

# Market Update



4 August 2025

## Highlights

### Halls Creek Project Review Targets Major Uplift

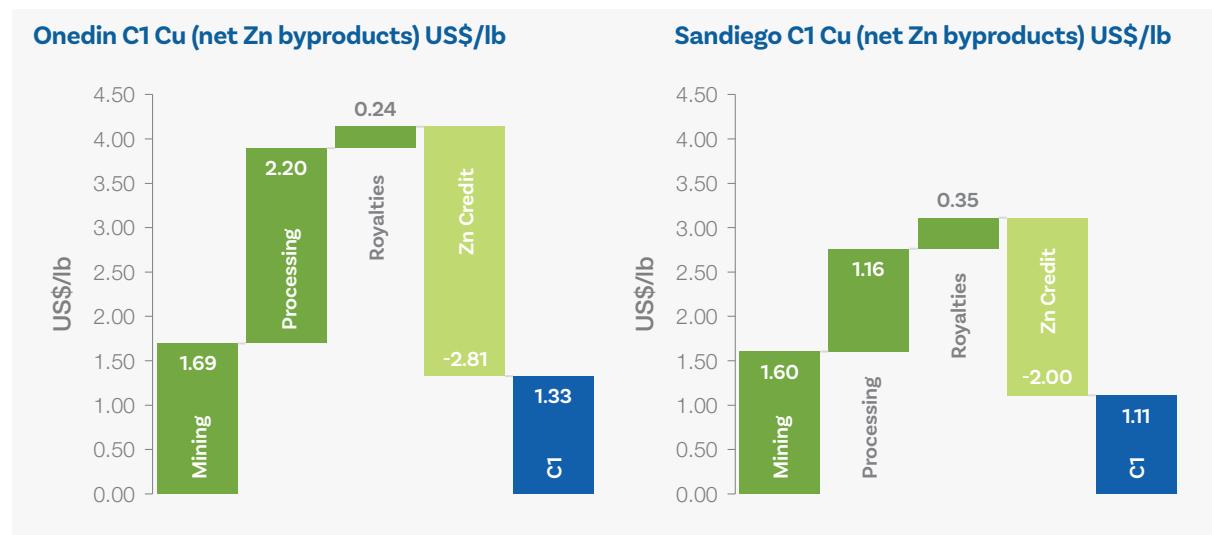
#### KEY POINTS

Cobalt Blue Holdings Limited (ASX: COB) ('Cobalt Blue' or 'the Company') is pleased to provide an update on upside potential identified following a review of value engineering opportunities and historical exploration data across the Halls Creek Project ('Halls Creek Project' or the 'Project') tenement package.

- **Engineering Review Targets Margin Expansion**  
Multiple value engineering opportunities are being progressed to build on the strong economics delivered in the June 2025 Scoping Study (the 'Scoping Study'):
  - Silver recovery presents a substantial opportunity to boost Stage 1 margins.
  - Cobalt at Sandiego occurs with high-grade copper-zinc zones—incorporation of cobalt in future Mineral Resource estimates could provide a valuable by-product credit, enhancing Stage 2 cost competitiveness.
  - A centralised processing hub is under review to integrate satellite deposits into the development plan aiming to extend life-of-mine, increase throughput, and lower unit capital intensity.
- **Sandiego North Emerges as a High-Impact Discovery Target**
  - Defined by a 700 m copper-in-soil anomaly with multiple samples exceeding 200 ppm Cu.
  - Drill hole ASWB01 intersected 5 m at 1.37% Cu and 2m at 1.71% Cu, confirming copper mineralisation north of the existing resource.
  - Deep drilling at Sandiego shows mineralisation trending toward Sandiego North, with high-grade results remaining open along strike.
  - Represents a priority target for near-term resource growth.
- **Broader tenement package under systematic review, targeting multi-deposit development potential.**

Commenting on the future upside of the Halls Creek Project, Cobalt Blue's **CEO Dr Andrew Tong** said *"The upside opportunities presented in this release, offer immense value-add to the core project outlined in the recent Scoping Study. COB has the right team to unlock silver and cobalt credits, potential driving major uplifts in cashflow and return on installed plant. Resource growth, and associated project life could be realised through the drill-ready exploration opportunities."*

## Engineering Review Targets Major Uplift


- **Engineering Review Targets Margin Expansion** - Multiple value engineering opportunities are being progressed to build on the strong economics delivered in the June 2025 Scoping Study.
- **New Revenue Streams: Silver and Cobalt Upside Identified** - The potential inclusion of silver at Onedin and cobalt at Sandiego offer high-value revenue streams and align with Kwinana battery metals strategy.
- **Strategic Hub Concept to Expand Project Scale** - Centralised hub model under review to integrate nearby deposits, extend mine life, and boost production scale.
- **Exploration Pipeline Activated** - Sandiego North confirmed as a high-impact near-mine target; regional pipeline also advancing to drive long-term discovery.

The Company has identified multiple value engineering initiatives that have the potential to significantly enhance the already robust economics outlined in the Halls Creek Project Scoping Study (see 'Halls Creek Project Scoping Study delivers a near-term copper-zinc opportunity' released 6 June 2025), the Project is structured to deliver staged, near-term cash flow from two sequential operations:

- **Stage 1 – Onedin Open Pit / Heap Leach:**  
A two-phase open-pit operation supplying oxide and transitional feed to a heap leach facility, producing copper metal and zinc sulphate monohydrate through solvent extraction, electrowinning, and crystallisation.
- **Stage 2 – Sandiego Underground / Flotation Concentrator:**  
An underground mine targeting transitional and primary sulphide mineralisation, commencing after Stage 1. The operation will utilise long-hole open stoping with cemented rock fill to maximise ore recovery and will produce separate copper and zinc concentrates with silver credits via flotation.

The Scoping Study demonstrated strong base-case economics, with a **Stage 1 C1 cash cost<sup>1</sup> of US\$1.33/lb of copper** and a **Stage 2 C1 cash cost<sup>1</sup> of US\$1.11/lb of copper**, both measured against a long-term copper price assumption of US\$4.55/lb. Importantly, these already robust margins exclude several upside opportunities that could significantly increase project value outlined below.

Figure 1 - Stage 1 - Onedin and Stage 2 - Sandiego cash cost US/lb copper (net of zinc credits).



## Silver Recovery in Stage 1 – A High-Grade, Untapped Credit

Future metallurgical testwork for Stage 1 will target the recovery of silver from Onedin mineralisation. Shallow, high-grade silver intersections include:

- **55.1 m at 3.5% Cu, 1.2% Pb, 0.8% Zn & 103 g/t Ag from 94 m (AORD004)**, including
  - 16.6 m at 10.2% Cu, 0.5% Pb, 1.0% Zn & 316 g/t Ag from 130 m
- **118 m at 1.1% Cu, 1.6% Pb, 1.1% Zn & 52 g/t Ag from 14 m (AOWB03)**, including
  - 21 m at 2.1% Cu & 66 g/t Ag from 93 m

Silver is currently excluded from the Stage 1 financial model, despite the production target delivering material at an average grade of 37 g/t (1.2 oz/t) equating to 3.6 Moz contained silver. With silver trading at ~A\$58/oz, any potential recovery could deliver substantial additional revenue and, when considered alongside the current Stage 1 processing cost of A\$52.12/t, significantly lift project margins.

## Cobalt Upside in Stage 2 – Strategic Fit with Kwinana Cobalt Refinery

The inclusion of cobalt in future Mineral Resource estimates at Sandiego presents a compelling upside for Stage 2. This directly supports the proposed Kwinana Cobalt Refinery strategy, targeting battery-grade cobalt and nickel products — potentially adding a high-value, future-facing revenue stream to the Project.

Historical drilling demonstrates that cobalt occurs alongside high-grade copper-zinc mineralisation at Sandiego, with notable intersections summarised in the table below.

| Drill Hole      | Downhole Interval<br>(m) | From (m)      | Cu (%)      | Zn (%)      | Co (%)      | Ag (g/t)   |
|-----------------|--------------------------|---------------|-------------|-------------|-------------|------------|
| <b>SRC060</b>   | <b>8</b>                 | <b>112</b>    | <b>2.0</b>  | <b>4.2</b>  | <b>0.28</b> | <b>133</b> |
| <b>SRC062</b>   | <b>18</b>                | <b>128</b>    | <b>0.7</b>  | <b>5.7</b>  | <b>0.10</b> | <b>62</b>  |
| <b>SRCD028A</b> | <b>37</b>                | <b>267</b>    | <b>3.9</b>  | <b>0.3</b>  | <b>0.10</b> | <b>28</b>  |
| <b>SRCD030</b>  | <b>12.4</b>              | <b>208</b>    | <b>4.8</b>  | <b>12.1</b> | <b>0.13</b> | <b>129</b> |
| and             | 18                       | 274           | 7.3         | 0.3         | 0.14        | 42         |
| <b>SRCD031</b>  | <b>22</b>                | <b>100</b>    | <b>12.6</b> | <b>8.0</b>  | <b>0.17</b> | <b>121</b> |
| and             | 12.9                     | 149.5         | 12.2        | 2.8         | 0.27        | 37         |
| <b>SRCD064</b>  | <b>10.37</b>             | <b>393.73</b> | <b>9.9</b>  | <b>0.3</b>  | <b>0.46</b> | <b>19</b>  |

Incorporating cobalt into future Mineral Resource updates and feasibility studies has the potential to deliver a meaningful by-product credit. This would further strengthen the already competitive cost profile of Stage 2 and broaden the Project's exposure to battery metals markets.

## Opportunity for a Centralised Processing Hub to Exploit Satellite Deposits


Beyond the immediate development of the Onedin and Sandiego deposits, the Company has identified a strategic opportunity to establish a centralised processing hub capable of accepting material from nearby satellite deposits. This approach has the potential to maximise capital efficiency, extend the life-of-mine (LOM), and increase the overall scale of operations without significant duplication of processing infrastructure.

Priority satellite deposits that could be considered for future integration include:

- **Mount Angelo North<sup>1</sup>**: 1.72 Mt at 1.4% Cu, 1.4% Zn, 12.3 g/t Ag containing approximately 23 kt Cu, 25 kt Zn and 680 koz Ag.
- **Bommie Porphyry Copper<sup>1</sup>**: 95.6 Mt at 0.27% Cu containing approximately 262 kt Cu.

Incorporating material from these deposits into a centralised operation presents an opportunity to incrementally increase throughput and extend the Project's LOM beyond the 10 years currently modelled in the Scoping Study. By leveraging existing processing infrastructure, the Project could achieve higher metal production at a lower unit capital intensity, enhancing overall project economics.

