

CSAMT Survey Defines a Coherent, Large-Scale Hydrothermal Antimony System

HIGHLIGHTS

- A comprehensive 43-kilometre-controlled-source audio magnetotellurics (CSAMT) survey has successfully identified several geophysical features (conductors) coincident with many historical workings within patented claims at the Antimony Canyon Project, Utah (Figure 1).
- 2D and 3D inversion modelling of the CSAMT data has uncovered a classic and highly prospective geophysical structure suggestive of a large-scale hydrothermal system, including extensive, stacked low-resistivity (conductive) zones hidden beneath a high-resistivity (resistive) cap.
- The features include a coherent conductor, open to the north-northwest and measuring approximately 2.5 km by 1 km, extending from Little Emma GEM workings, and aligning with splay faults mapped by the Utah Geological Survey.
- The broad shallow conductive zones are interpreted as indicating widespread argillic (clay) alteration, a key feature linked to the outflow of mineralising fluids. These zones are considered a prime target horizon for hosting antimony mineralisation.
- The survey has effectively imaged multiple discrete, steeply dipping structural breaks that disrupt the conductive horizons. These were interpreted as the main "feeder structures" responsible for transporting mineralising fluids from depth.
- The intersection of the interpreted feeder structures with the overlying conductive alteration blanket has generated multiple, compelling "walk-up" drill targets at depths of roughly 50 to 150 metres from the surface.

Trigg Minerals Limited (ASX: TMG, OTCQB: TMGLF) is pleased to announce the results and interpretation of a significant Controlled-Source Audio Magnetotellurics (CSAMT) geophysical survey at its 100%-owned Antimony Canyon Project in Garfield County, Utah. The survey aimed to map the subsurface electrical resistivity to identify and define the geological structure controlling known high-grade antimony mineralisation within the project area.

The primary outcome of this comprehensive program is the identification of a large, coherent, and well-preserved geophysical anomaly that corresponds to a widespread, potentially mineralised, hydrothermal system. High-quality raw data was successfully processed and inverted to generate robust 2D cross-sections and a pseudo-3D resistivity block model. This model effectively visualises key features of a classic hydrothermal system and offers a clear framework for immediate, high-confidence drill targeting.

Managing Director Mr. Andre Booyzen stated: "The results from the comprehensive CSAMT survey at Antimony Canyon were exceptional and exceeded our expectations. We did not just identify an anomaly; we successfully mapped what is interpreted to be a complete, large-scale, and well-preserved hydrothermal system potentially bearing antimony mineralisation. The clarity of the data, which showed a classic resistive cap over conductive alteration zones cut by feeder structures, has provided us with immediate, high-confidence drill targets. The scale of this system, at over four kilometres in length, confirmed our belief that Antimony Canyon has the potential to host a globally significant antimony deposit. We look forward to finalising our drill plans and testing these compelling 'walk-up' targets in the coming months."

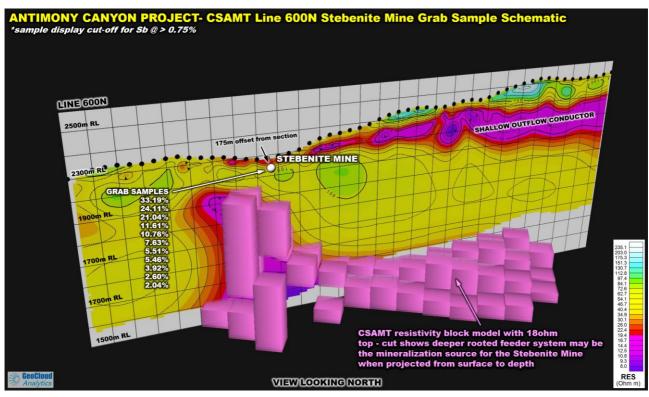


Figure 1. An example of the well-developed resistive silica cap (in cyan-white) above the conductive clayalteration (outflow) zone (in magenta-pink), overlaying a feeder structure (3D block model) with corresponding high-grade Trigg channel sampling within the Stebenite Mine, Line 600N (for previously reported assays refer Trigg's ASX announcement dated 14 August 2025).

