

MAIDEN DRILLING RESULTS FROM MT SOLITARY

Intercept of 19m at 4.5g/t Au at Mt Solitary confirms high-grade gold mineralisation, open at depth.

Mount Hope Mining Limited (ASX: "MHM" or the "Company") is pleased to announce confirmation of shallow high-grade gold mineralisation at its Mt Solitary prospect, following a maiden drilling campaign at the Company's 100%-owned Mt Hope Project in New South Wales.

Highlights:

Notable intercepts include:

- 25MSRC004: 19m @ 4.5g/t Au from 39m (85 GT), including
 - o 8m @ 9.5g/t Au from 49m
 - o 3m @ 23g/t Au from 50m
 - o 1m @ 50g/t Au from 51m
- 25MSRC002: 5m @ 4.3g/t Au from 13m (21 GT), including
 - o 1m @ 16g/t Au from 15m
- 25MSRC009: 4m @ 4.7g/t Au from 32m (18 GT), including
 - o 1m @ 13g/t Au from 33m

Drill results have indicated a previously unrecognised structural trend that includes historic drillholes:

- MS49⁽¹⁾: 10m @ 12g/t Au from 0m (121 GT)
- MS56⁽¹⁾: 21m @ 4.7g/t Au from 63m (100 GT)
- MS35⁽¹⁾: 8m @ 9.0g/t Au from 140m (72 GT) with all holes remaining open down plunge

Stage 2 drill program already planned and permitted:

- Up to 2,000m of RC & Diamond drilling focused on infill & expansion drilling along strike, north of maiden program, targeting plunge extensions
- Program aims to infill & expand known mineralised envelope along strike and at depth

Mount Hope Mining Managing Director & CEO Fergus Kiley commented:

"This maiden drill program at Mt Solitary has exceeded expectations, delivering standout intercepts including 19m at 4.5 g/t gold with a spectacular 1m at 50 g/t. These are exceptional results for a first-pass RC campaign and confirm the high-grade potential of this underexplored area.

Importantly, this drilling has provided the foundation for the first modern geological model of Mt Solitary, allowing us to better understand the structural controls on mineralisation and to design a targeted follow-up program to test down-plunge extensions and parallel lodes.

The upside here is significant; Mt Solitary is an exciting project itself; however, it also sits within a 7.5km-long corridor of gold mineralisation extending south toward the Mt Solar Project. Defining the structural framework at Mt Solitary will allow us to apply this model across other prospects on the same trend, including Little Mt Solitary, Powerline Hill and Mt Solar.

With drill permits already secured and gold prices at record highs, Mount Hope Mining is well positioned to rapidly advance toward defining a maiden JORC-compliant resource."

Mt Solitary Gold Prospect

MHM reports assay results from the recently completed **Reverse Circulation** (RC) drill program completed at the **Mt Solitary** prospect (Figure 1), located 3km east of the historical Mt Hope copper mine in the prolific Cobar Basin in New South Wales.

Drilling comprised 10 holes for 1,236m, completed on two parallel fences testing the Mt Solitary prospect, with results returning significant high-grade gold mineralisation, including a standout drill hole of **19m @ 4.5g/t Au from 39m** from hole 25MSRC004.

These results reaffirm the high prospectivity of the Mt Solitary target. A list of further significant intercepts can be found in Appendix 1.