Figure 2 - Halls Creek Project regional deposits and prospects.

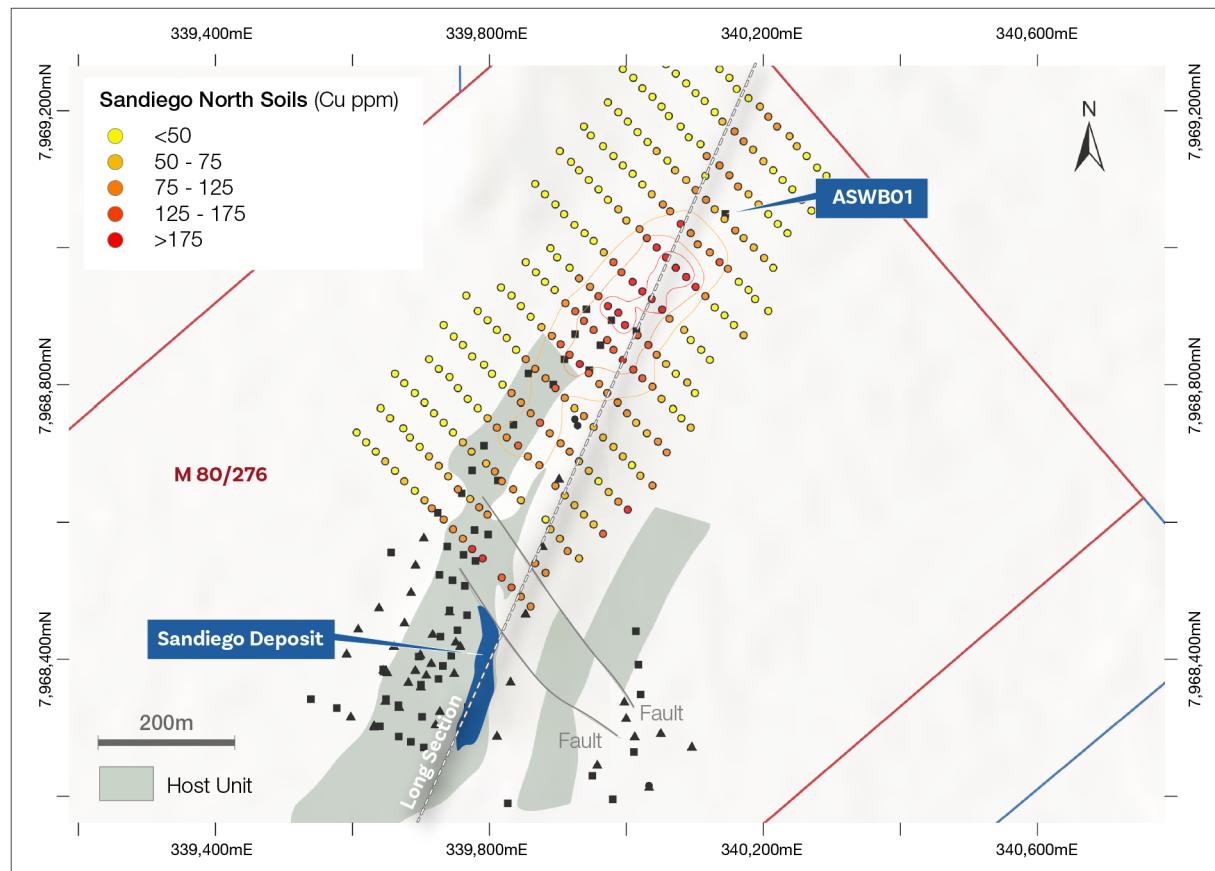


# Targeting Growth Beyond Onedin and Sandiego

Following the successful Scoping Study in H1 2025, the Company has pivoted to a focused review of historical exploration data across the broader Halls Creek tenement package. This work is driving the identification of new, high-potential targets to be advanced alongside feasibility studies — supporting a dual-track strategy of project optimisation and resource growth.

An initial suite of priority targets has been defined, ranging from immediate extensions of Onedin and Sandiego to regional prospects with the potential to deliver step-change scale.

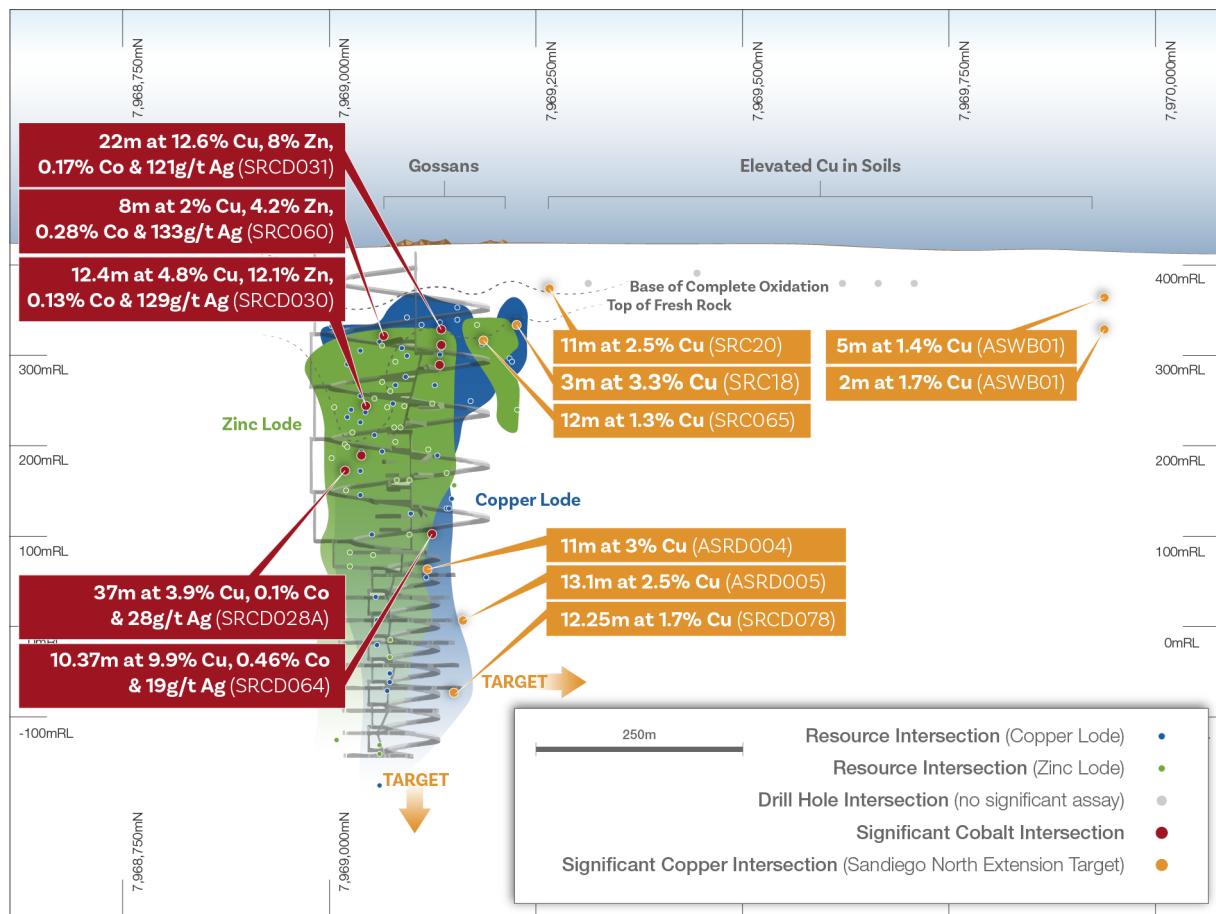
## Sandiego North Target


The most advanced of these targets is Sandiego North which remains open along strike to the north, presenting a substantial opportunity for further resource growth. Extending beyond the known mineralisation, the Sandiego North target represents a highly prospective but largely untested area defined by extensive surficial copper geochemical anomalous and a significant intersection encountered during the drilling of a water bore (ASWB01).

In 2023, AuKing Mining Limited completed a detailed soil sampling program at Sandiego North to evaluate potential continuity of mineralisation from the main Sandiego deposit. The survey, comprising 294 samples collected on a 50 m x 20 m grid, delineated a broad 700-metre northeast–southwest copper anomaly extending from the northern limits of Sandiego through to ASWB01. Within this trend lies a prominent 150 m x 100 m geochemical zone, with several samples exceeding 200 ppm Cu, which remains completely untested by drilling. The soil sampling results provide a compelling vector for copper mineralisation linking the main Sandiego system with Sandiego North.

Drill hole ASWB001, located more than 700 m north of the current Sandiego resource boundary, returned multiple intervals of high-grade copper mineralisation including:

- 5 m at 1.4% Cu from 50 m (ASWB01), and
- 2 m at 1.7% Cu from 85 m.


**Figure 3 - Sandiego - Sandiego North plan illustrating geochemical anomalous and drilling intersections.**



Enhancing the significance of this target, several drill holes north of the deposit have variably tested the continuity of mineralised lenses, which are interpreted to be dislocated by northwest-southeast trending faults. Several zones remain open along strike to the north, including discrete shallow lenses and deeper extensions, with significant intersections summarised in the table below.

| Drill Hole | Downhole Interval (m) | From (m) | Cu (%) |
|------------|-----------------------|----------|--------|
| SRC065     | 12                    | 121      | 1.3    |
| SRC18      | 3                     | 103      | 3.3    |
| SRC20      | 11                    | 53       | 2.5    |
| ASRD004    | 11                    | 395      | 3.0    |
| ASRD005    | 13.1                  | 455      | 2.5    |
| SRCD078    | 12.25                 | 543.35   | 1.7    |

Figure 4 - Sandiego - Sandiego North long section illustrating significant cobalt and copper intersections. The underground development design prepared for the Scoping Study is shown with areas of potential extension identified.



These intersections confirm the continuity of high-grade copper mineralisation and highlight the significant untested potential of the Sandiego North corridor. With the underground mine optimisation completed as part of the Scoping Study demonstrating viable access to the area, the delineation of resources at Sandiego North is a priority opportunity for near-term resource growth and has the potential to materially enhance the scale of the Halls Creek Project.

## Building the Pipeline – Regional Targets

While Sandiego North stands out as the near-term resource growth opportunity, the Company is actively building a broader pipeline of exploration targets across the Halls Creek tenement package. This strategy is underpinned by an integrated review of geophysics, historical drilling, geochemistry, and mapping — laying the groundwork for sustained discovery beyond the known deposits.