PROGRAM DESIGN

The survey, conducted by the specialist geophysical contractor KLM Geoscience between August 15 and September 16, 2025, was comprehensive in both scale and resolution. It involved 12 survey lines, totalling 43,000 line-metres of data collection, covering a significant area (~50%) of the project. Data were collected with a 50 m dipole spacing, enabling high-resolution imaging of the subsurface from near-surface depths to over 750 m. The survey lines were aligned at an azimuth of 58 degrees (N58°E). This alignment was deliberately chosen to be nearly perpendicular to the main northwest-trending structural features believed to influence mineralisation in the area, including a potential fault identified in the interpretation that runs northwest from the historic Little Emma workings. This carefully planned

survey design was deemed optimal for accurately resolving the shape, width, and dip of these key target structures, thereby increasing confidence in the resulting geological model.

GEOPHYSICAL INTERPRETATION

The CSAMT method detects variations in the electrical properties of underground rocks. In hydrothermal mineral systems, these differences are often caused by alteration processes in which hot, chemically active fluids alter the mineral composition of the host rock. The resulting patterns of low-resistivity (conductive) and high-resistivity (resistive) zones can help guide exploration towards mineralisation. Since resistivity responds to hydrological factors such as ion concentration, temperature, and porosity, it can identify the source and pathways of fluid movement that other geological and geophysical methods might overlook. The findings from Antimony Canyon clearly demonstrated these principles.

Resistive Cap Overlying Broad Conductive Outflow Zones

The dominant geophysical architecture across the 4.5 km by 3 km survey area was a distinct, near-surface layer of high electrical resistivity (usually over 200 ohm-m). This resistive layer served as a coherent cap over much larger, shallow zones of very low electrical resistivity (conductive zones, generally between 5 and 40 ohm-m). This clear geophysical stratigraphy was evident in the 2D inversion models for all 12 survey lines and was visualised in the 3D depth-slice plans. This pattern is interpreted as the classic sign of a well-preserved hydrothermal system, a model commonly recognised in modern mineral exploration.

- The upper resistive layer is considered a silica cap. This feature was probably formed by silica deposited from hydrothermal fluids, which hardened and silicified the host rocks. Such caps are essential in forming mineral deposits, as they serve as a relatively impermeable seal. This seal traps and ponding mineralising fluids beneath, causing them to spread laterally and cool gradually, which encourages the efficient precipitation of metals into predictable, concentrated zones.
- The underlying conductive zones are interpreted to signify widespread argillaceous alteration, specifically the transformation of host rock minerals into smectite-group clays. As shown in studies of similar Basin and Range geothermal systems, this type of alteration was a direct chemical indicator of cooling, near-neutral pH hydrothermal fluids. It often resulted in extensive "outflow plumes" as fluids moved laterally away from their main structural pathways. These broad, conductive, clay-altered zones reflected the chemically prepared host rock and are regarded as the primary target horizon for hosting significant, bulk-tonnage antimony mineralisation.

The presence of a well-developed resistive silica cap above the conductive clay-alteration zone is an especially encouraging feature. It shows that the hydrothermal system at Antimony Canyon is well-preserved and hasn't experienced significant erosion. This suggests that the most promising part of the system—the zone directly beneath the silica cap where fluids were trapped and concentrated—was likely to be fully intact and accessible at shallow to moderate depths (Figure 2).

Feeder Structures Identified as Conduits for Mineralisation

While the broad conductive zones represent the target host horizon, the 2D inversion models showed that these sheets were not uniform. They were systematically cut, vertically offset, and domed by a

series of discrete, steeply-dipping, resistive features that extended to depth. These disruptions were clearly imaged on multiple survey lines, particularly L_800N through L_1000N, and were interpreted as the structural "plumbing" or "feeder zones" for the entire hydrothermal system.

These feeder zones were identified as fault and fracture networks that served as primary pathways for the upward movement of hot, metal-rich fluids from a deeper source. As fluids rose through these structures, they would have spread laterally as they ascended and, upon reaching a permeable layer or when trapped by the overlying silica cap, would create the extensive conductive alteration blanket observed in the CSAMT. One such feeder extends 2 km to the north-northwest from south of GEM - Little Emma cluster of workings and remains open to the north. The system spans over 1 km in width. It aligns with a series of faults mapped by the Utah Geological Survey, which are interpreted as splay faults extending off the bounding Paunsaugunt Fault further west. Figure 1 shows an example from the Stebenite workings.