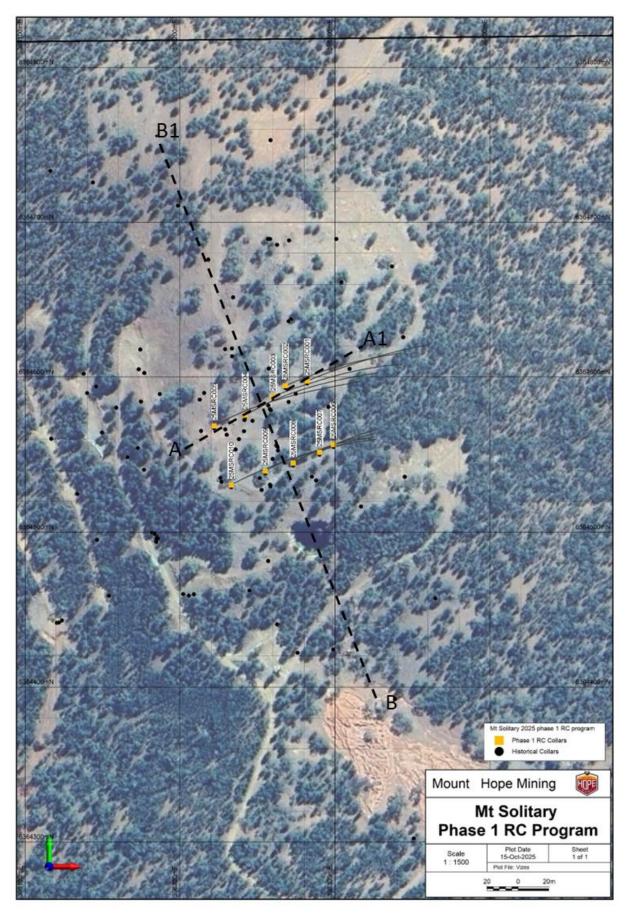


Figure 1: Mt Solitary 2025 phase 1 RC program

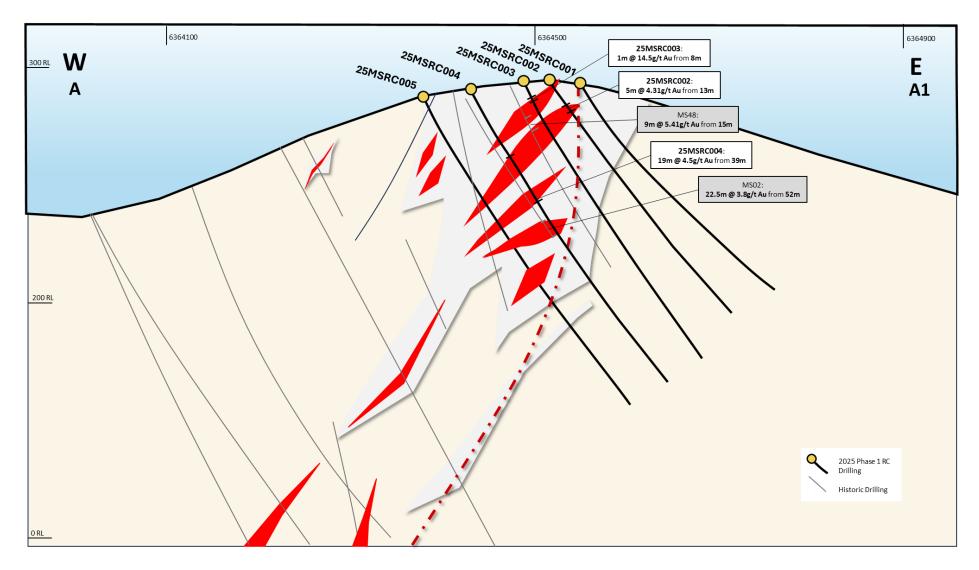


Figure 2: Cross-section of Mt Solitary holes 25MSRC001 to 25MSRC005

The purpose of the maiden drill program was twofold; to confirm the presence of gold, and therefore the historical non-JORC compliant resources, and to develop a structurally driven geological model for the Mt Solitary prospect. The Company can confirm the program was successful at achieving both outcomes.

The program was designed to drill two east-west fences, spaced \sim 40m apart, to validate historic intercepts and test a developing structural model for mineralisation (Figures 2 & 3). The model, based on historic drilling, geophysics, mapping, and two E2 Metals diamond holes (2017 – 17MSD10 & 08)⁽²⁾, was reconciled with outcrop geology at Mount Solitary.

This work led to the interpretation that gold mineralisation is orogenic and controlled by a regional north—south shear zone with associated linking structures developed between the regional Sugar Loaf and Scotts Craig Faults. Mapping suggests the shear zone dips steeply to the west, with drilling now adding support to this thesis.

Mt Solitary historical results and future drilling

Following the success of the 2025 maiden drill program, the Company has continued to review the historical intercepts to assist with the development of a structural model for the Mt Solitary prospect.

The Company has identified historical drill holes MS56⁽¹⁾, MS49⁽¹⁾ and MS35⁽¹⁾ down plunge of the existing drilling with intercepts of 21m @ 4.7g/t Au from 63m (100 GT), 10m @ 12g/t Au from 0m (121 GT) and 8m @ 9g/t Au from 145m (72GT) all remaining open down plunge north-west of the existing drilling (Figure 3).

