.2	8287207.4	124.0	Aircore	9	-	-90
ARAC1070	Victoria	Complete	750047.3	8286983.3	124.0	Aircore	9	-	-90
ARAC1071	Victoria	Complete	750064.9	8287005.6	124.0	Aircore	13	-	-90
ARAC1072	Victoria	Complete	750079.3	8287021.9	124.0	Aircore	9	-	-90
ARAC1073	Victoria	Complete	750094.2	8287048.6	124.0	Aircore	9	-	-90
ARAC1074	Victoria	Complete	750108.1	8287065.9	124.0	Aircore	12	-	-90
ARAC1075	Victoria	Complete	750126.5	8287086.5	124.0	Aircore	15	-	-90
ARAC1076	Victoria	Complete	750137.6	8287102.8	124.0	Aircore	12	-	-90
ARAC1077	Victoria	Complete	750162.5	8287123.1	124.0	Aircore	9	-	-90
ARAC1078	Victoria	Complete	750174.6	8287142.8	124.0	Aircore	9	-	-90
ARAC1079	Victoria	Complete	750185.1	8287165.4	124.0	Aircore	9	-	-90
ARAC1080	Victoria	Complete	750198.7	8287187.9	124.0	Aircore	9	-	-90
ARAC1081	Victoria	Complete	750216.9	8287197.0	124.0	Aircore	9	-	-90
ARAC1082	Victoria	Complete	750232.0	8287222.6	124.0	Aircore	9	-	-90
ARAC1083	Victoria	Complete	750250.4	8287237.6	124.0	Aircore	9	-	-90
ARAC1084	Victoria	Complete	750265.1	8287264.7	124.0	Aircore	9	-	-90
ARAC1085	Victoria	Complete	750277.0	8287278.1	124.0	Aircore	9	-	-90
ARAC1086	Victoria	Complete	750288.7	8287309.8	124.0	Aircore	9	-	-90
ARAC1087	Victoria	Complete	750305.3	8287331.1	124.0	Aircore	9	-	-90
ARAC1088	Victoria	Complete	750324.8	8287345.4	124.0	Aircore	9	-	-90
ARAC1089	Victoria	Complete	750348.7	8287363.1	124.0	Aircore	9	-	-90
ARAC1090	Victoria	Complete	750354.6	8287383.2	124.0	Aircore	12	-	-90
ARAC1091	Victoria	Complete	750371.5	8287406.8	124.0	Aircore	12	-	-90
ARAC1092	Victoria	Complete	750385.9	8287423.6	124.0	Aircore	9	-	-90

Hole_ID	Prospect	Status	AMGE	AMGN	RL	Hole Type	Depth (m)	Azimuth	Dip
ARAC1093	Victoria	Complete	750397.4	8287445.1	124.0	Aircore	9	-	-90
ARAC1094	Victoria	Complete	750419.2	8287468.0	124.0	Aircore	12	-	-90
ARAC1095	Victoria	Complete	750427.8	8287480.4	124.0	Aircore	12	-	-90
ARAC1096	Victoria	Complete	750447.5	8287499.0	124.0	Aircore	12	-	-90
ARAC1097	Victoria	Complete	750457.9	8287520.4	124.0	Aircore	9	-	-90
ARAC1098	Victoria	Complete	750475.9	8287543.2	124.0	Aircore	12	-	-90
ARAC1099	Victoria	Complete	750497.6	8287554.6	124.0	Aircore	9	-	-90
ARAC1100	Victoria	Complete	750506.9	8287578.7	124.0	Aircore	9	-	-90
ARAC1101	Victoria	Complete	750518.0	8287602.8	124.0	Aircore	15	-	-90
ARAC1102	Victoria	Complete	750538.0	8287615.5	124.0	Aircore	9	-	-90
ARAC1103	Victoria	Complete	750557.8	8287628.5	124.0	Aircore	9	-	-90
ARAC1104	Victoria	Complete	749982.3	8286596.2	124.0	Aircore	10	-	-90
ARAC1105	Victoria	Complete	749991.7	8286614.6	124.0	Aircore	8	-	-90
ARAC1106	Victoria	Complete	750022.2	8286628.7	124.0	Aircore	8	-	-90
ARAC1107	Victoria	Complete	750033.8	8286646.5	124.0	Aircore	8	-	-90
ARAC1108	Victoria	Complete	750047.1	8286666.8	124.0	Aircore	6	-	-90
ARAC1109	Victoria	Complete	750061.0	8286678.5	124.0	Aircore	9	-	-90
ARAC1110	Victoria	Complete	750082.7	8286703.0	124.0	Aircore	9	-	-90
ARAC1111	Victoria	Complete	750092.0	8286724.0	124.0	Aircore	9	-	-90
ARAC1112	Victoria	Complete	750111.8	8286743.8	124.0	Aircore	8	-	-90
ARAC1113	Victoria	Complete	750127.3	8286762.4	124.0	Aircore	9	-	-90
ARAC1114	Victoria	Complete	750141.1	8286782.7	124.0	Aircore	9	-	-90
ARAC1115	Victoria	Complete	750157.2	8286801.9	124.0	Aircore	9	-	-90
ARAC1116	Victoria	Complete	750171.5	8286826.4	124.0	Aircore	9	-	-90
ARAC1117	Victoria	Complete	750182.7	8286844.7	124.0	Aircore	9	-	-90
ARAC1118	Victoria	Complete	750199.6	8286865.7	124.0	Aircore	12	-	-90
ARAC1119	Victoria	Complete	750213.0	8286885.2	124.0	Aircore	9	-	-90
ARAC1120	Victoria	Complete	750230.2	8286901.0	124.0	Aircore	9	-	-90
ARAC1121	Victoria	Complete	750246.7	8286921.8	124.0	Aircore	9	-	-90
ARAC1122	Victoria	Complete	750265.7	8286938.3	124.0	Aircore	9	-	-90
ARAC1123	Victoria	Complete	750422.3	8287141.9	124.0	Aircore	9	-	-90
ARAC1124	Victoria	Complete	750430.0	8287160.7	124.0	Aircore	9	-	-90
ARAC1125	Victoria	Complete	750440.3	8287175.2	124.0	Aircore	9	-	-90
ARAC1126	Victoria	Complete	750464.1	8287195.1	124.0	Aircore	9	-	-90
ARAC1127	Victoria	Complete	750476.6	8287220.1	124.0	Aircore	9	-	-90
ARAC1128	Victoria	Complete	750264.1	8286623.1	124.0	Aircore	9	-	-90
ARAC1129	Victoria	Complete	750271.7	8286642.1	124.0	Aircore	9	-	-90
ARAC1130	Victoria	Complete	750288.4	8286662.8	124.0	Aircore	9	-	-90
ARAC1131	Victoria	Complete	750309.0	8286678.9	124.0	Aircore	9	-	-90
ARAC1132	Victoria	Complete	750332.1	8286698.0	124.0	Aircore	9	-	-90
ARAC1133	Victoria	Complete	750342.1	8286716.6	124.0	Aircore	9	-	-90
ARAC1134	Victoria	Complete	750355.5	8286740.9	124.0	Aircore	12	-	-90
ARAC1135	Victoria	Complete	750353.6	8286762.6	124.0	Aircore	9	-	-90
ARAC1136	Victoria	Complete	750377.1	8286790.8	124.0	Aircore	9	-	-90
ARAC1137	Victoria	Complete	750391.6	8286803.9	124.0	Aircore	9	-	-90