Importantly, a clear and verifiable link existed between this geophysical interpretation and known mineralisation. The most prominent cluster of interpreted feeder structures was situated directly beneath the historical Emma, Little Emma, and Gem Lode workings (Figure 2). These historical prospects were the sites of documented high-grade stibnite mineralisation at surface, with reported grades up to 14.47% Sb¹. This strong spatial correlation provided solid, ground-truthed validation for the exploration model. It confirmed that geophysical techniques had effectively identified the key structural conduits controlling mineralisation. As a result, other similar feeder structures identified by the CSAMT survey along the 4.5 km trend, which may lack surface expression, were regarded as highly prospective targets for hosting blind antimony deposits.

Determining High-Priority Drill Targets

The size of the hydrothermal system identified by the CSAMT survey is a key finding of the program. The apparent geophysical anomaly, characterised by a continuous resistive cap and underlying conductive alteration zones, spans a corridor approximately 3.4 km long and 3 km wide. This is not an estimated target size, but the actual footprint of a single, subtle but continuous geophysical feature mapped by the survey. While the presence of this alteration system does not guarantee economic mineralisation everywhere, it confirms that hydrothermal processes at Antimony Canyon operated on a district scale. Additionally, isopach modelling of the main "upper conductor" showed thicknesses from 50 m up to more than 300 m, highlighting the substantial volume of rock affected by these hydrothermal fluids.

This robust exploration model has identified a series of clear, high-priority drill targets. The most promising locations for high-grade antimony mineralisation are thought to be on the "shoulders" of the feeder structures, just beneath the resistive cap (refer Table 1). In these areas, ascending fluids would have been focused, trapped, and prompted to deposit their metal content. The CSAMT models showed that these key target zones start at surprisingly shallow depths, estimated to be between 50 m and 150 m below the current ground surface. These are "walk-up" drill targets that can be tested efficiently in an initial drilling program now being finalised and scheduled for execution before the year's end.

¹ See Trigg's ASX announcement dated 14 August 2025 for full results.

Table 1 summarises key interpretive criteria for the CSAMT interpretation used to identify drill targets.

Table 1. Key interpretive criteria for CSAMT analysis used to identify drill targets

Feature	Resistivity Expression	Interpretation
Shallow	Broad, flat-lying zone of low	Argillic/steam-heated alteration or saline
conductive	resistivity (1–30 ohm-m)	groundwater—often the clay-rich "cap" of a
layer		hydrothermal system or basin outflow zone.
Resistive	Dome-shaped or patchy	Silicified or quartz-rich zones at the upper margin
cap/shoulders	resistive zones above or	of the feeder; these can host antimony, precious
	adjacent to conductors	or base-metal mineralisation.
Deeper	Vertical or steeply dipping	Hydrothermal feeder zones or structures
conductors	low-resistivity zones (often 5–	controlling upflow—these are prime drill targets
	50 ohm-m) extending to depth	for mineralisation.

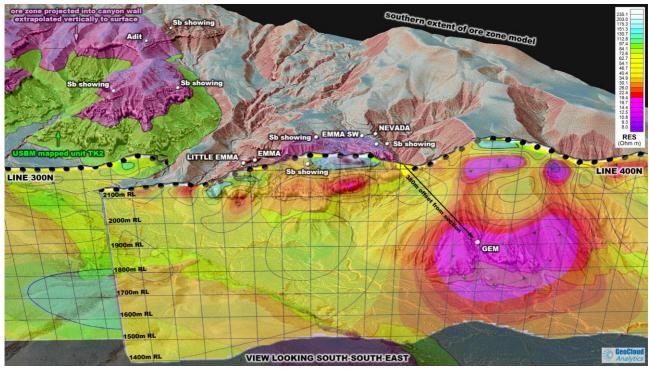


Figure 2. Cross-section L400N across the Emma workings (view SSE). A shallow, domed conductive layer (pink-red) surrounds a deeper conductive core, which is considered the system's hot-fluid hydrothermal feeder. Antimony is most dominant on the shoulders of the feeder, such as at the Gem – Little Emma group of historical workings, where resistive (silica-hardened) rock (cyan) overlays conductive, clay-altered zones along distinct resistivity contacts.

ENDS

The announcement was authorised for release by the Board of Trigg Minerals Limited.