Examination of regional geophysical data reveals that both the Sandiego and Onedin deposits are associated with distinct magnetic anomalies, attributed to magnetite alteration. These anomalies typically exhibit short strike lengths and are oriented across stratigraphic trends, creating a signature that can be traced elsewhere within the Project area. Both deposits also lie in proximity to induced polarisation (IP) and electromagnetic (EM) conductors, despite deep weathering profiles—indicating that these geophysical methods remain effective tools for regional targeting.

A number of similar magnetic and EM anomalies have been identified along prospective stratigraphy, and these are being evaluated in conjunction with:

- surface mapping of gossans,
- surficial geochemical anomalies, and
- historical drilling data, which is being reviewed to assess the extent and effectiveness of past exploration efforts.

This regional targeting work is designed to systematically refine and prioritise targets for follow-up exploration, ensuring a continuous pipeline of opportunities to complement near-mine development. These activities will inform future drill campaigns and support the Company's strategy to position the Halls Creek Project as a long-life, multi-deposit copper-zinc operation.

## Competent Person's Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Heath Porteous, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy (AusIMM). Mr Porteous is employed by Xploremore Pty Ltd and engaged on a full-time basis by the Group as Exploration Manager. Mr Porteous has had sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for the Reporting of Exploration Results, Minerals Resources and Ore Reserves (2012 JORC Code). Mr Porteous consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

## Cobalt Blue Background

Cobalt Blue is a minerals processing and mining company positioned for growth and cashflow:

- Our growth strategy is focused on producing copper, zinc and silver that power Australia's economy and support global industrial growth, from the Halls Creek Project.
- Our critical minerals strategy focuses on building mid-stream processing capabilities in Australia and diversifying supply chains among like-minded countries. These include the Kwinana Cobalt Refinery and Broken Hill Technology Centre.

As announced on 18 February 2025, the Company intends to seek shareholder approval to change its name to Core Blue Minerals Limited.

## Compliance Statements

The information in this announcement related to the Sandiego and Onedin Mineral Resource estimates is extracted from the ASX Announcement released on 18 February 2025 titled 'COB Diversifies – Major Copper Project Earn in'. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of Mineral Resources, all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

The information in this announcement related to the Halls Creek Project, including the forecast financial information, is extracted from the ASX Announcement released on 6 June 2025 titled 'Halls Creek Project Scoping Study delivers a near-term copper-zinc opportunity'. The Company confirms that it is not aware of any new information or data that materially affects the production target information or the forecast financial information derived therefrom included in the original announcement. The Company confirms that all the material assumptions underpinning those production targets or the forecast financial information derived therefrom continue to apply and have not materially changed.

## Forward Looking Statements

This announcement contains "forward-looking statements". All statements other than those of historical facts included in this announcement are forward-looking statements. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have a reasonable basis. However, forward-looking statements are subject to risks, uncertainties, and other factors, which could cause actual results to differ materially from future results expressed, projected or implied by such forward-looking statements. Such risks include but are not limited to cobalt metal price volatility, timely completion of project milestones, funding availability, and government and other third-party approvals. The Company is not obligated to release any revisions to any "forward-looking statement" publicly. To the maximum extent permitted by law, COB and its respective advisers, affiliates, related bodies corporate, directors, officers, partners and employees expressly exclude and disclaim all responsibility and liability, including, without limitation, for negligence or in respect of any expenses, losses, damages or costs incurred by any person as a result of their reliance on this ASX announcement and the information in this ASX announcement being inaccurate or incomplete in any way for any reason, whether by way of negligence or otherwise.

**This announcement was authorised for release to the ASX by the board of Cobalt Blue Holdings Limited.**

For more information, please contact:

### Joel Crane

Investor Relations/Commercial Manager

joel.crane@cobaltblueholdings.com



Scan the QR code to download a copy  
of the Halls Creek Scoping Study.

# JORC Code 2012 Edition — Table 1

## Section 1 Sampling Techniques and Data

| Criteria                   | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Sampling techniques</b> | <ul style="list-style-type: none"> <li>▪ <i>Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i></li> <li>▪ <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i></li> <li>▪ <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i></li> <li>▪ <i>In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.</i></li> </ul> | <p><b>Sandiego – Diamond Drilling</b></p> <p><b>1995–1996</b></p> <ul style="list-style-type: none"> <li>▪ Diamond drilling was used to obtain core from which intervals averaging 1 m in length were sawn to produce samples (typically quarter (25%) core). These samples were crushed, split and pulverised for analysis via atomic absorption spectroscopy ('AAS') reporting a limited and variable suite of elements (nominally Cu, Pb, Zn and Ag). Au was variably analysed by fire assay. Details of sub-sampling, lab preparation and digestion techniques are not recorded.</li> </ul> <p><b>2006–2011</b></p> <ul style="list-style-type: none"> <li>▪ Diamond drilling was used to obtain core from which intervals averaging 1 m in length were sawn to produce quarter (25%) core or half (50%) core samples from HQ or NQ core respectively. These samples were crushed, split and pulverised to produce a sample for mixed-acid digestion and analysis via Inductively Coupled Plasma – Mass Spectrometry ('ICP-MS') or Inductively Coupled Plasma – Optical Emission Spectroscopy ('ICP-OES') reporting a variable suite of elements. Au was typically analysed by fire assay using a 40 - 50g charge with an AAS finish. Details of sub-sampling and lab preparation techniques are not recorded.</li> <li>▪ The remaining core was retained for archival purposes.</li> </ul> <p><b>2021</b></p> <ul style="list-style-type: none"> <li>▪ Diamond drilling was used to obtain core from which intervals averaging 0.95 m in length were sawn to produce half (50%) core samples. These samples were crushed passing -10 mm, riffle split and pulverised to produce a sample for mixed-acid digestion and analysis via ICP-OES for a suite of 39 elements. Au was analysed by fire assay using a 30 g charge with an AAS finish.</li> <li>▪ The remaining core was retained for archival purposes or metallurgical testwork.</li> </ul> <p><b>Sandiego – RC Drilling</b></p> <p><b>1995–1996</b></p> <ul style="list-style-type: none"> <li>▪ RC drilling was used to obtain 1 m samples by means of a riffle splitter which were composited into 4 m intervals for analysis via AAS reporting a limited suite of elements (nominally Cu, Pb, Zn and Ag). Au was variably analysed by fire assay. Composite samples returning Cu, Pb or Zn &gt;1%, and or Au &gt;1 g/t were typically re-assayed at 1 m intervals. Details of sample compositing, sub-sampling and lab preparation techniques are not recorded.</li> </ul> |

| Criteria                                         | JORC Code Explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Sampling techniques</b><br><i>(continued)</i> |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                  |                       | <b>2006–2008</b> <ul style="list-style-type: none"> <li>RC drilling was used to obtain 4 m composite samples by means of a sample 'spear'. These samples were crushed, split and pulverised to produce a sample for mixed-acid digestion and analysis via ICP-MS or ICP-OES reporting a variable suite of elements. Au was typically analysed by fire assay using a 40-50 g charge with an AAS finish. Details of sub-sampling and lab preparation techniques are not recorded.</li> </ul>                                                                                                                                                                          |
|                                                  |                       | <b>2010–2011</b> <ul style="list-style-type: none"> <li>RC drilling was used to obtain 1m samples by means of a cone splitter. These samples were crushed, split and pulverised to produce a sample for mixed-acid digestion and analysis via ICP-OES reporting a variable suite of elements. Au was typically analysed by fire assay using a 50 g charge with an AAS finish. Details of sub-sampling and lab preparation techniques are not recorded.</li> </ul>                                                                                                                                                                                                   |
|                                                  |                       | <b>2021</b> <ul style="list-style-type: none"> <li>RC drilling was used to obtain 1 m samples by means of a cone splitter from which up to 3.5 kg was pulverised to produce a sample for mixed-acid digestion and analysis via ICP-OES for a suite of 39 elements. Au was analysed by fire assay using a 30 g charge with an AAS finish.</li> <li>Unmineralised zones were infrequently composited into 4m intervals for analysis as described above.</li> </ul>                                                                                                                                                                                                    |
|                                                  |                       | <b>Onedin – Diamond Drilling</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  |                       | <b>1995–1996</b> <ul style="list-style-type: none"> <li>Diamond drilling was used to obtain core from which intervals averaging 1 m in length were sawn to produce samples (typically quarter (25%) core). These samples were crushed, split and pulverised for analysis via AAS reporting a limited and variable suite of elements (nominally Cu, Pb, Zn and Ag). Au was variably analysed by fire assay. Details of sub-sampling, lab preparation and digestion techniques are not recorded.</li> </ul>                                                                                                                                                           |
|                                                  |                       | <b>2006–2008</b> <ul style="list-style-type: none"> <li>Diamond drilling was used to obtain core from which intervals averaging 1 m in length were sawn to produce quarter (25%) core or half (50%) core samples from HQ or NQ core respectively. These samples were crushed, split and pulverised to produce a sample for mixed-acid digestion and analysis via ICP-MS or ICP-OES reporting a variable suite of elements. Au was typically analysed by fire assay using a 40 - 50 g charge with an AAS finish. Details of sub-sampling and lab preparation techniques are not recorded.</li> <li>The remaining core was retained for archival purposes.</li> </ul> |
|                                                  |                       | <b>2021</b> <ul style="list-style-type: none"> <li>Diamond drilling was used to obtain core from which intervals averaging 0.96 m in length were sawn to produce quarter (25%) core or half (50%) core samples from PQ3 / HQ3 or HQ core respectively. These samples were crushed passing -10 mm, riffle split and pulverised to produce a sample for mixed-acid digestion and analysis via ICP-OES for a suite of 39 elements. Au was analysed by fire assay using a 30 g charge with an AAS finish.</li> </ul>                                                                                                                                                    |