Hole_ID	Prospect	Status	AMGE	AMGN	RL	Hole Type	Depth (m)	Azimuth	Dip
ARAC1138	Victoria	Complete	750418.2	8286823.6	124.0	Aircore	9	-	-90
ARAC1148	Victoria	Complete	750568.2	8287011.9	124.0	Aircore	6	-	-90
ARAC1149	Victoria	Complete	750583.9	8287022.5	124.0	Aircore	9	-	-90
ARAC1151	Victoria	Complete	750765.2	8287247.0	124.0	Aircore	9	-	-90
ARAC1152	Victoria	Complete	750777.3	8287265.8	124.0	Aircore	9	-	-90
ARAC1153	Victoria	Complete	750792.6	8287285.7	124.0	Aircore	9	-	-90
ARAC1154	Victoria	Complete	750826.9	8287300.6	124.0	Aircore	12	-	-90
ARAC1155	Victoria	Complete	750824.7	8287319.3	124.0	Aircore	6	-	-90
ARAC1156	Victoria	Complete	750841.9	8287337.3	124.0	Aircore	9	-	-90
ARAC1157	Victoria	Complete	750853.5	8287359.5	124.0	Aircore	15	-	-90
ARAC1158	Victoria	Complete	750868.9	8287383.9	124.0	Aircore	9	-	-90
ARAC1159	Victoria	Complete	750889.8	8287402.2	124.0	Aircore	9	-	-90
ARAC1160	Victoria	Complete	750904.4	8287417.0	124.0	Aircore	12	-	-90
ARAC1161	Victoria	Complete	750915.6	8287433.0	124.0	Aircore	9	-	-90
ARAC1162	Victoria	Complete	750931.4	8287457.4	124.0	Aircore	12	-	-90
ARAC1163	Victoria	Complete	750951.2	8287472.6	124.0	Aircore	12	-	-90
ARAC1164	Victoria	Complete	750404.9	8286475.3	124.0	Aircore	9	-	-90
ARAC1165	Victoria	Complete	750416.9	8286498.5	124.0	Aircore	9	-	-90
ARAC1169	Victoria	Complete	750603.8	8286729.5	124.0	Aircore	12	-	-90
ARAC1170	Victoria	Complete	750616.8	8286749.3	124.0	Aircore	9	-	-90
ARAC1171	Victoria	Complete	750635.2	8286765.3	124.0	Aircore	15	-	-90
ARAC1172	Victoria	Complete	750649.7	8286787.1	124.0	Aircore	12	-	-90
ARAC1173	Victoria	Complete	750667.2	8286801.3	124.0	Aircore	21	-	-90
ARAC1174	Victoria	Complete	750678.5	8286831.4	124.0	Aircore	15	-	-90
ARAC1175	Victoria	Complete	750695.8	8286845.1	124.0	Aircore	9	-	-90
ARAC1176	Victoria	Complete	750713.7	8286864.9	124.0	Aircore	9	-	-90
ARAC1177	Victoria	Complete	750729.8	8286886.7	124.0	Aircore	9	-	-90
ARAC1178	Victoria	Complete	750743.8	8286903.1	124.0	Aircore	9	-	-90
ARAC1179	Victoria	Complete	750754.6	8286926.3	124.0	Aircore	9	-	-90
ARAC1180	Victoria	Complete	750773.1	8286943.0	124.0	Aircore	12	-	-90
ARAC1181	Victoria	Complete	750784.2	8286963.9	124.0	Aircore	12	-	-90
ARAC1182	Victoria	Complete	750798.8	8286985.3	124.0	Aircore	9	-	-90
ARAC1183	Victoria	Complete	750818.3	8287000.9	124.0	Aircore	6	-	-90
ARAC1184	Victoria	Complete	750823.2	8287020.3	124.0	Aircore	9	-	-90
ARAC1186	Victoria	Complete	750765.4	8286281.1	124.0	Aircore	15	-	-90
ARAC1187	Victoria	Complete	750777.7	8286296.8	124.0	Aircore	16	-	-90
ARAC1188	Victoria	Complete	750798.8	8286309.6	124.0	Aircore	12	-	-90
ARAC1189	Victoria	Complete	750796.7	8286334.6	124.0	Aircore	9	-	-90
ARAC1190	Victoria	Complete	750825.4	8286347.6	124.0	Aircore	9	-	-90
ARAC1191	Victoria	Complete	750841.5	8286370.2	124.0	Aircore	12	-	-90
ARAC1192	Victoria	Complete	750849.3	8286390.9	124.0	Aircore	9	-	-90
ARAC1193	Victoria	Complete	750870.3	8286411.2	124.0	Aircore	12	-	-90
ARAC1194	Victoria	Complete	750881.2	8286433.9	124.0	Aircore	9	-	-90
ARAC1195	Victoria	Complete	750899.0	8286449.2	124.0	Aircore	9	-	-90
ARAC1196	Victoria	Complete	750917.4	8286470.7	124.0	Aircore	12	-	-90