MHM believes targeting these areas could be the next step in progressing this evolving structural model, which may be the key to advancing the Mt Solitary prospect and finding additional high-grade mineralisation along strike and at depth.

The phase 2 drilling campaign will be conducted north, along strike of the maiden 2025 drilling, to continue infilling and extend the known mineralisation down plunge outside of the current mineralised envelope.

The Company is in advanced stages of planning the phase 2 drilling campaign with up to 24 holes already permitted at the Mt Solitary prospect for immediate drilling. MHM plans to complete this drill program before the end of this year, subject to rig availability.

The Company also notes that the results from the other prospects drilled during the maiden drill program (Blue Heeler & Black Hill) remain pending and will be reported once received.

Figure 3: Mt Solitary Long Section

References:

- [1] MHM Announcement 18 Dec 2024: Prospectus
- [2] E2 Metals Announcement 13 Oct 2017: E2 Metals Quarterly Activities Report September 2017
- [3] Aberfoyle, 1983, R00009736 (GS1983/292)

END

Competent Person's Statement

Information in this report that relates to Exploration results and targets is based on, and fairly reflects, information compiled by Mount Hope Mining and Todd Williams, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr. Williams is a Director of Mount Hope Mining and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Williams consents to the inclusion of the data in the form and context in which it appears.

Certain information in this announcement that relates to prior exploration results is extracted from the Independent Geologist's Report dated 18 December 2024, which was issued with the consent of the Competent Person, Mr Malcolm Castle. The report is included in the Company's prospectus dated 18 December 2024 and is available on the Company's website https://www.mounthopemining.com.au/.

Disclaimers

No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this release. To the maximum extent permitted by law, none of the Company, its related bodies corporate, shareholders or respective directors, officers, employees, agents or advisors, nor any other person accepts any liability, including, without limitation, any liability arising out of fault or negligence for any loss arising from the use of information contained in this release. The Company will not update or keep current the information contained in this release, or correct any inaccuracy or omission which may become apparent, or furnish any person with any further information. Any opinions expressed in this release are subject to change without further notice.

Forward-looking Statement

Certain statements in this announcement constitute "forward-looking statements" or "forward-looking information" within the meaning of applicable securities laws. Such statements involve known and unknown risks, uncertainties and other factors, which may cause actual results, performance or achievements of the Company, or industry results, to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements or information. Such statements can be identified by the use of words such as "may", "would", "could", "will", "intend", "expect", "believe", "plan", "anticipate", "estimate", "scheduled", "forecast", "predict" and other similar terminology, or state that certain actions, events or results "may", "could", "would", "might" or "will" be taken, occur or be achieved. These statements reflect the Company's current expectations regarding future events, performance and results, and speak only as of the date of this announcement. All such forward-looking information and statements are based on certain assumptions and analyses made by MHM's management in light of their experience and perception of historical trends, current conditions and expected future developments, as well as other factors management believes are appropriate in the circumstances.

This announcement is authorised for release to the ASX by the Board of Mount Hope Mining Ltd.

Investor and media relations enquiries

Fergus Kiley | Managing Director & CEO info@mounthopemining.com.au

www.mounthopemining.com.au

Released Tuesday 21/10/2025 | Maiden Drilling Results from Mt Solitary

APPENDIX 1:

Mt Solitary 2025 Phase 1 RC Drilling Collar table:

By ASX Listing Rules 5.7.2, the Company provides the drill hole data referenced in this announcement:

Project	Hole ID	Hole Type	East_MGA94	North_MGA94	RL	Company	Dip	Azimuth	Total Depth
Mt Solitary	25MSRC001	RC	398282	6364596	299	М	-55	65	120
Mt Solitary	25MSRC002	RC	398268	6364593	265	M	-55	65	126
Mt Solitary	25MSRC003	RC	398260	6364586	300	M	-55	65	156
Mt Solitary	25MSRC004	RC	398242	6364574	289	М	-60	59	162
Mt Solitary	25MSRC005	RC	398222	6364567	289	М	-60	60	162
Mt Solitary	25MSRC006	RC	398299	6364555	290	M	-60	60	54
Mt Solitary	25MSRC007	RC	398290	6364550	292	M	-60	60	78
Mt Solitary	25MSRC008	RC	398273	6364543	288	М	-60	60	102
Mt Solitary	25MSRC009	RC	398255	6364538	275	М	-60	60	126
Mt Solitary	25MSRC010	RC	398233	6364529	276	М	-60	60	150

Mt Solitary 2025 Phase 1 RC Drilling Significant Intercepts table:

Significant intercepts tables from the 2025 RC program, significant intercepts determined with a 0.2g/t Au cut-off grade and up to 2m of internal waste.