For more information, please contact:

Andre Booyzen	Kristin Rowe
Trigg Minerals Limited	NWR Communications
Managing Director	Investor Relations
info@trigg.com.au	kristin@nwrcommunications.com.au
+61 (08) 6256 4403	+61 (0) 404 889 896

ABOUT TRIGG MINERALS

Trigg Minerals Limited (ASX: TMG, OTCQB: TMGLF) is advancing critical mineral development in Tier-1 US jurisdictions, with a strategic vision to become a vertically integrated, conflict-free supplier to Western economies.

Its flagship Antimony Canyon Project in Utah, USA, is one of the country's largest and highest-grade undeveloped antimony systems—historically mined but never subjected to modern exploration. The recently secured Tennessee Mountain Tungsten Project in Nevada further strengthens Trigg's position in critical minerals, adding scale and diversification within a Tier-1 jurisdiction.

With a proven leadership team, active government engagement, and smelter development underway, Trigg is strategically positioned to lead the resurgence of antimony and tungsten supply from reliable Western sources.

For further information regarding Trigg Minerals Limited, please visit the ASX platform (ASX: TMG) or the Company's website at www.trigg.com.au.

DISCLAIMERS

Competent Persons Statement

The information in this announcement that relates to Exploration Results is based on, and fairly represents, information compiled by Mr Jonathan King, a Member of the Australian Institute of Geoscientists (AIG). Mr. King is a Director of Geoimpact Pty Ltd and serves as an independent geological consultant to Trigg Minerals Limited. Mr King has sufficient experience relevant to the style of mineralisation, type of deposit, and activity being undertaken to qualify as a Competent Person under the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Mr King consents to the inclusion in this announcement of the matters based on his information, in the form and context in which they appear.

Forward Looking Statements

This report contains forward-looking statements that involve several risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more risks or uncertainties materialise, or underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward-looking statements if these beliefs, opinions, and estimates should change or to reflect other future developments.

Previously Reported Information

The information in this report that references previously reported Exploration Results is extracted from the Company's ASX market announcements released on the date noted in the body of the text where that reference appears. The previous market announcements are available to view on the Company's website or the ASX website (www.asx.com.au).

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

APPENDIX 1: JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 The exploration results were based on a Controlled-Source Audio Magnetotellurics (CSAMT) ground geophysical survey. This is a remote sensing technique that measures the electrical resistivity of the subsurface and does not involve physical sampling of rock or soil. Data was collected by specialist contractor KLM Geoscience using a modern Phoenix Geophysics, Inc. system, which is an industry-standard instrument for high-quality CSAMT acquisition. Scalar CSAMT data were collected on arrays consisting of a single magnetic channel (H_y) and six electrodes, creating five electric field dipoles (E_x) per recording. CSAMT measurements were recorded over approximately 30-minute periods, during which multiple stacks of 54 frequencies were broadcast.
Drilling techniques	Drill type and details (e.g. core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	Not applicable. No drilling is being reported.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Not applicable. No drilling is being reported.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Not applicable. No drilling is being reported.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in- 	Not applicable. No drilling is being reported.

Criteria	JORC Code explanation	Commentary
	 instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The geophysical survey was conducted using industry-standard equipment: Phoenix RXU-8A receivers, Phoenix MTC-185 magnetic sensors, a Phoenix 20 kW TXU-30A transmitter, and a 25 kW generator. Transmitted signals ranged from 1 Hz to 9,216 Hz. Receivers sampled electric and magnetic field variations at 2400 Hz. All receivers and magnetic sensors were calibrated before the survey in a location free from electromagnetic noise. Calibration charts are provided in Appendices D and E of the contractor's report. The survey area is remote with minimal anthropogenic electromagnetic noise. Data affected by noise from local thunderstorms were identified and re-acquired to ensure high data quality.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Not applicable. No sampling or assaying is being reported.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	GPS recorded station locations. A complete list of line-endpoint coordinates is provided in Appendix A of the source report (UTM, WGS-84 datum, Zone 12).