Hole_ID	Prospect	Status	AMGE	AMGN	RL	Hole Type	Depth (m)	Azimuth	Dip
ARAC1197	Victoria	Complete	750934.8	8286485.6	124.0	Aircore	12	-	-90
ARAC1198	Victoria	Complete	750944.9	8286507.4	124.0	Aircore	12	-	-90
ARAC1199	Victoria	Complete	750959.7	8286531.6	124.0	Aircore	9	-	-90
ARAC1200	Victoria	Complete	750973.4	8286550.7	124.0	Aircore	12	-	-90
ARAC1201	Victoria	Complete	750987.5	8286570.0	124.0	Aircore	18	-	-90
ARAC1202	Victoria	Complete	751005.2	8286587.0	124.0	Aircore	25	-	-90
ARAC1203	Victoria	Complete	751023.0	8286608.6	124.0	Aircore	9	-	-90
ARAC1204	Victoria	Complete	751035.2	8286630.9	124.0	Aircore	9	-	-90
ARAC1205	Victoria	Complete	751057.2	8286647.4	124.0	Aircore	9	-	-90
ARAC1206	Victoria	Complete	751067.7	8286668.6	124.0	Aircore	12	-	-90
ARAC1207	Victoria	Complete	751082.3	8286688.7	124.0	Aircore	15	-	-90
ARAC1208	Victoria	Complete	751097.8	8286707.0	124.0	Aircore	12	-	-90
ARAC1209	Victoria	Complete	751115.8	8286725.7	124.0	Aircore	9	-	-90
ARAC1210	Victoria	Complete	751129.5	8286746.3	124.0	Aircore	9	-	-90
ARAC1211	Victoria	Complete	751140.8	8286770.7	124.0	Aircore	9	-	-90
ARAC1212	Victoria	Complete	751159.4	8286786.9	124.0	Aircore	9	-	-90
ARAC1213	Victoria	Complete	751175.5	8286805.6	124.0	Aircore	9	-	-90
ARAC1214	Victoria	Complete	751189.1	8286826.3	124.0	Aircore	6	-	-90
ARAC1215	Victoria	Complete	751214.7	8286844.2	124.0	Aircore	9	-	-90
ARAC1216	Victoria	Complete	751227.6	8286863.3	124.0	Aircore	9	-	-90
ARAC1217	Victoria	Complete	751239.0	8286885.9	124.0	Aircore	9	-	-90
ARAC1218	Victoria	Complete	751262.4	8286898.1	124.0	Aircore	9	-	-90
ARAC1219	Victoria	Complete	751274.1	8286923.4	124.0	Aircore	6	-	-90
ARAC1220	Victoria	Complete	751286.1	8286946.7	124.0	Aircore	9	-	-90
ARAC1221	Victoria	Complete	751299.1	8286964.3	124.0	Aircore	9	-	-90
ARAC1222	Victoria	Complete	751312.6	8286981.3	124.0	Aircore	12	-	-90
ARAC1223	Victoria	Complete	751333.6	8287000.4	124.0	Aircore	18	-	-90
ARAC1224	Victoria	Complete	751346.9	8287024.9	124.0	Aircore	12	-	-90
ARAC1225	Victoria	Complete	751363.6	8287040.3	124.0	Aircore	9	-	-90
ARAC1226	Victoria	Complete	751379.3	8287060.9	124.0	Aircore	15	-	-90
ARAC1227	Victoria	Complete	751390.6	8287081.8	124.0	Aircore	15	-	-90
ARAC1228	Victoria	Complete	751407.0	8287100.5	124.0	Aircore	9	-	-90
ARAC1229	Victoria	Complete	751425.0	8287120.5	124.0	Aircore	9	-	-90
ARAC1230	Victoria	Complete	751434.0	8287134.3	124.0	Aircore	9	-	-90
ARAC1231	Airstrip	Complete	745345.0	8292608.0	126.0	Aircore	9	-	-90
ARAC1232	Airstrip	Complete	745369.4	8292602.7	126.0	Aircore	9	-	-90
ARAC1233	Airstrip	Complete	745393.9	8292597.3	126.0	Aircore	9	-	-90
ARAC1234	Airstrip	Complete	745418.3	8292592.0	126.0	Aircore	9	-	-90
ARAC1235	Airstrip	Complete	745442.7	8292586.7	126.0	Aircore	9	-	-90
ARAC1236	Airstrip	Complete	745467.1	8292581.4	126.0	Aircore	9	-	-90
ARAC1237	Airstrip	Complete	745491.6	8292576.0	126.0	Aircore	9	-	-90
ARAC1238	Airstrip	Complete	745516.0	8292570.7	126.0	Aircore	9	-	-90
ARAC1239	Airstrip	Complete	745540.4	8292565.4	126.0	Aircore	9	-	-90
ARAC1240	Airstrip	Complete	745564.8	8292560.1	126.0	Aircore	9	-	-90
ARAC1241	Airstrip	Complete	745589.3	8292554.7	126.0	Aircore	9	-	-90

Hole_ID	Prospect	Status	AMGE	AMGN	RL	Hole Type	Depth (m)	Azimuth	Dip
ARAC1242	Airstrip	Complete	745613.7	8292549.4	126.0	Aircore	9	-	-90
ARAC1243	Airstrip	Complete	745638.1	8292544.1	126.0	Aircore	9	-	-90
ARAC1244	Airstrip	Complete	745662.5	8292538.8	126.0	Aircore	9	-	-90
ARAC1245	Airstrip	Complete	745687.0	8292533.4	126.0	Aircore	9	-	-90
ARAC1246	Airstrip	Complete	745711.4	8292528.1	126.0	Aircore	9	-	-90
ARAC1247	Airstrip	Complete	745735.8	8292522.8	126.0	Aircore	6	-	-90
ARAC1248	Airstrip	Complete	745760.2	8292517.5	126.0	Aircore	6	-	-90
ARAC1249	Airstrip	Complete	745784.7	8292512.1	126.0	Aircore	6	-	-90
ARAC1250	Airstrip	Complete	745809.1	8292506.8	126.0	Aircore	6	-	-90
ARAC1251	Airstrip	Complete	745833.5	8292501.5	126.0	Aircore	9	-	-90
ARAC1252	Airstrip	Complete	745857.9	8292496.2	126.0	Aircore	9	-	-90
ARAC1253	Airstrip	Complete	745882.4	8292490.8	126.0	Aircore	9	-	-90
ARAC1254	Airstrip	Complete	745906.8	8292485.5	126.0	Aircore	6	-	-90
ARAC1255	Airstrip	Complete	745931.2	8292480.2	126.0	Aircore	6	-	-90
ARAC1256	Airstrip	Complete	745955.7	8292474.9	126.0	Aircore	9	-	-90
ARAC1257	Airstrip	Complete	745980.1	8292469.5	126.0	Aircore	9	-	-90
ARAC1258	Airstrip	Complete	746004.5	8292464.2	126.0	Aircore	9	-	-90
ARAC1259	Airstrip	Complete	746028.9	8292458.9	126.0	Aircore	6	-	-90
ARAC1260	Airstrip	Complete	746053.4	8292453.6	126.0	Aircore	6	-	-90
ARAC1261	Airstrip	Complete	746077.8	8292448.2	126.0	Aircore	9	-	-90
ARAC1262	Airstrip	Complete	746102.2	8292442.9	126.0	Aircore	9	-	-90
ARAC1263	Airstrip	Complete	746126.6	8292437.6	126.0	Aircore	13	-	-90
ARAC1264	Airstrip	Complete	746151.1	8292432.3	126.0	Aircore	6	-	-90
ARAC1265	Airstrip	Complete	746175.5	8292426.9	126.0	Aircore	6	-	-90
ARAC1266	Airstrip	Complete	746199.9	8292421.6	126.0	Aircore	6	-	-90
ARAC1267	Airstrip	Complete	746224.3	8292416.3	126.0	Aircore	6	-	-90
ARAC1268	Airstrip	Complete	746248.8	8292410.9	126.0	Aircore	8	-	-90
ARAC1269	Airstrip	Complete	746273.2	8292405.6	126.0	Aircore	9	-	-90
ARAC1270	Airstrip	Complete	746297.6	8292400.3	126.0	Aircore	9	-	-90
ARAC1271	Airstrip	Complete	746322.0	8292395.0	126.0	Aircore	6	-	-90
ARAC1272	Airstrip	Complete	746346.5	8292389.6	126.0	Aircore	12	-	-90
ARAC1273	Airstrip	Complete	746370.9	8292384.3	126.0	Aircore	9	-	-90
ARAC1274	Airstrip	Complete	746395.3	8292379.0	126.0	Aircore	9	-	-90
ARAC1275	Kapok	Complete	742919.0	8299089.0	120.0	Aircore	13	-	-90
ARAC1276	Kapok	Complete	742919.0	8299097.0	120.0	Aircore	15	-	-90
ARAC1277	Kapok	Complete	742919.0	8299110.0	120.0	Aircore	16	-	-90
ARAC1278	Kapok	Complete	742919.0	8299119.0	120.0	Aircore	15	-	-90
ARAC1279	Kapok	Complete	742919.0	8299128.0	120.0	Aircore	19	-	-90