HOLE_ID	From (m)	To (m)	Length (m)	GT	Au-ppm	Comment	Cutoff (Au g/t)
25MSRC001	3	5	2	0.6	0.3	2.00m @ 0.30 g/t Au	0.2
25MSRC001	8	18	10	3.3	0.33	10.00m @ 0.33 g/t Au	0.2
25MSRC001	22	26	4	2.48	0.62	4.00m @ 0.62 g/t Au	0.2
25MSRC001	34	35	1	0.48	0.48	1.00m @ 0.48 g/t Au	0.2
25MSRC001	43	44	1	1.35	1.35	1.00m @ 1.35 g/t Au	0.2
25MSRC001	54	55	1	1.52	1.52	1.00m @ 1.52 g/t Au	0.2
25MSRC001	58	59	1	0.2	0.2	1.00m @ 0.20 g/t Au	0.2
25MSRC001	68	69	1	0.25	0.25	1.00m @ 0.25 g/t Au	0.2
25MSRC002	7	9	2	0.6	0.3	2.00m @ 0.30 g/t Au	0.2
25MSRC002	13	31	18	29.34	1.63	18.00m @ 1.63 g/t Au	0.2
25MSRC002	34	37	3	1.08	0.36	3.00m @ 0.36 g/t Au	0.2
25MSRC002	43	46	3	1.68	0.56	3.00m @ 0.56 g/t Au	0.2
25MSRC002	56	57	1	0.25	0.25	1.00m @ 0.25 g/t Au	0.2
25MSRC002	70	73	3	0.81	0.27	3.00m @ 0.27 g/t Au	0.2
25MSRC002	117	118	1	0.3	0.3	1.00m @ 0.30 g/t Au	0.2
25MSRC003	6	23	17	22.44	1.32	17.00m @ 1.32 g/t Au	0.2
25MSRC003	26	28	2	1.58	0.79	2.00m @ 0.79 g/t Au	0.2
25MSRC003	33	42	9	3.87	0.43	9.00m @ 0.43 g/t Au	0.2
25MSRC003	46	50	4	1.44	0.36	4.00m @ 0.36 g/t Au	0.2
25MSRC003	58	68	10	3.6	0.36	10.00m @ 0.36 g/t Au	0.2

25MSRC003	73	78	5	2.35	0.47	5.00m @ 0.47 g/t Au	0.2
25MSRC003	83	84	1	0.2	0.2	1.00m @ 0.20 g/t Au	0.2
25MSRC003	94	95	1	0.2	0.2	1.00m @ 0.20 g/t Au	0.2
25MSRC003	106	115	9	2.61	0.29	9.00m @ 0.29 g/t Au	0.2
25MSRC004	3	4	1	0.92	0.92	1.00m @ 0.92 g/t Au	0.2
25MSRC004	18	29	11	2.97	0.27	11.00m @ 0.27 g/t Au	0.2
25MSRC004	32	33	1	0.29	0.29	1.00m @ 0.29 g/t Au	0.2
25MSRC004	39	58	19	85.12	4.48	19.00m @ 4.48 g/t Au	0.2
25MSRC004	62	97	35	26.95	0.77	35.00m @ 0.77 g/t Au	0.2
25MSRC004	131	132	1	0.34	0.34	1.00m @ 0.34 g/t Au	0.2
25MSRC005	22	25	3	2.22	0.74	3.00m @ 0.74 g/t Au	0.2
25MSRC005	40	44	4	3.76	0.94	4.00m @ 0.94 g/t Au	0.2
25MSRC005	49	69	20	22	1.1	20.00m @ 1.10 g/t Au	0.2
25MSRC005	72	76	4	4.44	1.11	4.00m @ 1.11 g/t Au	0.2
25MSRC005	80	91	11	12.32	1.12	11.00m @ 1.12 g/t Au	0.2
25MSRC005	101	113	12	2.52	0.21	12.00m @ 0.21 g/t Au	0.2
25MSRC005	125	126	1	0.23	0.23	1.00m @ 0.23 g/t Au	0.2
25MSRC006	0	1	1	0.24	0.24	1.00m @ 0.24 g/t Au	0.2
25MSRC006	15	16	1	0.27	0.27	1.00m @ 0.27 g/t Au	0.2
25MSRC006	19	25	6	2.76	0.46	6.00m @ 0.46 g/t Au	0.2
25MSRC006	38	40	2	2.02	1.01	2.00m @ 1.01 g/t Au	0.2
25MSRC006	47	48	1	0.22	0.22	1.00m @ 0.22 g/t Au	0.2
25MSRC006	51	52	1	0.21	0.21	1.00m @ 0.21 g/t Au	0.2
25MSRC007	15	21	6	1.56	0.26	6.00m @ 0.26 g/t Au	0.2
25MSRC007	37	39	2	0.72	0.36	2.00m @ 0.36 g/t Au	0.2