| Criteria                                         | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Sampling techniques</b><br><i>(continued)</i> | <p><b>Sampling techniques</b><br/> <i>(continued)</i></p> <p><b>Onedin – RC Drilling</b></p> <p><b>1995–1996</b></p> <ul style="list-style-type: none"> <li>The remaining core was retained for archival purposes or metallurgical testwork.</li> </ul> <p><b>2006–2008</b></p> <ul style="list-style-type: none"> <li>RC drilling was used to obtain 1m samples by means of a riffle splitter which were composited into 4m intervals for analysis via AAS reporting a limited suite of elements (nominally Cu, Pb, Zn and Ag). Au was variably analysed by fire assay. Composite samples returning Cu, Pb or Zn &gt;1%, and or Au &gt;1 g/t were typically re-assayed at 1m intervals. Details of sample compositing, sub-sampling and lab preparation techniques are not recorded.</li> </ul> <p><b>2021</b></p> <ul style="list-style-type: none"> <li>RC drilling was used to obtain 1 m samples by means of a cone splitter from which up to 3.5 kg was pulverised to produce a sample for mixed-acid digestion and analysis via ICP-MS or ICP-OES reporting a variable suite of elements. Au was analysed by fire assay using a 40–50 g charge. Details of sub-sampling and lab preparation techniques are not recorded.</li> <li>Unmineralised zones were infrequently composited into 4 m intervals for analysis as described above.</li> </ul> <p><b>Sandiego North Soil Sampling</b></p> <ul style="list-style-type: none"> <li>Soil samples were collected from shallow depths (&lt;20 cm from surface) using handheld equipment. Samples were sieved in the field to pass a -2.8 mm mesh, with approximately 250 g retained for multi-element analysis using a microwave-assisted acid digest with an ICP-EOS/MS finish</li> </ul> | <p><b>Sampling techniques</b><br/> <i>(continued)</i></p> <p><b>Onedin – RC Drilling</b></p> <p><b>1995–1996</b></p> <ul style="list-style-type: none"> <li>The remaining core was retained for archival purposes or metallurgical testwork.</li> </ul> <p><b>2006–2008</b></p> <ul style="list-style-type: none"> <li>RC drilling was used to obtain 1m samples by means of a riffle splitter which were composited into 4m intervals for analysis via AAS reporting a limited suite of elements (nominally Cu, Pb, Zn and Ag). Au was variably analysed by fire assay. Composite samples returning Cu, Pb or Zn &gt;1%, and or Au &gt;1 g/t were typically re-assayed at 1m intervals. Details of sample compositing, sub-sampling and lab preparation techniques are not recorded.</li> </ul> <p><b>2021</b></p> <ul style="list-style-type: none"> <li>RC drilling was used to obtain 1 m samples by means of a cone splitter from which up to 3.5 kg was pulverised to produce a sample for mixed-acid digestion and analysis via ICP-MS or ICP-OES reporting a variable suite of elements. Au was analysed by fire assay using a 40–50 g charge. Details of sub-sampling and lab preparation techniques are not recorded.</li> <li>Unmineralised zones were infrequently composited into 4 m intervals for analysis as described above.</li> </ul> <p><b>Sandiego North Soil Sampling</b></p> <ul style="list-style-type: none"> <li>Soil samples were collected from shallow depths (&lt;20 cm from surface) using handheld equipment. Samples were sieved in the field to pass a -2.8 mm mesh, with approximately 250 g retained for multi-element analysis using a microwave-assisted acid digest with an ICP-EOS/MS finish</li> </ul> |
| <b>Drilling techniques</b>                       | <ul style="list-style-type: none"> <li><i>Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <p><b>Sandiego</b></p> <ul style="list-style-type: none"> <li>The Sandiego drilling database comprises drill holes completed from 1995 including 3 diamond drill holes, 53 RC drill holes and 42 diamond drill holes with RC pre-collars ('RCDD') of varying depths. In addition, the database includes 35 drill holes (27 diamond drill holes and 8 RC drill holes) for which no information regarding the date of drilling or details related to drilling techniques is recorded.</li> <li>Between 1995 and 1996, diamond drill holes generally utilised RC pre-collars to an average depth of 141m. Diamond tails were typically completed using HQ3 triple tube, reducing to standard NQ2 on intersection of competent rock. RC drilling utilised standard hole diameters (typically 4.75 – 5.625") though details of bit types were not recorded. Core orientation was completed, where possible, using a Van-Ruth Orientation device.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Criteria                                         | JORC Code Explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Drilling techniques</b><br><i>(continued)</i> |                       | <ul style="list-style-type: none"> <li>▪ Between 2006 and 2011, diamond drill holes generally utilised RC pre-collars to an average depth of 144 m. Diamond tails were typically completed using standard HQ2. RC drilling utilised standard hole diameters (typically 5.25") though details of bit types were not recorded. Core orientation surveys were undertaken as frequently as possible (generally every 12 m) though were difficult to maintain in broken ground. Core orientation methods were not recorded.</li> <li>▪ During 2021, diamond drill holes generally utilised RC pre-collars to an average depth of 120 m. Diamond tails were typically completed using standard HQ2, reducing to NQ2 to hole completion. RC drilling utilised standard hole diameters (typically 5.5") face-sampling bit. Core was orientated though orientation methods were not recorded.</li> <li>▪ A summary of drill holes and drilling techniques is provided in the following table.</li> </ul> |

| Year         | No. Drill Holes |           |           |           | No. Metres      |                  |                  | Drilling Diameters |             |
|--------------|-----------------|-----------|-----------|-----------|-----------------|------------------|------------------|--------------------|-------------|
|              | Diamond         | RC        | RCDD      | Total     | Diamond         | RC               | Total            | Diamond            | RC          |
| 1995         | -               | 4         | 5         | 9         | 630.6           | 1,096.65         | 1,727.25         | NQ2-HQ3            | 4.75–5.625" |
| 1996         | -               | 6         | 8         | 14        | 1,427.6         | 1,928.1          | 3,355.7          |                    |             |
| 2006         | -               | -         | 4         | 4         | 912.65          | 520.75           | 1,433.4          | NQ2-HQ2            | 5.25"       |
| 2008         | -               | 22        | 11        | 33        | 2,289.8         | 5,208.4          | 7,498.2          |                    |             |
| 2010         | 2               | 11        | 10        | 23        | 1,220.1         | 3,193.9          | 4,414            |                    |             |
| 2011         | -               | 3         | -         | 3         | -               | 648              | 648              |                    |             |
| 2021         | 1               | 7         | 4         | 12        | 1,742.58        | 1,431.33         | 3,173.91         | NQ2-HQ2            | 5.5"        |
| <b>Total</b> | <b>3</b>        | <b>53</b> | <b>42</b> | <b>98</b> | <b>8,223.33</b> | <b>14,027.13</b> | <b>22,250.46</b> | <b>-</b>           | <b>-</b>    |

| Criteria                                         | JORC Code Explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Drilling techniques</b><br><i>(continued)</i> |                       | <p><b>Onedin</b></p> <ul style="list-style-type: none"> <li>The Onedin drilling database comprises drill holes completed from 1995 including 8 diamond drill holes, 41 RC drill holes and 21 diamond drill holes with RC pre-collars ('<b>RCDD</b>') of varying depths. In addition, the database includes 21 diamond drill holes for which no information regarding the date of drilling or details related to drilling techniques is recorded.</li> <li>Between 1995 and 1996, diamond drill holes generally utilised RC pre-collars to an average depth of 154 m. Diamond tails were typically completed using HQ3 triple tube, reducing to standard NQ2 on intersection of competent rock. RC drilling utilised standard hole diameters (typically 4.75 – 5.625") though details of bit types were not recorded. Core orientation methods were not recorded.</li> <li>Between 2006 and 2008, diamond drill holes generally utilised RC pre-collars to an average depth of 132 m. Diamond tails were typically completed using standard HQ2 or NQ2. RC drilling utilised standard hole diameters (typically 5.25") though details of bit types were not recorded. Core orientation surveys were undertaken as frequently as possible (generally every 12 m) though were difficult to maintain in broken ground. Core orientation methods were not recorded.</li> <li>During 2021, diamond drill holes were typically cored from surface using PQ3 triple tube reducing to HQ3 triple tube when intersecting the lower contact of mineralisation. RC drilling utilised standard hole diameters (typically 5.5") face-sampling bit. Core was orientated though orientation methods were not recorded.</li> <li>A summary of drill holes and drilling techniques is provided in the following table.</li> </ul> |

| Year         | No. Drill Holes |           |           |           | No. Metres      |                 |                 | Drilling Diameters |             |
|--------------|-----------------|-----------|-----------|-----------|-----------------|-----------------|-----------------|--------------------|-------------|
|              | Diamond         | RC        | RCDD      | Total     | Diamond         | RC              | Total           | Diamond            | RC          |
| 1995         | -               | 22        | 10        | 32        | 759.2           | 3,918.9         | 4,678.1         | NQ2-HQ3            | 4.75–5.625" |
| 1996         | -               | 5         | 6         | 11        | 1,004.72        | 1,661.08        | 2,665.8         |                    |             |
| 2006         | 1               | 1         | 2         | 4         | 558.9           | 383.1           | 942             | NQ2-HQ2            | 5.25"       |
| 2008         | -               | 4         | 2         | 6         | 322.3           | 1,054           | 1,376.3         |                    |             |
| 2021         | 7               | 9         | 1         | 17        | 1,627           | 1,577.7         | 3,204.7         | NQ2/HQ2-PQ3        | 5.5"        |
| <b>Total</b> | <b>8</b>        | <b>41</b> | <b>21</b> | <b>70</b> | <b>4,272.12</b> | <b>8,594.78</b> | <b>12,866.9</b> | <b>-</b>           | <b>-</b>    |

| Criteria                     | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Drill sample recovery</b> | <ul style="list-style-type: none"> <li>▪ <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i></li> <li>▪ <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i></li> <li>▪ <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i></li> </ul> | <p><b>Diamond Drilling</b></p> <ul style="list-style-type: none"> <li>▪ Between 1995 and 1996, core recoveries were quantified through measurement of actual core recovered versus drilled intervals. Diamond drilling typically used a HQ3 triple tube configuration to maximise recovery through strongly weathered rock, reducing to standard NQ2 on intersection of competent rock. Core recoveries are recorded for approximately 46% of metres drilled during the respective period and averaged 99%.</li> <li>▪ Between 2006 and 2010, core recoveries were quantified through measurement of actual core recovered versus drilled intervals. Diamond drilling typically used standard HQ2 and NQ2 configurations with core loss generally attributed to fault zones characterised by a high fracture frequency. Core recoveries are recorded for approximately 91% of metres drilled during the respective period and averaged 95%.</li> <li>▪ During 2021, core recoveries were quantified through measurement of actual core recovered versus drilled intervals. Diamond drilling typically used standard HQ2 / NQ2 and PQ3 / HQ3 triple tube configurations. Core recoveries are recorded for approximately 88% of metres drilled during the year and averaged 94%.</li> <li>▪ No relationship between sample recovery and grade has been observed.</li> </ul> <p><b>RC Drilling</b></p> <ul style="list-style-type: none"> <li>▪ Between 1995 and 1996, sample recoveries achieved by RC drilling were typically estimated through observation of the volume of the bulk samples. Where recorded the estimates denoted recovery as a range between 0 and 100%. Accepting the inherent subjectivity of the estimates, recoveries generally averaged 100%.</li> <li>▪ Estimated recoveries are recorded for approximately 65% of the RC metres drilled during the respective period.</li> <li>▪ Between 2006 and 2011, sample recoveries achieved by RC drilling were estimated through observation of the volume of the bulk samples. Where recorded the estimates denoted recovery as a range between 0 and 100%. Accepting the inherent subjectivity of the estimates, recoveries generally averaged 100%, however estimates are only recorded for a relatively insignificant (1%) proportion of the RC metres drilled during the respective period.</li> <li>▪ During 2021, sample recoveries achieved by RC drilling were qualitatively assessed through observation of the volume of the bulk samples. Quantitative estimates were not recorded, with reports indicating recoveries were acceptable.</li> <li>▪ No relationship between sample recovery and grade has been observed.</li> </ul> |