APPENDIX 2. 2025 RC / DD DRILLING COLLAR TABLE

Hole_ID	Prospect	Status	AMGE	AMGN	RL	Hole Type	Depth (m)	Azimuth	Dip
ARDH097	Alice Queen	Completed	745286.8	8292593.6	126.7	RC	270	-53	132
ARDH098	Alice Queen	Completed	745291.0	8292492.7	122.5	RC	270	-53	138
ARDH099	Alice Queen	Completed	745301.9	8292492.1	123.2	RC	270	-58	162
ARDH100	Alice Queen	Completed	745280.9	8292468.5	121.2	RC	270	-50	120
ARDH101	Alice Queen	Completed	745278.7	8292445.5	118.6	RC	270	-50	96
ARDH102	Alice Queen	Completed	745310.8	8292438.6	119.3	RC	270	-50	180
ARDH103	Alice Queen	Completed	745282.8	8292411.9	116.8	RC	270	-50	90
ARDH104	Alice Queen	Completed	745282.2	8292407.4	117.1	RC	255	-50	132
ARDH105	Alice Queen	Completed	745188.9	8292594.6	125.0	RC	255	-50	126
ARDH106	Alice Queen	ABAND	745188.9	8292598.6	125.3	RC	45	-50	110
ARDH107	Alice Queen	Completed	745206.3	8292555.6	122.2	RC	75	-52	90
ARDH108	One Mile	Completed	745092.1	8292558.9	124.6	RC	255	-50	162
ARDH109	Alice Queen	Completed	745182.3	8292348.0	116.0	RC	90	-52	126
ARDH110	One Mile	Completed	745201.5	8292791.4	121.2	RC	90	-50	102
ARDH111	One Mile	Completed	745184.5	8292792.8	120.3	RC	90	-64	162
ARDH112	Alice Queen	ABAND	745350.2	8292588.0	127.5	RC	270	-57	76
ARDH113	Alice Queen	Completed	745330.2	8292591.7	126.8	RC	270	-53	120
ARDH114	One Mile	Completed	745180.0	8292859.6	117.3	RC	90	-50	108
ARDH115	One Mile	Completed	745144.6	8292917.7	120.4	RC	70	-50	180
ARDH116	One Mile	Completed	745098.4	8292959.0	123.7	RC	70	-50	192
ARDH122	One Mile	Completed	745144.2	8292760.1	121.9	RC	88	-50	156
ARDH123	One Mile	Completed	745216.8	8293069.9	126.9	RC	270	-50	126
ARDH124	One Mile	Completed	744866.0	8293099.9	124.3	RC	90	-62	200
ARDH125	One Mile	Completed	744985.5	8292928.2	121.2	RC	270	-60	71
ARDH126	One Mile	Completed	745014.2	8292920.4	122.2	RC	270	-60	102
ARDH127	One Mile	Complete	745095.2	8292792.3	118.4	RC_DD	270	-62	270.2
ARDH128	Alice Queen	Incomplete	745379.7	8292351.6	117.1	RC_DD	255	-60	150
ARDH130	Alice Queen	Incomplete	745143.9	8292521.0	120.8	RC_DD	270	-53	140
ARDH131	One Mile	Incomplete	745104.9	8292724.9	122.5	RC_DD	85	-60	120
ARDH132	One Mile	Completed	745060.7	8293002.4	124.8	RC	65	-50	222
ARDH133	One Mile	Complete	745020.1	8292759.4	118.6	RC_DD	87	-53	399
ARDH134	Alice Queen	Incomplete	745405.8	8292393.4	119.7	RC_DD	248	-50	150
JDDH007	Jerry Dodds	Completed	747243.1	8288773.5	119.4	RC	218	-60	60
JDDH008	Jerry Dodds	Completed	747251.8	8288784.3	119.7	RC	218	-60	90
JDDH009	Jerry Dodds	Completed	747563.5	8288544.8	121.4	RC	218	-60	60
JDDH011	Jerry Dodds	Completed	747573.8	8288556.8	121.1	RC	218	-60	90
JDDH012	Jerry Dodds	Completed	747935.2	8288379.5	125.2	RC	218	-60	60
JDDH013	Jerry Dodds	Completed	747945.1	8288406.2	124.5	RC	218	-60	90
JDDH014	Jerry Dodds	Completed	748252.8	8288202.0	123.0	RC	218	-60	72
JDDH015	Jerry Dodds	Completed	748263.8	8288215.8	122.4	RC	218	-60	90
PODH010	Posie	Completed	741777.7	8297630.4	115.9	RC	60	-60	78
PODH011	Posie	Completed	741755.9	8297611.6	115.0	RC	60	-61	110
PODH012	Posie	Incomplete	741865.6	8297464.8	116.3	RC	60	-60	90