10

25MSRC008	0	1	1	0.27	0.27	1.00m @ 0.27 g/t Au	0.2
25MSRC008	4	20	16	13.12	0.82	16.00m @ 0.82 g/t Au	0.2
25MSRC008	24	35	11	6.38	0.58	11.00m @ 0.58 g/t Au	0.2
25MSRC008	38	39	1	0.33	0.33	1.00m @ 0.33 g/t Au	0.2
25MSRC008	47	48	1	0.47	0.47	1.00m @ 0.47 g/t Au	0.2
25MSRC008	67	68	1	0.26	0.26	1.00m @ 0.26 g/t Au	0.2
25MSRC009	7	8	1	0.53	0.53	1.00m @ 0.53 g/t Au	0.2
25MSRC009	11	12	1	2.25	2.25	1.00m @ 2.25 g/t Au	0.2
25MSRC009	20	21	1	0.34	0.34	1.00m @ 0.34 g/t Au	0.2
25MSRC009	26	43	17	22.44	1.32	17.00m @ 1.32 g/t Au	0.2
25MSRC009	54	61	7	3.29	0.47	7.00m @ 0.47 g/t Au	0.2
25MSRC009	65	66	1	0.34	0.34	1.00m @ 0.34 g/t Au	0.2
25MSRC009	110	111	1	0.23	0.23	1.00m @ 0.23 g/t Au	0.2
25MSRC010	21	22	1	0.29	0.29	1.00m @ 0.29 g/t Au	0.2
25MSRC010	36	48	12	8.16	0.68	12.00m @ 0.68 g/t Au	0.2
25MSRC010	51	56	5	2.55	0.51	5.00m @ 0.51 g/t Au	0.2
25MSRC010	61	73	12	14.88	1.24	12.00m @ 1.24 g/t Au	0.2
25MSRC010	76	77	1	0.38	0.38	1.00m @ 0.38 g/t Au	0.2
25MSRC010	80	82	2	0.72	0.36	2.00m @ 0.36 g/t Au	0.2
25MSRC010	88	98	10	3.5	0.35	10.00m @ 0.35 g/t Au	0.2

11

JORC CODE, 2012 EDITION

Section 1 Sampling Techniques and Data

JORC Code Reporting Criteria

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling Techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done, this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling 	 Mt Solitary RC Drilling Program: RC drilling and sampling were undertaken by Resolution Drilling Pty Ltd. RC drilling is considered the correct method of sampling for early- stage, near-surface exploration target testing. 1m samples were collected via reverse circulation (RC) drilling using a cyclone splitter. Samples were all dry as the entire drilling program was conducted above the water table. Sampling and QAQC procedures were developed and carried out by MHM staff. Standards, blanks and duplicates were inserted every 25 meters. Drilling is angled perpendicular to the strike of mineralisation as much as possible to ensure a representative sampling, as reported in this announcement. Mineralisation in the RC drill chips was geologically logged, magnetic susceptibility readings and pXRF readings were taken on site during the drilling campaign. Reverse circulation drilling was used to obtain 1 m samples from which 1-5kg was pulverised to produce a 50 g charge