| Criteria                                              | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Logging</b>                                        | <ul style="list-style-type: none"> <li>▪ Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>▪ Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>▪ The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                           | <ul style="list-style-type: none"> <li>▪ A qualified geoscientist has logged all drill holes (core and chip samples) pertaining to the exploration results presented herein. The total proportion of logging recorded in the database represents 97% of metres drilled since 1995 (i.e., 33,968 m of 35,117 m). This logging has been completed to a level of detail considered to accurately support Mineral Resource estimation. The parameters logged include lithology, weathering, colour, alteration, sulphide mineralogy, structure and texture. These parameters are both qualitative and quantitative in nature.</li> <li>▪ All diamond drill core sampled up to 2006 was re-logged by an independent consultant from ERM Australia Consultants Pty Ltd (formerly CSA Global) to ensure consistency. The same geological logging template was used for subsequent diamond drilling up to 2010.</li> <li>▪ Diamond drilling completed since 2006 has typically been subject to geotechnical logging with parameters recorded including rock quality indices (e.g., rock quality designation ('RQD')) and geotechnical defects such as fracture frequency.</li> <li>▪ Digital core photography for drilling completed in 2021 is retained in both wet and dry states. Core photographs from drilling completed prior to 2021 are available in historical reports (typically in PDF format) though the completeness of these records is unknown.</li> <li>▪ Core which was not sampled for geochemical, geotechnical and or metallurgical purposes is retained. The overall condition of this core is unknown.</li> <li>▪ Representative reference trays of chips from RC drilling completed in 2021 have been retained. Select reference trays of chips from RC drilling completed prior to 2021 have been retained though the completeness of these records is unknown.</li> </ul> |
| <b>Sub-sampling techniques and sample preparation</b> | <ul style="list-style-type: none"> <li>▪ If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>▪ If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>▪ For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>▪ Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>▪ Measures taken to ensure that the sampling is representative of the <i>in situ</i> material collected, including for instance results for field duplicate/ second-half sampling.</li> <li>▪ Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <p><b>Sandiego – Diamond Drilling</b></p> <p><b>1995–1996</b></p> <ul style="list-style-type: none"> <li>▪ All core samples (NQ2 – HQ3) were sawn with quarter (25%) core typically submitted for analysis.</li> <li>▪ No second half samples were submitted for analysis.</li> <li>▪ Quality Assurance and Quality Control ('QAQC') procedures adopted for sub-sampling are not recorded though are expected to have been undertaken in accordance with standard industry practice for the respective period.</li> </ul> <p><b>2006–2011</b></p> <ul style="list-style-type: none"> <li>▪ All core samples were sawn with quarter (25%) core or half (50%) core typically submitted for analysis from HQ2 or NQ2 core respectively.</li> <li>▪ No second half samples were submitted for analysis.</li> <li>▪ QAQC procedures adopted for sub-sampling are not recorded though are expected to have been undertaken in accordance with standard industry practice for the respective period.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Criteria                                                          | JORC Code Explanation         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Sub-sampling techniques and sample preparation (continued)</i> |                               | <p><b>2021</b></p> <ul style="list-style-type: none"> <li>▪ All core samples (NQ2 – HQ2) were sawn with half (50%) core typically submitted for analysis. These samples were crushed (passing -10 mm), riffle split and pulverised (80% passing -75 µm) to produce a sample for analysis.</li> <li>▪ The 'cut-line' was observably defined with reference to the core orientation line, typically retained on the portion of core reserved for archival purposes. This ensured that the portion of core selected for analysis remained generally consistent downhole.</li> <li>▪ No second half samples were submitted for analysis.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                   | <b>Sandiego – RC Drilling</b> | <p><b>1995–1996</b></p> <ul style="list-style-type: none"> <li>▪ RC drilling was used to obtain 1 m samples by means of a riffle splitter which were composited into 4 m intervals for analysis Composite samples returning Cu, Pb or Zn &gt;1%, and or Au&gt;1 g/t were typically re-assayed at 1m intervals.</li> <li>▪ QAQC procedures adopted for sample compositing and sub-sampling are not recorded though are expected to have been undertaken in accordance with standard industry practice for the respective period.</li> <li>▪ Details of field duplicates, if collected are not recorded.</li> </ul> <p><b>2006–2008</b></p> <ul style="list-style-type: none"> <li>▪ RC drilling was used to obtain 1 m samples which were speared to produce 4 m composite samples for analysis.</li> <li>▪ QAQC procedures adopted for sample compositing and sub-sampling are not recorded though are expected to have been undertaken in accordance with standard industry practice for the respective period. Sub-sampling with a sample spear to produce composite samples can introduce bias and reduce sample representativity, particularly in heterogeneous materials, where particle segregation and inconsistent sampling can lead to inaccurate assay results. The composite sample intervals are typically external of the mineralised domains and thus are not considered to have introduced any material bias.</li> <li>▪ Details of field duplicates are not recorded.</li> </ul> |
|                                                                   | <b>2010–2011</b>              | <ul style="list-style-type: none"> <li>▪ RC drilling was used to obtain 1m samples by means of a cone splitter for analysis.</li> <li>▪ QAQC procedures adopted for sample compositing and sub-sampling are not recorded though are expected to have been undertaken in accordance with standard industry practice for the respective period.</li> <li>▪ Details of field duplicates are not recorded.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | <b>2021</b>                   | <ul style="list-style-type: none"> <li>▪ RC drilling was used to obtain 1 m samples by means of a cone splitter from which up to 3.5 kg was pulverised (80% passing -75 µm) to produce a sample for analysis. Samples &gt;3.5 kg were riffle split and pulverised (80% passing -75µm) to produce a sample for analysis.</li> <li>▪ Unmineralised zones were infrequently composited into 4 m intervals for analysis as described above.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Criteria                                                                           | JORC Code Explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b><i>Sub-sampling techniques and sample preparation</i></b><br><i>(continued)</i> |                       | <ul style="list-style-type: none"> <li>▪ Sample condition was typically recorded by means of qualitative observation and generally designated 'dry', 'damp' or 'wet' samples. Records indicate samples were usually 'dry'. Wet samples were typically sampled using a sample spear.</li> <li>▪ During RC drilling completed in 2021 duplicate samples were collected at the time of drilling at an average rate of 1:100 samples. The method used to obtain duplicate samples is not recorded.</li> </ul> <p><b>Onedin – Diamond Drilling</b></p> <p><b>1995–1996</b></p> <ul style="list-style-type: none"> <li>▪ All core samples (NQ2 – HQ3) were sawn with quarter (25%) core typically submitted for analysis.</li> <li>▪ No second half samples were submitted for analysis.</li> <li>▪ QAQC procedures adopted for sub-sampling are not recorded though are expected to have been undertaken in accordance with standard industry practice for the respective period.</li> </ul> <p><b>2006–2008</b></p> <ul style="list-style-type: none"> <li>▪ All core samples were sawn with quarter (25%) core or half (50%) core typically submitted for analysis from HQ2 or NQ2 core respectively.</li> <li>▪ No second half samples were submitted for analysis.</li> <li>▪ QAQC procedures adopted for sub-sampling are not recorded though are expected to have been undertaken in accordance with standard industry practice for the respective period.</li> </ul> <p><b>2021</b></p> <ul style="list-style-type: none"> <li>▪ All core samples were sawn with quarter (25%) core or half (50%) core samples from PQ3 / HQ3 or HQ core respectively submitted for analysis. These samples were crushed (passing -10 mm), riffle split and pulverised (80% passing -75 µm) to produce a sample for analysis.</li> <li>▪ The 'cut-line' was observably defined with reference to the core orientation line, typically retained on the portion of core reserved for archival purposes. This ensured that the portion of core selected for analysis remained generally consistent downhole.</li> <li>▪ No second half samples were submitted for analysis.</li> </ul> <p><b>Onedin – RC Drilling</b></p> <p><b>1995–1996</b></p> <ul style="list-style-type: none"> <li>▪ RC drilling was used to obtain 1 m samples by means of a riffle splitter which were composited into 4 m intervals for analysis. Composite samples returning Cu, Pb or Zn &gt;1%, and or Au &gt;1 g/t were typically re-assayed at 1 m intervals.</li> <li>▪ QAQC procedures adopted for sample compositing and sub-sampling are not recorded though are expected to have been undertaken in accordance with standard industry practice for the respective period.</li> <li>▪ Details of field duplicates are not recorded.</li> </ul> <p><b>2006–2008</b></p> <ul style="list-style-type: none"> <li>▪ RC drilling was used to obtain 1m samples which were speared to produce 4m composite samples for analysis.</li> </ul> |