Hole_ID	Prospect	Status	AMGE	AMGN	RL	Hole Type	Depth (m)	Azimuth	Dip
PODH014	Posie	Completed	742120.6	8297255.6	114.8	RC	60	-60	78
PODH015	Posie	ABAND	742220.5	8296867.2	113.8	RC	60	-60	114
PODH016	Posie	Complete	742206.8	8296848.2	114.2	RC_DD	60	-67	171.2
PODH017	Posie	Completed	742360.6	8296830.0	116.8	RC	60	-60	84
PODH018	Posie	Completed	742342.5	8296817.8	115.7	RC	60	-60	84
PODH019	Posie	Completed	742318.5	8296801.6	114.9	RC	60	-60	84
PODH020	Posie	Completed	742293.6	8296789.3	115.4	RC	60	-60	80
PODH021	Posie	Completed	742619.7	8296481.4	120.2	RC	60	-60	60
PODH022	Posie	Completed	742568.0	8296448.8	118.2	RC	60	-60	60
PODH023	Posie	Completed	742543.2	8296432.2	116.7	RC	60	-60	60
PODH024	Posie	Completed	741688.4	8297836.0	117.2	RC	60	-60	60
PODH025	Posie	Completed	741662.1	8297778.2	116.0	RC	60	-55	100
PODH026	Posie	Completed	742150.2	8297034.9	112.8	RC	60	-50	60
PODH027	Posie	Completed	742122.6	8297017.4	112.6	RC	60	-65	120
PODH028	Posie	Complete	741849.8	8297454.2	116.5	RC_DD	60	-73	159.4
PODH029	Posie	Completed	741994.5	8297300.3	112.5	RC	60	-60	84
PODH030	Posie	Completed	742500.8	8296422.4	115.0	RC	60	-60	60
SHDH006	Tanna/The Shadows	ABAND	744150.6	8295313.6	133.2	RC	60	-60	114
SHDH007	Tanna/The Shadows	ABAND	744003.9	8295448.6	133.8	RC	60	-60	120
SHDH008	Tanna/The Shadows	Completed	743873.9	8295836.7	131.5	RC	60	-60	102
SHDH009	Tanna/The Shadows	Completed	743828.8	8295813.9	130.5	RC	60	-60	78
SHDH010	Tanna/The Shadows	Completed	743705.3	8295508.7	129.1	RC	60	-60	80
SHDH015	Tanna/The Shadows	Completed	743665.3	8295480.3	128.5	RC	60	-60	100
SHDH016	Tanna/The Shadows	ABAND	744223.8	8294412.2	126.7	RC	60	-60	66
SHDH017	Tanna/The Shadows	Completed	744202.7	8294403.0	127.1	RC	60	-60	72
SHDH018	Tanna/The Shadows	Completed	744321.3	8294286.6	124.4	RC	60	-60	72
SHDH019	Tanna/The Shadows	Completed	744275.2	8294296.1	124.8	RC	60	-60	126
SHDH020	Tanna/The Shadows	ABAND	744165.0	8295328.5	133.7	RC	60	-60	78
STDH020	Alice	Completed	746068.4	8290569.2	117.4	RC	60	-68	211
STDH021	Alice	Completed	746105.7	8290504.9	118.4	RC	60	-55	100
STDH022	Alice	Completed	746085.8	8290492.2	118.7	RC	60	-62	132
STDH023	Alice	Completed	746136.3	8290606.5	118.8	RC	60	-57	110
STDH024	Alice	Completed	746110.2	8290599.2	118.0	RC	60	-67	162
STDH025	Alice	Completed	746083.7	8290649.2	119.6	RC	60	-58	150
STDH026	Alice	Completed	746089.0	8290692.3	120.0	RC	60	-56	120
STDH027	Alice	Completed	746069.9	8290751.7	121.4	RC	60	-60	120
STDH028	Alice	Completed	746026.5	8290728.8	119.2	RC	60	-58	160
STDH029	Alice	Completed	746050.2	8290820.2	119.3	RC	60	-60	100
STDH030	Alice	Completed	745983.2	8290806.4	117.8	RC	60	-54	174
STDH031	Julie Anne	ABAND	745927.6	8290817.2	118.8	RC	60	-54	138
STDH032	Alice	Completed	745994.6	8290858.3	119.3	RC	60	-52	120
STDH033	Julie Anne	Completed	745853.9	8290859.3	121.6	RC	60	-56	170
STDH034	Eureka	Completed	745883.8	8291116.7	132.0	RC	60	-53	100
STDH035	Eureka	Completed	745852.2	8291098.1	130.6	RC	60	-75	192

Hole_ID	Prospect	Status	AMGE	AMGN	RL	Hole Type	Depth (m)	Azimuth	Dip
STDH036	Eureka	ABAND	745796.9	8291181.2	132.7	RC	60	-50	108
STDH037	Eureka	Completed	745752.4	8291158.7	130.6	RC	60	-55	144
STDH038	Eureka	Completed	745610.1	8291093.5	126.5	RC	60	-72	150
VRDH006	Victoria	Completed	746892.5	8289649.0	122.2	RC	60	-60	78
VRDH007	Victoria	Completed	747235.9	8289441.0	124.5	RC	60	-67	60
VRDH009	Victoria	Completed	747215.7	8289422.8	124.4	RC	34	-60	60
VRDH010	Victoria	Completed	747201.4	8289398.5	124.8	RC	34	-60	60
VRDH011	Victoria	Completed	747893.7	8288964.4	128.4	RC	34	-60	60
VRDH012	Victoria	Completed	747880.1	8288949.9	127.3	RC	34	-60	60
VRDH013	Victoria	Completed	747856.6	8288928.2	127.4	RC	60	-67	66
VRDH014	Victoria	Completed	748033.1	8288839.2	129.0	RC	60	-60	60
VRDH015	Victoria	Completed	748002.9	8288795.1	128.6	RC	34	-60	60
VRDH016	Victoria	Completed	748214.3	8288755.3	130.1	RC	60	-60	60
VRDH017	Victoria	Completed	748192.0	8288710.9	129.4	RC	34	-60	60
VRDH018	Victoria	Completed	748162.1	8288658.7	126.7	RC	34	-60	60
VRDH019	Victoria	Completed	748450.4	8288471.0	129.5	RC	60	-60	66
VRDH020	Victoria	Completed	748442.7	8288445.3	128.6	RC	60	-60	66
VRDH021	Victoria	Completed	748436.1	8288418.9	127.9	RC	60	-60	60
VRDH022	Victoria	Completed	748431.2	8288395.3	126.9	RC	60	-60	60
VRDH023	Victoria	Completed	748506.4	8288248.9	125.4	RC	34	-60	60
VRDH024	Victoria	Completed	748491.0	8288232.8	124.5	RC	34	-60	60
VRDH025	Victoria	Completed	746752.0	8289790.1	123.3	RC	34	-60	66
VRDH026	Victoria	Completed	746732.8	8289767.7	123.3	RC	34	-60	60
WLDH001	White Lion	Completed	756624.0	8283324.2	148.4	RC	38	-60	78
WLDH003	White Lion	Completed	756777.6	8283198.3	141.4	RC	38	-60	108
WLDH004	White Lion	Completed	756745.2	8283152.6	142.4	RC	38	-60	192
WLDH005	White Lion	Completed	756229.4	8282799.4	152.3	RC	60	-60	156
WLDH006	White Lion	Completed	756361.7	8282987.4	151.2	RC	38	-55	162
WLDH008	White Lion	ABAND	756458.1	8282781.2	154.7	RC	308	-70	168
WLDH010	White Lion	Completed	756265.5	8282528.2	154.1	RC	38	-70	180