Criteria	JORC Code explanation	Commentary
	 Specification of the grid system used. Quality and adequacy of topographic control. 	 The survey grid consisted of 12 lines, designated L_0, L_100, L_200, L_300, L_400, L_500, L_600, L_700, L_800, L_900, L_1000, and L_1100. The project is in Garfield County, Utah, USA Topographic control was derived from GPS and SRTM DEM data and was incorporated into the 2D inversion modelling to ensure accurate elevation positioning of the results.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The survey comprised 43,000 line-metres (43 km) of data acquisition. The 12 survey lines have a variable spacing, averaging approximately 300-500 m, which was considered appropriate for mapping large-scale hydrothermal systems. Data was collected along lines using a 50 m electric dipole spacing, providing high-resolution along-line data. The data spacing and distribution was considered sufficient to establish the geological and structural continuity of the large-scale geophysical features interpreted in this announcement. It was not sufficient for Mineral Resource estimation.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Survey lines were oriented with an azimuth of 58 degrees (N58°E). This orientation was interpreted to be nearperpendicular to the dominant northwest-trending structural controls on mineralisation inferred for the project area. This orientation was considered optimal for imaging these features and was not expected to have introduced a sampling bias into the geophysical dataset.
Sample security	The measures taken to ensure sample security.	Not applicable for a geophysical survey.

Criteria	JORC Code explanation	Commentary
		 Data was digitally recorded, backed up, and securely transferred from the field contractor to the Company.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No formal audits or reviews have been conducted.
		Raw time series data and spectra plots were reviewed daily by the field crew.
		 Processed data and inversion models were reviewed by a senior geophysicist (Sean Walker, P.Geo) at KLM Geoscience.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting and any known impediments to obtaining a licence to operate in the area. 	 The Antimony Canyon Project comprises over 300 unpatented lode claims awaiting adjudication by the Bureau of Land Management (BLM). The competent person understands that the claims are in good standing and no known impediments exist. The claims are held by Antimony Canyon Sovereign Reserve, Inc., & Trigg Minerals (USA) LLC, both wholly-owned subsidiaries of Trigg Minerals Limited (ASX: TMG). On Trigg's private land (patented claims) in Utah, permitting mainly follows the DOGM (Utah Mining and Reclamation Act), thus avoiding the complex federal procedures typically associated with unpatented lode claims. The project lies in the Dixie National Forest, which is Federal Land. Thus, any exploration or development activities on unpatented lode claims would require coordination with the U.S. Forest Service and adherence to federal land management regulations. The Company can commence non-ground
		disturbing activity, but unpatented lode

Criteria	JORC Code explanation	Commentary
		claims must be adjudicated and the NOI approved before tracks, pads, and drilling ensue.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Apart from some minor mining activity (extracting 30t) in 1967 from one of the historical mines, no work has been performed since 1942. Before 1967, the last mining occurred and ceased in 1908. All subsequent studies have relied on the Bureau of Mines' 1941 and 1942 results. No formal exploration has been performed since this time. The project area has never been drilled.
Geology	Deposit type, geological setting and style of mineralisation.	• The mineralisation is associated with a hydrothermal alteration zone that could be associated with either a high-sulfidation epithermal system or a related epizonal orogenic system, hosted within a previously unrecognised volcano-sedimentary package. The primary host rock has been identified as a distinct "welded tuffaceous unit (Tt)", which is a moderately to densely welded crystal-lithic ash-flow tuff. This unit is the key control on stibnite (Sb ₂ S ₃) mineralisation across the project. This model is supported by the identification of key alteration minerals such as dickite, illite, and phengite, which are indicative of a high-temperature, magmatically driven hydrothermal system. Mineralisation occurs as multiple, stacked, sub-horizontal veins, veinlets, and stockwork zones that are stratabound within the favourable tuff unit. The system is controlled by a series of northwest-trending, steeply dipping faults that acted as primary fluid conduits.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following 	Not applicable. No drilling is being reported.

Criteria	JORC Code explanation	Commentary
	information for all Material drill holes:	
	 easting and northing of the drill hole collar 	
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	 dip and azimuth of the hole 	
	 down hole length and interception depth 	
	o hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Not applicable. No sampling or assay data is being reported.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	Not applicable. No drilling is being reported.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	This announcement includes representative plan-view depth slices and cross-sections derived from the CSAMT inversion models to illustrate the interpretation. A map showing the location of the survey lines is also included.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	This announcement reports on the principal findings and interpretation of the CSAMT survey. The complete set of deliverables, including all 12 line sections, data, and inversion models, is available from the contractor and has been reviewed by the Company.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The interpretation of the CSAMT data was strongly supported by the direct spatial correlation between key interpreted "feeder structures" and the location of known surface antimony mineralisation and historical workings within the project area.

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work will include the finalisation of 3D modelling to refine drill hole locations and orientations. This will be followed by the planning, permitting, and execution of a maiden drilling program designed to test several of the highest-priority geophysical targets generated by this survey.