Criteria	JORC Code Explanation	Commentary
	problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant the disclosure of detailed information.	for fire assay AA-24/AA-26 and four acid ICP analysis, ME-MS61 by ALS Orange Laboratory.
Drilling Techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC Drilling Reverse circulation (RC) hammer drilling, using a truck-mounted UDR1200 with a 5" 5/8 diameter hammer.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure the representative nature of the samples. Whether a relationship exists between sample recovery and grade, and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC drilling sample recovery was visually estimated as a semi-quantitative range and recorded on the drill log, along with moisture content, water table or other factors that may influence recovery or sample quality. Sample recovery was generally good. RC sample sizes were monitored, and the cyclone was methodically cleaned between holes and/or if required during drilling to reduce the potential for sample contamination. In most holes, surveys were completed as single-shot surveys throughout the progression of each drill hole at Mt Solitary. A review of submission weights has been completed, with a flag for any lightweight samples noted. Internal QAQC reporting has also been completed to review the correlation between grade and sample weight. At this stage, no discernible trend has been determined due to the lack of large amounts of data.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 Drill holes are logged on site for lithology, alteration, mineralisation, magnetic susceptibility, structure, weathering, moisture and obvious contamination by a geologist. Data is captured in a digital database appropriate for resource estimation. Logging is conducted on qualitative and quantitative measures. Logging captures downhole depths, structural features, colour,

Criteria	JORC Code Explanation	Commentary
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	lithology, texture, mineralogy, mineralisation, quartz veining and alteration.
	The total length and percentage of the relevant intersections logged.	 All drill holes are logged in full over their total length. Specimen chip trays are collected at each metre for RC sampling and kept as a reference.
Sub-Sampling Techniques & Sample Preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including, for instance, results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Not applicable as RC does not produce core. RC samples were collected at 1m intervals with a representative 3-5kg sample taken using a cone splitter RC sampling system. The samples were all recorded as dry, moist, or wet and estimated recoveries were recorded. Sample duplicates were collected by the same cone splitter RC sampling system. The samples were sent to ALS Orange, an accredited laboratory for sample preparation and analysis. Samples were subject to SPL-21 Split sample using a riffle splitter and PUL-23 Pulverise entire sample to 85% passing 75 microns. Quality Control procedures include the insertion of CRM (OREAS) and duplicate samples. QC sample is submitted on a 1 per 50 basis. Selected samples are also re-analysed to confirm anomalous results. Sample duplicates are taken at a minimum on a 1 per 50 sample basis, as this is considered appropriate for greenfields drilling. Vanta pXRF data is also collected on a per/m basis and used as a first pass test, with these results also compared with lab results as an additional lab check protocol. The sample sizes averaged 3kg and are considered to be appropriate for the style and nature of the mineralisation, to provide an accurate indication of the presence of mineralisation if present.

M

Criteria	JORC Code Explanation	Commentary
Quality of Assay Data and Laboratory Tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis, including instrument make and model, reading times, calibration factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Four-acid digest is considered a near-total digest for most minerals. Induced coupled plasma ICP produces ultra-low detection analysis and is considered the most appropriate method for exploration sampling. The use of a 50g charge fire assay is considered appropriate for the detection of gold mineralisation of the style and nature being explored. Magnetic susceptibility was recorded from the calico bag for each meter by a Terraplus KT-10 magnetic susceptibility meter. Vanta pXRF is also used as a first pass test, and these results are compared with lab results. Appropriate standards and duplicates were inserted into the sample stream. Magnetic susceptibility readings were taken in isolation away from any other material. Acceptable levels of accuracy for the magnetic susceptibility readings were established, and readings were consistent or repeated if not.
Verification of Sampling & Assay	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustments to assay data. 	 The significant intersections were calculated using a cutoff grade 0.2g/t Au and an internal waste of 2m. The significant intersections have been reviewed by numerous company personnel as a secondary check and compiled by the competent person. No twinning of drill holes has yet been undertaken Primary geological and sampling data is collected and recorded in digital format in the field. This is subsequently validated and imported into a digital database. Assay results are merged with the primary database using established protocols