APPENDIX 3. 2025 AIRCORE DRILLING SIGNIFICANT INTERVAL TABLE

Prospect	Hole ID	From (m)	To (m)	Downhole Intersection (m)	Au (ppm)	As (ppm)	Sb (ppm)
KAPOK	ARAC1275	0	13	13	0.11	312	12
	Incl.	7	11	4	0.21	545	19
	ARAC1276	0	15	15	0.25	504	19
	Incl.	0	3	3	0.39	405	14
	Incl.	7	10	3	0.29	677	25
	Incl.	2	3	1	0.44	290	10
	ARAC1277	0	16	16	0.23	516	19
	Incl.	4	10	6	0.35	768	27
	Incl.	4	7	3	0.39	704	31
	Incl.	8	9	1	0.46	1485	32
	ARAC1278	0	15	14	0.39	908	30
	Incl.	4	8	4	0.7	1396	43
	Incl.	4	5	1	0.89	1800	68
	Incl.	10	15	5	0.42	972	33
	ARAC1279	0	12	12	0.06	155	5
	Incl.	6	8	2	0.15	212	9
SHADOWS	ARAC0809	0	5	5	0.22	3.1	
	Incl.	0	2	2	0.46	5	
	ARAC0817	14	16	2	0.68	16.9	3
	Incl.	15	16	1	1.11	6.1	2
	ARAC0825	6	9	3	0.07	500	12
	ARAC0833	2	3	1	0.25	46	12
	ARAC0836	6	9	3	0.09	4	4
	ARAC0842	8	10	2	0.09	5	8
	ARAC0863	2	6	4	0.3	16	2
		12	15	3	0.11	205	8
	ARAC0866	16	18	2	0.05	163	6
	ARAC0868	17	19	2	0.05	24	1
	ARAC0878	5	8	3	0.05	161	9
		9	12	3	0.06	333	17
VICTORIA	ARAC0927	13	16	3	0.05	2202	313

Prospect	Hole ID	From (m)	To (m)	Downhole Intersection (m)	Au (ppm)	As (ppm)	Sb (ppm)
	ARAC1002	4	12	8	0.02	129	25
	ARAC1008	11	13	2	0.05	36	4
	ARAC1041	6	9	3	0.03	132	10
	ARAC1042	5	7	2	0.02	21	2
	ARAC1045	5	7	2	0.03	84	8
	ARAC1195	7	9	2	0.02	17	15

APPENDIX 4. 2025 RC DRILLING SIGNIFICANT INTERVAL TABLE (VICTORIA)

Prospect	Hole ID	From (m)	To (m)	Downhole Intersection (m)	Au (g/t)
VICTORIA	VRDH007	22	24	2	0.8
	VRDH013	18	19	1	0.4
		22	27	5	0.4
	Incl.	22	23	1	0.8
		25	26	1	0.8
		45	46	1	0.4
		50	52	2	0.9
	VRDH014	20	25	5	0.4
VICTORIA	Incl.	20	22	2	0.8
	VRDH015	20	21	1	0.4
VICTORIA		35	36	1	0.3
	VRDH020	55	56	1	0.3

APPENDIX 5. JORC CODE TABLE 1**Section 1: Sampling Techniques and Data**

CRITERIA	JORC Code explanation	Commentary
SAMPLING TECHNIQUES	<p>Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</p>	<p>Diamond drilling (DD), Reverse circulation (RC) drilling and Aircore drilling (AC) was used to obtain samples for geological logging and assaying.</p> <p>Aircore drilling was completed to sample shallow basement.</p> <p>Reverse circulation drilling (precollars) was used to obtain 1m samples where quartz veining is noted and 3m composite riffle split samples for zones with no substantial quartz veining.</p> <p>Diamond core was halved with a core saw through zones where alteration and quartz veining were present and sampled at 1m intervals or at other intervals to match the veining and geology.</p> <p>The drill holes were sited to test geophysical targets/surface geochemical targets as well as previous drilling results.</p>
	<p>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</p>	<p>1m to 3m AC samples were collected using a spear of samples collected from the drillholes.</p> <p>1m RC samples were automatically split using a cyclone-mounted cone splitter. 3m RC samples were automatically split as 1m samples using a cyclone-mounted cone splitter, then manually composited to 3m samples using a riffle splitter. The splitter cleaned after each interval with a compressed air gun.</p> <p>Core and RC samples were submitted to the laboratory and sample preparation consisted of the drying of the sample, the entire sample being crushed to 70% passing 6mm and pulverized to 85% passing 75 microns in a ring and puck pulveriser. All samples are assayed for gold by 50g fire assay with AAS finish. Multielement analysis is completed using an ICP-MS analysis.</p> <p>Screen fire analysis is completed on zones which contain multiple visible gold occurrences. 1kg pulp wet or dry screened to 75 microns. Duplicate 30g assay on screen undersize. Assay of entire oversize fraction.</p>
	<p>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.</p>	<p>Economic gold mineralisation is measured in terms of parts per million and therefore rigorous sampling techniques must be adopted to ensure quantitative, precise measurements of gold concentration. If gold is present as medium – coarse grains, the entire sampling, sub-sampling, and analytical process must be more stringent.</p> <p>At Alice River, gold can be visible and therefore there may be inherent sampling problems. Procedures used to manage this problem are documented elsewhere in relevant sub-sections of this table.</p>