| Criteria                                                          | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Sub-sampling techniques and sample preparation (continued)</i> | <ul style="list-style-type: none"> <li>▪ QAQC procedures adopted for sample compositing and sub-sampling are not recorded though are expected to have been undertaken in accordance with standard industry practice for the respective period. Sub-sampling with a sample spear to produce composite samples can introduce bias and reduce sample representativity, particularly in heterogeneous materials, where particle segregation and inconsistent sampling can lead to inaccurate assay results. The composite sample intervals are typically external of the mineralised domains and thus are not considered to have introduced any material bias.</li> <li>▪ Details of field duplicates are not recorded.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | <b>2021</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul style="list-style-type: none"> <li>▪ RC drilling was used to obtain 1 m samples by means of a cone splitter from which up to 3.5 kg was pulverised (80% passing -75 µm) to produce a sample for analysis. Samples &gt;3.5 kg were riffle split and pulverised (80% passing -75 µm) to produce a sample for analysis.</li> <li>▪ Unmineralised zones were infrequently composited into 4 m intervals for analysis as described above.</li> <li>▪ Sample condition was typically recorded by means of qualitative observation and generally designated 'dry', 'damp' or 'wet' samples. Records indicate samples were usually 'dry'. Wet samples were typically sampled using a sample spear.</li> <li>▪ During RC drilling completed in 2021 duplicate samples were collected at the time of drilling at an average rate of 1:100 samples. The method used to obtain duplicate samples is not recorded. Results suggest good precision and repeatability, with minimal variation between original and duplicate assays.</li> <li>▪ Where recorded, the sample preparation techniques are considered to be appropriate and of sufficient quality to support Mineral Resource estimation.</li> <li>▪ The sample sizes submitted for analysis are considered to be appropriate for the mineralisation grain size, texture and style.</li> </ul> |
|                                                                   | <b>Sandiego North Soil Sampling</b> <ul style="list-style-type: none"> <li>▪ Handheld equipment was used to collect soil samples from shallow depths (&lt;20 cm). Sub-sampling was conducted in the field by dry sieving each sample to pass a -2.8 mm mesh, with approximately 250 g of fine fraction retained for analysis.</li> <li>▪ The sample size and sub-sampling method are considered appropriate for the analytical technique employed and the intended geochemical application.</li> </ul>                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Criteria                                          | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Quality of assay data and laboratory tests</b> | <ul style="list-style-type: none"> <li>▪ <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i></li> <li>▪ <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i></li> <li>▪ <i>Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.</i></li> </ul> | <ul style="list-style-type: none"> <li>▪ The nature and quality of all assaying and laboratory procedures employed for samples obtained through drilling (diamond and RC) are considered 'industry standard' for the respective periods.</li> </ul> <p><b>1995–1996</b></p> |

| Criteria                                                      | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |       |     |     |     |           |   |   |  |  |           |   |   |   |   |           |   |   |   |  |          |   |   |  |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|-----|-----|-----|-----------|---|---|--|--|-----------|---|---|---|---|-----------|---|---|---|--|----------|---|---|--|--|
| <b>Quality of assay data and laboratory tests (continued)</b> | <b>Sandiego North Soil Sampling</b>                                                                                                                                                                                                                                                                                                                      | <ul style="list-style-type: none"> <li>Analysis was conducted via Labwest's Ultrafine+™ microwave-assisted acid digest and ICP-EOS/MS for a suite of 53 elements. Labwest is an independent commercial laboratory.</li> <li>To monitor the accuracy of assay results from soil sampling, CRMs were inserted into the sample stream at a rate of 1:33 samples.</li> <li>Internal lab standards were included in the sample stream at a rate of 1:20 samples with copper performance results summarised for relevant samples below.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |     |     |     |           |   |   |  |  |           |   |   |   |   |           |   |   |   |  |          |   |   |  |  |
|                                                               |                                                                                                                                                                                                                                                                                                                                                          | <table border="1" data-bbox="822 687 1389 866"> <thead> <tr> <th data-bbox="827 694 954 727">Standard ID</th><th data-bbox="1065 694 1113 727">Count</th><th data-bbox="1129 694 1176 727">1SD</th><th data-bbox="1192 694 1240 727">2SD</th><th data-bbox="1256 694 1367 727">3SD</th></tr> </thead> <tbody> <tr> <td data-bbox="827 734 954 768">OREAS-25a</td><td data-bbox="1065 734 1113 768">2</td><td data-bbox="1129 734 1176 768">2</td><td data-bbox="1192 734 1240 768"></td><td data-bbox="1256 734 1367 768"></td></tr> <tr> <td data-bbox="827 774 954 808">OREAS-260</td><td data-bbox="1065 774 1113 808">5</td><td data-bbox="1129 774 1176 808">3</td><td data-bbox="1192 774 1240 808">1</td><td data-bbox="1256 774 1367 808">1</td></tr> <tr> <td data-bbox="827 815 954 848">OREAS-45f</td><td data-bbox="1065 815 1113 848">3</td><td data-bbox="1129 815 1176 848">2</td><td data-bbox="1192 815 1240 848">1</td><td data-bbox="1256 815 1367 848"></td></tr> <tr> <td data-bbox="827 855 954 889">OREAS-47</td><td data-bbox="1065 855 1113 889">2</td><td data-bbox="1129 855 1176 889">2</td><td data-bbox="1192 855 1240 889"></td><td data-bbox="1256 855 1367 889"></td></tr> </tbody> </table> <ul style="list-style-type: none"> <li>Lab repeats were completed at a rate of 1:30 for a total of 10 repeat pairs. A measure of the average precision of the sampling, sample preparation and assaying methods, given by the mean per cent difference ('MPD') assay values of lab repeats was 7%.</li> </ul> | Standard ID | Count | 1SD | 2SD | 3SD | OREAS-25a | 2 | 2 |  |  | OREAS-260 | 5 | 3 | 1 | 1 | OREAS-45f | 3 | 2 | 1 |  | OREAS-47 | 2 | 2 |  |  |
| Standard ID                                                   | Count                                                                                                                                                                                                                                                                                                                                                    | 1SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2SD         | 3SD   |     |     |     |           |   |   |  |  |           |   |   |   |   |           |   |   |   |  |          |   |   |  |  |
| OREAS-25a                                                     | 2                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |       |     |     |     |           |   |   |  |  |           |   |   |   |   |           |   |   |   |  |          |   |   |  |  |
| OREAS-260                                                     | 5                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1           | 1     |     |     |     |           |   |   |  |  |           |   |   |   |   |           |   |   |   |  |          |   |   |  |  |
| OREAS-45f                                                     | 3                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1           |       |     |     |     |           |   |   |  |  |           |   |   |   |   |           |   |   |   |  |          |   |   |  |  |
| OREAS-47                                                      | 2                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |       |     |     |     |           |   |   |  |  |           |   |   |   |   |           |   |   |   |  |          |   |   |  |  |
| <b>Verification of sampling and assaying</b>                  | <ul style="list-style-type: none"> <li><i>The verification of significant intersections by either independent or alternative company personnel.</i></li> <li><i>The use of twinned holes.</i></li> <li><i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i></li> </ul>      | <ul style="list-style-type: none"> <li>Significant intersections have been verified by alternative company personnel.</li> <li>Validation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols is ongoing and forms part of the Company's audit process (see 'Audits or reviews').</li> <li>The drilling database is currently managed by Newexco Exploration; a Perth based exploration consultancy group. All drilling data resides on their NXDB database management system. Newexco is responsible for uploading all analytical and other drilling data and producing audited downloaded data for use in various mining software packages. The NXDB system has stringent data entry validation routines.</li> <li>Twinned drilling has not yet been undertaken.</li> <li>The Company is not aware of any adjustments having been made to assay data.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |       |     |     |     |           |   |   |  |  |           |   |   |   |   |           |   |   |   |  |          |   |   |  |  |
| <b>Location of data points</b>                                | <ul style="list-style-type: none"> <li><i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i></li> <li><i>Specification of the grid system used.</i></li> <li><i>Quality and adequacy of topographic control.</i></li> </ul> | <ul style="list-style-type: none"> <li>All data is recorded in the GDA2020 datum; UTM Zone 52 (MGA52). Local exploration grids were previously established at the Sandiego and Onedin deposits. Detailed survey work has previously cross-referenced the local grids to the Zone 52 MGA (GDA 2020) coordinate system.</li> <li>During 1995 – 1996 drill hole collars were located and surveyed by an independent surveyor using a Trimble Global Positioning system in Real Time Kinematic mode with a reported accuracy of <math>\pm 0.03</math> m horizontally and <math>\pm 0.05</math> m vertically. Downhole surveys were completed using an Eastman Downhole Camera at approximately 50 m intervals.</li> <li>The method used to survey drill collars between 2006 and 2011 is not recorded though is expected to have been standard industry practice for the respective periods.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |       |     |     |     |           |   |   |  |  |           |   |   |   |   |           |   |   |   |  |          |   |   |  |  |

| Criteria                                                       | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Location of data points</b><br>(continued)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul style="list-style-type: none"> <li>▪ Downhole surveys were typically completed at 30 – 50 m intervals.</li> <li>▪ During 2021 drill hole collars were located and surveyed using a differential GPS ('<b>DGPS</b>'). Set-up collar azimuths and inclinations have been established using a compass and clinometer. Downhole surveys were typically completed at 30 m intervals using a north-seeking gyroscopic tool.</li> <li>▪ Anglo Australian Resources NL previously obtained photogrammetric coverage of the tenement areas which provides good control in respect of elevation data.</li> <li>▪ Soil sample locations were recorded using a handheld GPS.</li> </ul> |
| <b>Data spacing and distribution</b>                           | <ul style="list-style-type: none"> <li>▪ <i>Data spacing for reporting of Exploration Results.</i></li> <li>▪ <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i></li> <li>▪ <i>Whether sample compositing has been applied.</i></li> </ul>                        | <ul style="list-style-type: none"> <li>▪ Drilling at the Sandiego deposit is generally completed on sections between 20 and 40 m spacing with drill holes typically intersecting mineralisation between 30 and 40 m on section.</li> <li>▪ Drilling at the Onedin deposit is generally completed on sections averaging 20 m spacing with drill holes typically intersecting mineralisation between 30 and 40 m on section.</li> <li>▪ Sample compositing has been applied to select samples obtained through RC drilling that were considered unmineralised.</li> <li>▪ Soil samples were collected at a nominal 20 m spacing along 50 m spaced sample lines.</li> </ul>        |
| <b>Orientation of data in relation to geological structure</b> | <ul style="list-style-type: none"> <li>▪ <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i></li> <li>▪ <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i></li> </ul> | <ul style="list-style-type: none"> <li>▪ Drilling at the Sandiego deposit was oriented toward 115°, and at the Onedin deposit toward 140°, with hole angles ranging from –50° to –90° (typically –60°) to intersect the mineralised zones as close to perpendicular as possible.</li> <li>▪ The orientation of both RC and diamond drill holes at Sandiego and Onedin is orthogonal to the perceived strike of mineralisation and limits the amount of geological bias in drill sampling as much as possible.</li> <li>▪ The soil sampling grid was oriented perpendicular to the interpreted strike of the targeted host lithology.</li> </ul>                                 |
| <b>Sample security</b>                                         | <ul style="list-style-type: none"> <li>▪ <i>The measures taken to ensure sample security.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                           | <ul style="list-style-type: none"> <li>▪ Sample security procedures are considered to be 'industry standard' for the respective periods.</li> <li>▪ The Company considers that risks associated with sample security are limited given the nature of the targeted mineralisation.</li> <li>▪ The sample chain of custody for the soil sampling program was managed by AKN to ensure sample integrity from collection through to analysis.</li> </ul>                                                                                                                                                                                                                            |
| <b>Audits or reviews</b>                                       | <ul style="list-style-type: none"> <li>▪ <i>The results of any audits or reviews of sampling techniques and data.</i></li> </ul>                                                                                                                                                                                                                                                                                                                   | <ul style="list-style-type: none"> <li>▪ All diamond drill core sampled up to 2006 was re-logged by an independent consultant from ERM Australia Consultants Pty Ltd ('formerly CSA Global) to ensure consistency.</li> <li>▪ No audits or reviews are understood to have been carried out for any of the previous sampling programs.</li> <li>▪ The Company is progressing a comprehensive audit of historical drilling, sampling, sub-sampling and analytical data to inform development of the forward work program for the Project.</li> </ul>                                                                                                                              |