Criteria	JORC Code Explanation	Commentary
		Data has been presented to 1 decimal place with the appropriate rounding applied.
Location of Data Points	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustments to assay data. 	 All samples collected by MHM were recorded using handheld Garmin GPS units, which provide an accuracy of +/- 3m. The grid system used in the figures and appendices in this ASX release is MGA Zone 55 (GDA94) The project's topographic control is adequate for early-stage surface targeting and reconnaissance
Data Spacing & Distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution are sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill holes were preferentially located to most prospective areas to test along strike and down dip. Drill holes are initially located by handheld GPS and then picked up by DGPS. GPS accuracy is +/- 3m with DGPS accuracy to +/- 0.1m. RC drilling was a first-pass drill program with variable spacing to best test the targets. Step outs were between 20 m to 50m and completed as fences of holes to enhance drill coverage and best start modelling geology and grade. Further drilling would be warranted to be sufficient for a resource estimate. All drill holes are routinely surveyed using a OMNIx42 Imdex gyro at the completion of the hole to provide an accurate drill hole trace. GDA94 MGA Zone 55 grid system is applied to the Mt Solitary program. GPS accuracy is +/- 3m with DGPS accuracy to +/- 0.1m. No, one metre sampling only.

Criteria	JORC Code Explanation	Commentary
Orientation of Data about Geological Structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of sampling was designed perpendicular to strike and dip as much as possible to achieve relatively unbiased sampling. Drilling was conducted at inclinations between -60 degrees towards grid north at Mt Solitary. At Mt Solitary the extent, geometry and plunge of the various mineralised domains and how they interact are not yet clear. Further detailed drilling is required to ascertain a higher level of confidence and quantify the degree of sample bias arising from the selected drill orientations. The relationship between drill orientation and sample bias, if any, has not yet been established.
Sample Security	The measures taken to ensure sample security.	 Samples submitted are systematically and sequentially numbered, bagged and recorded. One meter calico sample bags are bagged in polyweave sacks which are securely stored until dispatch and delivered to ALS Global Orange by MHM personnel or courier companies. All pulps and residues are retained by ALS Global until collected by MHM for storage at the project storage facility located on site at the Mt Hope Project.
Audits or Reviews	The results of any audits or reviews of sampling techniques and data.	 No audits or formal reviews have been conducted. Internal reviews for validation of results were conducted, as well as the monitoring of assay QA/QC by MHM staff. Industry standard techniques were applied at every stage of the exploration process.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral Tenement and Land Tenure Status	 Type, reference name/number, location and ownership, including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting, along with any known impediments to obtaining a license to operate in the area. 	 The Mount Hope Project comprises granted licenses EL 8654 (Ambone), EL 6837 (Mt Solitary), EL8290 (Broken Range), EL 8058 (Main Road) and EL6902 (McGraw). The reported drill holes lie within NSW, Exploration Licence EL 6837 (Mt Solitary).
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	The announcement references drilling completed by various historical explorers listed below.
		 Gold was discovered at Mt Solitary in 1904, and recorded production was 41 kg of gold, mostly through the 1935 to 1940 period.
		 Several drilling campaigns from 1982 to the present day have contributed data to the current study.
		 Campaigns by EZ, Aberfoyle, AMAD, Aztec and Normandy from 1982 to 1986 all used shallow percussion drilling. Further drilling campaigns were conducted by Placer and MCM (DD and RC).
		 Central West Gold (now CWC) and Fisher Resources (subsidiary company of Land & Mineral Ltd, now Mount Hope Mining) undertook two drill campaigns of RC drilling (2006 and 2013). The 2013 program had high-grade gold (several intercepts over 30 g/t Au). Several intercepts were down dip of the known gold zone, thus extending

M

Criteria	JORC Code Explanation	Commentary
		known mineralisation to a depth of approximately 200m from near-surface.
		 In 2006 Hellman & Schofield Pty. Ltd complete recoverable resource estimate at Mt Solitary. The estimate dealt wholly with potentially bulk minable, lower-grade mineralisation with no assessment made for high-grade ore.
		 Before this round of drilling, 75 drill holes had been drilled at Mt Solitary, which demonstrated that high-grade gold mineralisation has been identified and commonly encompassed by an envelope of potentially economic lower-grade gold mineralisation.
		 For details of relevant previous exploration completed by other parties at the Mount Hope Project, refer to the Independent Technical Assessment Report included in the Mount Hope Mining Prospectus (December 2024).
		 Previous work on, or adjacent to the Mount Hope project, was completed by:
		Esso/Shell Mineral Exploration (1977)
		Electrolytic Zinc Co (1982)
		 Aberfoyle Exploration PL (1983 to 1984)
		 Amad NL (Normandy Resources NL) (1985 to 1986)
		• Nordgold (1987 to 1989)
		• Placer (1991 to 1994)
		Renison Goldfields Consolidated (RGC) Exploration (1991 to 1994)
		Central West Gold Mines (1996 to 2004)