CRITERIA	JORC Code explanation	Commentary
DRILLING TECHNIQUES	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit, or other type, whether core is oriented and if so, by what method, etc).	RC drilling used a 5.5" face sampling RC hammer. AC drilling used NQ-size face sampling AC blade. Diamond drilling was all HQ or NQ3 (triple tube) drill diameter. Some core holes were diamond tails using RC pre-collars, others are diamond drilled from surface. Orientation gear (diamond drilling) – Electronic digital core orientation system Survey Gear – Electronic digital north-seeking gyroscope
DRILL SAMPLE RECOVERY	Method of recording and assessing core and chip sample recoveries and results assessed.	For diamond core drilling core recoveries are measured by reconstructing core into continuous runs on an angle iron cradle for orientation marking. An average core recovery of greater than 98% has been achieved. No additional measures were required as core recoveries are deemed to be high, and samples considered to be representative. For RC and AC sample recoveries of less than approximately 80%, these are noted in the geological/sampling log with a visual estimate of the actual recovery. Very few samples were recorded with recoveries of less than 80%. No wet RC samples were recovered.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Use experienced driller, appropriate drilling fluids and reputable drilling company.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No assessment has been completed to determine if there is a relationship between sample recovery and grade, and whether there is any potential for sample bias associated with the different drilling methods used to date.
LOGGING	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Geological logging was carried out on all diamond core and RC and AC chips. This included lithology, alteration, sulphide percentages and vein percentages. For diamond core, structure type is recorded along with structural orientation data (alpha and beta measurements) where the drill core is orientated. Geological logging of alteration type, alteration intensity, vein type and textures, % of veining, and sulphide composition. All diamond core and RC and AC chip trays are photographed.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging of the core is both qualitative and quantitative in nature. Photographs of core and rock chips are also collected
	The total length and percentage of the relevant intersections logged.	All drill holes are logged in full.
SUB-SAMPLING TECHNIQUES AND SAMPLE PREPARATION	If core, whether cut or sawn and whether quarter, half or all core taken.	All the core is half core sampled within zones of visible alteration. Where the core is orientated, the left-hand side / half of the core is sampled so that the core orientation line remains in the core tray.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples are split using a cyclone mounted rotary cone splitter 87.5%:12.5% on one metre samples. In zones where visual alteration is not present, three metre sample

CRITERIA	JORC Code explanation	Commentary
		composites are created using the one metre sample via a riffle splitter. Compressed air was used to clean the splitter after each sample interval. Duplicated samples were collected in visual ore zones and at a frequency of at least 1 in 20. AC samples were collected with a spear of each sample on one metre samples and composited over the length of the basement rocks intersected.
	For all sample types, the nature, quality, and appropriateness of the sample preparation technique.	ALS Townsville completed the analysis, and the sample preparation methods are considered appropriate.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	No sub-sampling is undertaken.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Information is collected /logged regarding the type of sample collected (grab or channel) Laboratory duplicate sampling has been completed for the Diamond, RC and AC drilling.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	No formal assessment has been undertaken to quantify the appropriate sample size required for good quality determination of gold content, given the nature of the gold mineralisation.
QUALITY OF ASSAY DATA AND LABORATORY TESTS	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Rock chip samples collected by Pacgold were assayed by ALS Townsville and analysed by fire assay and AAS finish 50g charge. Multielement analysis was completed by four acid digest with ICP-MS finish. Drill core, RC and AC chips are analysed by ALS Townsville and analysed by fire assay and AAS finish 50g charge. Multielement analysis is completed by four acid digest with ICP-MS finish.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools, spectrometers, or handheld XRF instruments have been used to date to determine chemical composition at a semi-quantitative level of accuracy.
	Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	Certified Reference Material (CRM's) standards and blanks are purchased from an external manufacturer, and these are inserted into the sample batches sent to the laboratory at a frequency of 1 in 15.
VERIFICATION OF SAMPLING AND ASSAYING	The verification of significant intersections by either independent or alternative company personnel.	No verification completed
	The use of twinned holes.	No twinned holes have been completed

CRITERIA	JORC Code explanation	Commentary
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	<p>Pacgold has collated the drilling database and created the Alice River Gold Project Access database. This database was imported into Micromine 3d software and validated against old maps and data.</p> <p>Pacgold collects all logging data in a digital format and the data is combined with project database. Logging data is checked and validated in Micromine 3d software.</p> <p>Pacgold geologists have verified the digital database from the previous drilling reports and/or original laboratory reports. Digital data has been compiled from quality scanned tables and plans included in the statutory reports.</p> <p>Pacgold staff have completed field checks and confirmed the location of some drillhole collars and areas of prior gold mining with a standard GPS.</p>
	Discuss any adjustment to assay data.	No adjustments to assay data have been made.
LOCATION OF DATA POINTS	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	<p>All PGO drill holes are surveyed using a DGPS to an accuracy (x,y,z) of <10cm.</p> <p>Surface sample data is located using a GPS to an accuracy of +/-5m</p>
	Specification of the grid system used.	The co-ordinate system used in the Pacgold database is MGA zone 54, GDA94 Datum.
	Quality and adequacy of topographic control.	Quality of the topographic control data is poor and is currently reliant on public domain data.
DATA SPACING AND DISTRIBUTION	Data spacing for reporting of Exploration Results.	Drill hole spacing is irregular due to early stage exploration.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	<p>There are no Mineral Resources or Ore Reserves reported in this announcement.</p> <p>The most densely drilled prospect is AQ (Central Target). With further drilling, data spacing and distribution may support Mineral Resource estimation.</p>
	Whether sample compositing has been applied.	All reported results are part of either 1m sample intervals or 3m composites as described above.
ORIENTATION OF DATA IN RELATION TO GEOLOGICAL STRUCTURE	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias has been identified in connection with the orientation of the drilling.

CRITERIA	JORC Code explanation	Commentary
SAMPLE SECURITY	The measures taken to ensure sample security.	Samples are securely transported by Pacgold staff to a commercial transport company who transports the samples to ALS Townsville.
AUDITS OR REVIEWS	The results of any audits or reviews of sampling techniques and data.	Pacgold has not completed a review of the actual sampling techniques, as this is not possible. Pacgold has reviewed company reports describing sampling techniques. Pacgold has reviewed and where practical validated the database it has compiled.