## Section 2 Reporting of Exploration Results

| Criteria                                       | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Mineral tenement and land tenure status</b> | <ul style="list-style-type: none"> <li>▪ <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i></li> <li>▪ <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i></li> </ul> | <p><b>Tenements</b></p> <ul style="list-style-type: none"> <li>▪ The Project comprises an extensive tenement portfolio covering some 250 km<sup>2</sup> with the Sandiego and Onedin deposits hosted within existing Mining Leases M 80/276 and M 80/277 respectively—the Mining Leases expire in 2031.</li> <li>▪ The Sandiego North target is hosted within existing Mining Lease M 80/276.</li> <li>▪ Regional exploration targets are distributed across the broader tenement package which includes six Exploration Licences and five Prospecting Licences listed in the tenement schedule below.</li> </ul> |

| Tenement                    | Grant Date | Expiry Date | Area (km <sup>2</sup> ) |
|-----------------------------|------------|-------------|-------------------------|
| <b>Mining Leases</b>        |            |             |                         |
| M 80/276                    | 2/04/1989  | 5/04/2031   | 2.2                     |
| M 80/277                    | 2/04/1989  | 5/04/2031   | 3.2                     |
| <b>Exploration Licences</b> |            |             |                         |
| E 80/4957                   | 11/11/2016 | 10/11/2026  | 21.2                    |
| E 80/4960                   | 24/03/2017 | 23/03/2027  | 51.7                    |
| E 80/5076                   | 27/11/2018 | 26/11/2028  | 22.7                    |
| E 80/5087                   | 28/11/2018 | 27/11/2028  | 16.2                    |
| E 80/5127                   | 27/11/2018 | 26/11/2028  | 109.8                   |
| E 80/5707                   | 24/10/2022 | 23/10/2027  | 13.7                    |
| <b>Prospecting Licences</b> |            |             |                         |
| P 80/1878                   | 3/11/2022  | 2/11/2026   | 1.9                     |
| P 80/1879                   | 3/11/2022  | 2/11/2026   | 1.8                     |
| P 80/1880                   | 3/11/2022  | 2/11/2026   | 0.4                     |
| P 80/1881                   | 3/11/2022  | 2/11/2026   | 1.7                     |
| P 80/1882                   | 3/11/2022  | 2/11/2026   | 1.9                     |

| Criteria                                                             | JORC Code Explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Mineral tenement and land tenure status</b><br><i>(continued)</i> |                       | <ul style="list-style-type: none"> <li>▪ The Mining Leases are located 25km and 17km southwest of Halls Creek township and approximately 300km south-southwest of Kununurra, WA.</li> <li>▪ The Onedin deposit is located approximately 1.8km north northeast of the Lamboo Gunian Aboriginal community. The Sandiego deposit is located approximately 6km southwest of the Lamboo Gunian Aboriginal community.</li> <li>▪ The Sandiego and Onedin deposits are located adjacent to the Great Northern Highway.</li> <li>▪ The Project is located approximately 100km southwest of the nearest National Park, being the Purnululu National Park.</li> </ul> |

#### **Native Title**

- The Project lies within the Koongie-Elvire Native Title Determination (WCD45/2019). The recognition of Native Title confers non-exclusive land rights and does not override existing rights, including rights and interests arising from grant of mineral titles on tenements, all of which are listed in Schedule 4 of the Court determination. The Mining Leases were granted prior to Native Title being determined, and therefore no Native Title agreement is in place. However, the Mining Leases are approaching their second renewal in 2031. Second renewals are not exempt from the future act provisions of the *Native Title Act 1993*. Where Native Title exists, the Right to Negotiate process must be followed to ensure the validity of the proposed renewal.

#### **Agreements and Royalties**

- There are two existing agreements with respect to the Project, the 'Precious Metals Agreement' and the 'Royalty Agreement'. The Precious Metals Agreement is between AKN and Astral Resources NL ('**Astral**') who has the right to carry out exploration for gold and platinum group elements on the Project, excluding the two Mining Leases where the Onedin and Sandiego deposits are situated and E80/4957 where the Emull deposit is located. The Royalty Agreement provides for a 1% net smelter return royalty payable to Astral in the event of mining activities commencing at the Project.
- The Project is subject to a Joint Venture Agreement ('**JVA**') between Halls Creek Project Pty Limited ('**HCPPL**'), a wholly owned subsidiary of Cobalt Blue Holdings Limited ('**COB**') and Koongie Park Pty Limited ('**KPPL**'), a subsidiary of AuKing Mining Limited ('**AKN**'). The JVA was signed on 17 February 2024 and formation of the Halls Creek Joint Venture occurred on 5 March 2025 being the date on which the last of the Conditions Precedent were satisfied or waived in accordance with the JVA.

| Criteria                                                   | JORC Code Explanation                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Mineral tenement and land tenure status (continued)</i> |                                                                                                                          | <ul style="list-style-type: none"> <li>▪ The key terms of the JVA are as follows:           <ul style="list-style-type: none"> <li>▪ <b>Stage One</b><br/>HCPPL acquired a 51% beneficial interest in the Project by issuing A\$200,000 worth of COB shares (being 2,777,778 shares) to AKN on 5 March 2025. To retain the 51% beneficial interest HCPPL must meet a minimum expenditure of A\$500,000 by 30 June 2027.</li> <li>▪ <b>Stage Two</b><br/>HCPPL will then have the right (but not the obligation) to earn up to a 75% interest (an additional 24%) in the Project by incurring an additional A\$1.5 million of expenditure on the tenements by 30 June 2028. Should KPPL's interest dilute below 10%, the interest shall revert to a 1% net smelter royalty ('<b>NSR</b>').</li> </ul> </li> <li>▪ The Company is not aware of any impediments to obtaining a licence to operate in the area.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <i>Exploration done by other parties</i>                   | <ul style="list-style-type: none"> <li>▪ <i>Acknowledgment and appraisal of exploration by other parties.</i></li> </ul> | <ul style="list-style-type: none"> <li>▪ The Project area has been explored for base and precious metals on an intermittent basis since 1972.</li> <li>▪ All exploration is considered to have been completed to a reasonable standard however documentation pertaining to historical drilling, sampling, sub-sampling and analytical data is incomplete. Where sufficient confidence cannot be established as to data quality, it cannot be used to inform Mineral Resource estimation. Notwithstanding this the cumulative advancement of geological knowledge provided by historical exploration is significant.</li> <li>▪ A summary of historical exploration is provided below:           <ul style="list-style-type: none"> <li>▪ <b>1972–1977:</b> Kennecott pegged tenements over known copper-lead-zinc-silver gossans as part of its Gordon Downs 3 project. Work included geological and structural mapping, rock chip and soil sampling, diamond and percussion drilling. This work outlined significant base metal mineralisation hosted by chert, banded iron formations and carbonate-rich assemblages at Onedin, Sandiego, Hanging Tree and Gosford. Drilling immediately followed at these four prospects, with 29 RC holes with diamond tails, with the most significant deposit defined from this work at Sandiego.</li> <li>▪ <b>1978–1979:</b> Newmont continued testing the known mineralisation, using extensive trenching, percussion and diamond drilling, detailed geophysics including ground magnetic surveys and low-level aeromagnetic surveys.</li> <li>▪ <b>1980:</b> North Broken Hill concentrated on testing the supergene enriched zone at the base at Sandiego.</li> </ul> </li> </ul> |

| Criteria                                                       | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Exploration done by other parties</i><br><i>(continued)</i> | <ul style="list-style-type: none"> <li>▪ <b>1983–1988:</b> Asarco Australia Ltd carried out RAB drilling in the Mimosa sub-member, along strike of the known mineralisation, locating several significant geochemical anomalies, although not of sufficient grade to support a Mineral Resource estimate. The drilling was to fixed depth and only the bottom of the hole was sampled. Asarco also completed limited work on the supergene gold and base metal potential at Sandiego.</li> <li>▪ <b>1988–1989:</b> BP Minerals and RTZ Mining went into a joint venture ('JV') with Asarco and continued testing the gold potential by re-assaying split core samples for gold, which did not identify any significant base metal mineralisation. RTZ Mining sold the property to Anglo Australian Resources NL ('AAR') in 1989.</li> <li>▪ <b>1989–1994:</b> Billiton Australia and AAR identified extensions of known mineralisation at Onedin. Billiton carried out a broad-based exploration program including limited RC and diamond drilling. A grade-tonnage estimate for the Onedin was prepared, for 1 Mt at 11 % Zn, 1 % Cu and 1 % Pb.</li> <li>▪ <b>1995–2002:</b> Lachlan Resources and AAR concentrated on identifying shallow resources at Sandiego and Onedin with percussion and diamond drilling programs. Two polygonal Mineral Resources were estimated for Sandiego in 1996 and 1997.</li> <li>▪ AAR was sole tenure holder of the properties between 2002 and 2020. AAR drilled 245 RC and diamond drill holes encompassing 50,417 m, focusing on Mineral Resource, metallurgical and geotechnical drilling at the Sandiego and Onedin base metal deposits. Since 2011, AAR has focused on gold exploration, with little exploration for base metals occurring on the property. AAR reported Mineral Resources for Onedin in 2006, 2008 and 2009.</li> <li>▪ <b>2021:</b> AKN's Joint Venture Agreement with AAR commenced in June 2021 and AKN assumed management and control of the exploration activities on the property with additional drilling completed in 2021 and 2022. AKN completed Mineral Resource estimates for the Sandiego and Onedin deposits in 2022 and delivered a Scoping Study in 2023.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <i>Geology</i>                                                 | <ul style="list-style-type: none"> <li>▪ <i>Deposit type, geological setting and style of mineralisation.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <p><b>Regional Geological Setting</b></p> <ul style="list-style-type: none"> <li>▪ The Project is situated within the Palaeoproterozoic Halls Creek Orogen, a tectonic belt developed at the interface between the Kimberley Craton to the northwest and the North Australian Craton to the east. The orogen comprises plutonic and volcano-sedimentary rocks collectively referred to as the Lamboo Complex, which has been subdivided into Eastern, Central, and Western tectonostratigraphic terranes. The Koongie Park Formation is hosted within the Central Terrane.</li> </ul> |