Criteria	JORC Code Explanation	Commentary
		• CSA Mine (2007 – 2017)
		• Fischer Resources (2013)
		• E2 Metals (2017)
		Collectively, those companies drilled:
		Mount Solitary: 87 holes for 11,288m
		Mount Solar: 26 holes for 3198m
		Main Road: 15 holes for 1410m
Geology	Deposit type, geological setting and style of mineralisation.	 The Mt Hope Project is located within the Central Subprovince of the Lachlan Fold Belt (Lachlan Orogen) in central New South Wales. The Lachlan Orogen is host to significant gold and copper-gold deposits and comprises a significant part of the Palaeozoic geological architecture of eastern Australia and forms a structural unit extending from Tasmania in the south through Victoria and into NSW, where it covers a significant part of this State. Mt Solitary prospect is located within EL6837 in the eastern Mt Hope Trough of the southern Cobar Basin. The licence covers an area of Broken Range Group sediments east of the Great Central/Sugar Loaf Fault, which forms a major boundary between the Regina Volcanics
		and the Broken Range flysch sediments of the Mt Hope Trough. The area covers a series of interpreted subsidiary footwall structures within the Broken Range Group, characterised by topographic highs related to silicification of the sediments along these structures. Using this premise, MHM believes that these footwall structures marked by siliceous sediment could host significant gold mineralisation similar to that of the major deposits found in the northern Cobar Basin and

20

Criteria	JORC Code Explanation	Commentary
		those of the Mt Hope Copper Mine located in the footwall of the Sugar Loaf Fault within the Broken Range Group.
		 The style of mineralisation being explored is a mesothermal shear- hosted deposit analogous to other shear zone-hosted gold deposits in the Cobar region (The Peak and Federation mines).
		 The Mount Solitary prospect occurs on a small conical-shaped hill to a height of about 100m above the surrounding plain. Gold mineralisation is associated with a broad NNW shear zone of strongly iron-stained, silicified, sericite-altered complex of folded sediments. Alteration is zoned from silica to sericite to chlorite with quartz veins, pyrite and gold. Surface indications of gold lie within an area 250 by 250m. Within the broader mineralised envelope, there is a steepening shoot (from 80-90° NNE to 70-90° SSW) within the "Main Lode" zone and an array of closely spaced, parallel subsidiary lode structures.
Drill Hole Information	 A summary of all information material to the understanding of the exploration results, including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar Dip and azimuth of the hole Downhole length and interception depth Hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the 	 Refer to appendix 1 for significant results from the drilling program Drill hole locations are described in the body of the text, in Appendix 1 and on the related figures.

口

Criteria	JORC Code Explanation	Commentary
	understanding of the report, the Competent Person should clearly explain why this is the case.	
Data Aggregation Methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated, and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 A nominal 0.2g/t Au lower cut-off has been applied for grade calculations. No top cut has been applied. All intercepts are calculated using a 0.2g/t Au lower cut-off, and a maximum of 2m internal waste for the final significant intercepts. No metal equivalents are reported.
Relationship Between Mineralisation Widths and Intersect Lengths.	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation concerning the drill hole angle is known, its nature should be reported. If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (eg "downhole length, true width not known"). 	All drill hole intercepts are measured in metres and reported as downhole lengths. As the nature and orientation of the mineralisation is not yet certain, all intercepts are reported as drilled downhole length intercepts.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views. 	Refer to figures and text in the body of the announcement.

Criteria	JORC Code Explanation	Commentary
Balanced Reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results. 	The reported results reflect the full range of results for the target commodities available to Mount Hope Mining at the time of this report. No relevant information has been omitted.
Other Substantive Exploration Data	 Other exploration data, if meaningful and material, should be reported, including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Data that is relevant to this release is included in this report All relevant data available to Mount Hope Mining has been documented in this report
Further Work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions, or large-scale step-out drilling). Diagrams highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Mount Solitary is an exploration stage project and future drilling will be focused on extensions to known mineralisation, along strike and at depth.