Section 2: Reporting of Exploration Results

CRITERIA	JORC Code explanation	Commentary
MINERAL TENEMENT AND LAND TENURE STATUS	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Alice River Gold Project is secured by 13 tenements, including 8 granted Mining Leases (MLs), and 5 Exploration Permits for Minerals (EPMs), for total of approximately 377 square kilometres. Refer to September 2025 Pacgold Quarterly Report to the ASX for tenement details.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All tenements are in good standing.
EXPLORATION DONE BY OTHER PARTIES	Acknowledgment and appraisal of exploration by other parties.	<p>Refer to IGR in Company's IPO Prospectus released to ASX on 6 July 2021 for further information. A summary of previous exploration and mining is presented below.</p> <p>1903: Gold mining commenced at Alice River Gold Project.</p> <p>1903 – 1917: Production of 3,244 oz Au at grade of around 38 g/t Au.</p> <p>1987 – 1998: Cyprus, Beckstar, Golden Plateau, Goldminco and Subloc International completed regional geochemical sampling programs, rock chip sampling, RAB/auger drilling, airtrack drilling, ground magnetic surveys, IP and VLF-EM geophysical surveys, costeanning programs, and numerous drilling programmes (RC and diamond drilling). Several estimates of the tonnage and grade of mineralisation, not compliant with the JORC Code were made.</p> <p>1999 – 2000: A total of 2,745 oz gold was produced from 36,000 t of ore by Beckstar.</p> <p>2001: Beckstar entered Administration and Tinpitch acquired the project.</p> <p>2017: Spitfire entered a joint venture deal with Tinpitch and completed RC drilling.</p> <p>The historical drilling and trenching data from Posie have been included in the Pacgold database and assessed to determine the relevance of the information to the current drilling program. The accuracy of the positions of historical drillholes at Posie is not reliable in the database and therefore all Posie drillholes have been removed from maps or cross sections in publicly released information.</p>
GEOLOGY	Deposit type, geological setting, and style of mineralisation.	The Alice River Gold Project lies within the Alice-Palmer Structural Zone. Gold mineralisation is focused along regional northwest shear zones. The shear zones are largely hosted within the Imooya Granite, a pale grey to white mica-biotite leucogranite (commonly referred in the old reports as an adamellite), of the Siluro-Devonian Kintore Supersuite. At the north end of the Project area

CRITERIA	JORC Code explanation	Commentary
		<p>the shears intersect gneisses and schists of the Sugarbag Creek Quartzite, which forms the lower part of the Mesoproterozoic Holroyd Metamorphics. Mineralisation is considered to be Intrusion Related Gold – epithermal style. The gold-bearing shear zones extend episodically for approximately 50 km strike length. Gold mineralisation is generally hosted in quartz veins, and minor quartz breccias, up to 10 – 15 m wide in places. Gold mineralisation is focused in linear zones up to 150 m strike length.</p> <p>Gold occurs as both fine free gold in quartz or associated with arsenopyrite and stibnite. Green-white quartz-sericite-epidote alteration zones extend 50 – 70 m around the mineralised veins at some deposits but generally the quartz veins display narrow alteration selvages. The weathered (oxide) zones at surface are around 10 – 20 m deep.</p>
DRILL HOLE INFORMATION	<p>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</p> <p>Easting and northing of the drill hole collar.</p> <p>Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar.</p> <p>Dip and azimuth of the hole.</p> <p>Down hole length and interception depth.</p> <p>Hole length.</p>	<p>Drill hole details completed and in progress are presented in Appendices 1 and 2.</p>
	<p>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</p>	<p>Historical drilling and trenching data from Posie have been included in the Pacgold database and assessed to determine the relevance of the information to the current drilling program. The accuracy of the positions of historical drillholes at Posie is not reliable in the database and therefore all Posie drillholes have been removed from maps or cross sections in publicly released information.</p>
DATA AGGREGATION METHODS	<p>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.</p>	<p>Unless specified otherwise, a nominal 0.1g/t Au lower cut-off has been applied incorporating up to 6m of internal dilution below the reporting cut-off grade to highlight zones of gold mineralisation. Refer Appendix 1 and 2.</p> <p>Pacgold have previously been reporting intercepts at 0.3 g/t Au and at 0.5 g/t Au lower cut-offs as well as highlighting >10 g/t Au high grade zones. These cut-offs were selected to highlight the mineralisation results that occur as narrow higher-grade veins, within broader mineralisation zones comprising minor veins and alteration zones. In 2025, the interpretation of gold mineralisation intersected in drilling on the Central and Southern Targets has been reassessed and recalculated</p>

CRITERIA	JORC Code explanation	Commentary
		<p>using a 0.1g/t Au lower cut-off as it is considered that near surface mineralisation presents as an open pit target where 0.1 to 0.2 g/t Au presents a reasonable possible economic cut-off for bulk mining.</p> <p>Deeper drilling by Pacgold has also defined areas on the Central Target where underground mining may be expected as the preferred mining method. Such mining might target both the narrow high-grade zones or allow larger scale bulk stoping underground mining methods. Pacgold will continue drill testing the extent of the mineralisation and continuity of both the high-grade veins and the broader lower-grade gold mineralisation zone to determine the most likely open pit to underground interface and also the scale and likely cut-off for potential underground mine development. It is expected that exploration reporting cut-offs and criteria will be refined when these development aspects become clearer or after the initial Mineral Resource assessment refines the cut-off and thickness selections.</p>
	<p>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</p>	<p>High grade gold intervals internal to broader zones of mineralisation are reported as included intervals. A nominal 1g/t Au cut-off has been applied to reporting high grade gold intervals contained within broader zones of mineralisation. These are routinely specified in the summary results tables.</p>
	<p>The assumptions used for any reporting of metal equivalent values should be clearly stated.</p>	<p>No metal equivalents are reported.</p>
RELATIONSHIP BETWEEN MINERALISATION WIDTHS AND INTERCEPT LENGTHS	<p>These relationships are particularly important in the reporting of Exploration Results.</p> <p>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</p> <p>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').</p>	<p>The orientation of the drilling is generally perpendicular to the strike of the mineralisation but not perpendicular to the dip on the mineralisation. Generally, the true width of the mineralisation is approximately half the intercept width but until we have additional drilling to confirm the exact geometry of the mineralisation the true width is uncertain.</p>
DIAGRAMS	<p>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar</p>	<p>See body of this ASX announcement for appropriate diagrams.</p>

CRITERIA	JORC Code explanation	Commentary
	locations and appropriate sectional views.	
BALANCED REPORTING	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Comprehensive reporting of the drill hole information has been included.
OTHER SUBSTANTIVE EXPLORATION DATA	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	<p>The Alice River Gold Project includes a large amount of exploration data collected by previous companies, including regional stream sediment geochemical data, soil sample and rock chip data, geological mapping data, open hole percussion drilling data, ground magnetics, IP and VLF-EM geophysical survey data, and costean data. Much of this data has been captured and validated into a GIS database.</p> <p>Metallurgical tests of selected mineralised samples including bottle roll cyanide leach tests were conducted by Golden Plateau in 1994, Goldminco in 1999, and by Tinpitch in 2005 and 2006. Gravity concentration tests were also carried out by Goldminco in 1999. Bottle roll cyanide leach testing work produced variable results. Some samples returned low recoveries, whilst other samples produced high recoveries up to 90%. Further metallurgical work is warranted.</p> <p>Further information is in the IGR of the Company's IPO Prospectus released to ASX on 6 July 2021.</p>
FURTHER WORK	<p>The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling).</p> <p>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</p>	<p>Pacgold plans to conduct further surface geological mapping and geochemistry, ground geophysics and Aircore, RC and Diamond drilling across three high-priority target areas over the next two years.</p> <p>See body of this ASX announcement for relevant figures.</p>