| Criteria                             | JORC Code Explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Geology</b><br><i>(continued)</i> |                       | <ul style="list-style-type: none"> <li>▪ The Lamboo Complex is interpreted to have formed in a Palaeoproterozoic plate margin setting, driven by subduction and large-scale strike-slip faulting events that occurred prior to 1820 Ma. The Koongie Park Formation, dated at <math>1843 \pm 2</math> Ma, postdates the Tickalara Metamorphics—an assemblage of mafic volcanics, siltstones, and mafic-ultramafic intrusions. These are interpreted to represent either an oceanic island arc-backarc basin above a southeast-dipping subduction zone, or an ensialic basin formed along the margin of the Kimberley Craton above a northwest-dipping subduction zone.</li> <li>▪ Within the Project area, the Koongie Park Formation comprises a steeply dipping, strongly deformed sequence of felsic lavas, argillaceous sediments, volcanoclastics, and interbedded chemical sediments. In the southwestern portion of the tenure, the formation transitions gradually into greywackes and sandstones comparable to those of the Olympio Formation. The sequence has undergone metamorphism to green schist facies and is affected by at least four generations of folding.</li> <li>▪ The earliest phase of isoclinal folding (F1) is locally preserved and may have played a role in thickening sulphide-bearing horizons. A prominent NE-SW-trending, double-plunging antiform—thought to host the Onedin deposit—has been interpreted as an F3 fold structure. However, aeromagnetic data and field mapping have not definitively confirmed this structural interpretation. Further south at the Atlantis and Mount Angelo prospects, north-south-trending F2 folds are evident, while late-stage shearing is observed at Sandiego and Onedin, potentially responsible for local remobilisation of sulphide mineralisation.</li> <li>▪ Dolerite and granite intrusions are exposed along the western and southern margins of the Project area, while granite bodies also intrude the lower part of the Coolibah Tuff Member on the eastern side of the Project.</li> </ul> |

#### Local Geological Setting

- The Project lies within a volcano-sedimentary sequence typical of an extensional basin environment. The stratigraphy is dominated by fine-grained siliciclastic sediments interbedded with felsic tuffs and cherts, bounded by syndepositional to intrusive felsic volcanic units (Anglo Australian Resources NL, 2009). Stratigraphically, the Koongie Park Formation is subdivided into three key members (from base to top):
  - Coolibah Tuff Member
  - Camp Shale Member, including the carbonate-rich Mimosa Sub-Member
  - Weldons Creek Lava Member
- Base-metal mineralisation is principally hosted within the Mimosa Sub-Member, located at the base of the Camp Shale Member. The upper portion of the sequence is best exposed at Onedin, while the lower portion is more complete at Sandiego.

| Criteria                             | JORC Code Explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Geology</b><br><i>(continued)</i> |                       | <p><b>Structure</b></p> <p><b>Onedin Deposit</b></p> <ul style="list-style-type: none"> <li>The Onedin deposit is situated on the southern limb of a regional NE-SW-trending, double-plunging antiform. Stratigraphy is overturned and complexly folded, with units dipping generally to the west. Across strike, from northwest to southeast, the stratigraphic sequence includes the Coolibah Tuff, Mimoso Sub-Member, Camp Shale Member, and Weldons Creek Tuff. The Camp Shale Member in this area is notably more deformed than at Sandiego, hosting abundant phyllitic and schistose units. At the deposit scale, the dominant structural feature is a southwest-plunging isoclinal fold developed within the Camp Shale Member.</li> </ul> <p><b>Sandiego Deposit</b></p> <ul style="list-style-type: none"> <li>The Sandiego deposit is hosted within a sheared antiformal structure that plunges to the southwest. Local stratigraphy trends NNE-SSW and dips steeply (80–85°) to the east. From east to west, the stratigraphic sequence comprises the Weldons Creek Tuff, Camp Shale Member, Mimoso Sub-Member, and Coolibah Tuff. A weak penetrative fabric is developed throughout the deposit, indicative of relatively lower strain compared to the Onedin deposit.</li> <li>Two principal fault-shear zones have been recognised: <ul style="list-style-type: none"> <li>The first is a prominent NE-SW-trending fault zone with a moderate to steep northwest dip. This structure transects the deposit along its length and is interpreted to locally disrupt the mineralised zones.</li> <li>The second is a steep to subvertical shear zone trending approximately east-west. This structure is expressed as fine- to medium-grained black cataclasite in drill hole DDH29 and is associated with clay–carbonate alteration in laminated quartz–magnetite exhalite units (e.g., SRCD14 and SRCD24).</li> </ul> </li> <li>These structural features have influenced both the geometry and localisation of sulphide mineralisation.</li> </ul> <p><b>Mineralisation</b></p> <ul style="list-style-type: none"> <li>Base metal sulphide mineralisation is primarily hosted within the thicker portions of the Mimoso Sub-Member, located at the base of the Camp Shale Member. The mineralised horizon is a mixed chemical sediment composed of silicate, oxide, and sulphide facies, featuring sphalerite, galena, chalcopyrite, pyrrhotite, and minor tetrahedrite.</li> <li>The distribution of massive sulphide mineralisation exhibits a strong structural control, typically localised near major fault structures and within tight isoclinal folds, often parallel to the plunge of fold axes. Lead isotope analyses suggest a single hydrothermal system as the mineralising source, with model ages of approximately 1,825 Ma, consistent with the age of the host stratigraphy.</li> </ul> |

| Criteria                             | JORC Code Explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Geology</b><br><i>(continued)</i> |                       | <p><b>Supergene Mineralisation</b></p> <ul style="list-style-type: none"> <li>A deeply weathered profile is observed in the Koongie Park Formation at both Onedin and Sandiego, comprising two distinct zones:           <ul style="list-style-type: none"> <li>Oxidised Zone – entirely oxidised material, bounded at depth by the Base of Complete Oxidation ('BOCO'), generally located ~100 m below surface and deepening near steeply dipping faults.</li> <li>Transition Zone – partially oxidised material, occurring between the BOCO and the Top of Fresh Rock ('TOFR'). Supergene mineralisation is developed in both zones.</li> </ul> </li> </ul> <p><b>Onedin Deposit</b></p> <ul style="list-style-type: none"> <li>Onedin exhibits well-developed supergene enrichment due to overturned stratigraphy, placing primary sulphide mineralisation within the Oxide and Transition Zones. Copper shows strong supergene enrichment, evidenced by the presence of malachite, chrysocolla, bornite, covellite, chalcocite, cuprite, digenite, and native copper. A prominent sub horizontal, torpedo-shaped supergene copper lens (~200 m long) straddles the BOCO-TOFR interface.</li> <li>Lead is enriched in gossans above TOFR, occurring as pyromorphite and cerussite. Secondary zinc minerals, including smithsonite and rare willemite, are also present. Smithsonite is the dominant zinc mineral in the upper transition zone, although underreported due to the reliance on percussion drilling, which limits visual discrimination from siderite.</li> </ul> <p><b>Sandiego Deposit</b></p> <ul style="list-style-type: none"> <li>In contrast, supergene mineralisation at Sandiego is limited. Most mineralisation is found in the primary zone, with minor enrichment observed in the transition zone, particularly along subvertical shear zones, where remobilised chalcopyrite occurs as chalcocite. Occasional gossanous zones along faults also contain minor supergene sulphides</li> </ul> <p><b>Primary Mineralisation</b></p> <p><b>Onedin Deposit</b></p> <ul style="list-style-type: none"> <li>At Onedin, primary mineralisation is mainly hosted in the carbonate zone, with sparse exhalites. Additional mineralisation is observed in chloritic schists between two major carbonate lenses. Mineralisation is structurally controlled, concentrated in fold cores and limbs, with evidence of sulphide remobilisation.</li> <li>Sphalerite is the dominant sulphide, occurring as fine-grained replacement textures within carbonates. Galena is more abundant at Onedin than Sandiego and shows a strong spatial association with sphalerite, as does chalcopyrite. Notably, massive sphalerite also fills open-space textures in collapse and tectonic breccias.</li> <li>Copper-rich zones are rare and limited to oxidised material and talc-chlorite schists, possibly related to shearing. The copper tenor is generally lower than at Sandiego.</li> </ul> |

| Criteria                      | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <p><b>Sandiego Deposit</b></p> <ul style="list-style-type: none"> <li>▪ Primary sulphide mineralisation is hosted within the magnetite-rich exhalative package, forming a massive, wedge-shaped lens approximately 200 m long and up to 75 m thick. The lens strikes NNE-SSW and dips steeply (80–85°) to the east. Stringer and vein-style sulphides extend into underlying tuffs. Mineralisation is uncommon in the carbonate zone but may extend into talc-chlorite schists.</li> <li>▪ Copper and zinc occur in spatially distinct zones: <ul style="list-style-type: none"> <li>▪ <b>Zinc-rich zones:</b> Dominated by sphalerite, pyrrhotite, galena, pyrite, minor chalcopyrite, and trace argentite and arsenopyrite. Sphalerite commonly replaces magnetite and pyrite. Hemimorphite (likely supergene) appears as botryoidal forms in vuggy cross-cutting veins (5–15 mm wide).</li> <li>▪ <b>Copper-rich zones:</b> Characterised by chalcopyrite, pyrite, chalcocite, covellite, marcasite, bornite, and minor sphalerite. Chalcopyrite occurs as space-filling veins and stringers, particularly in cherty exhalite, often associated with pyrrhotite and magnetite. Copper mineralisation is frequently associated with fault/shear zones and talc-chlorite schists, suggesting remobilisation and later emplacement.</li> </ul> </li> <li>▪ Zinc mineralisation is closely associated with magnetite and pyrite. Sphalerite is often visually obscured by martitised hematite derived from magnetite oxidation.</li> </ul> |
| <b>Drill hole information</b> | <ul style="list-style-type: none"> <li>▪ <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <li>▪ <i>easting and northing of the drill hole collar</i></li> <li>▪ <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i></li> <li>▪ <i>dip and azimuth of the hole</i></li> <li>▪ <i>down hole length and interception depth</i></li> <li>▪ <i>hole length.</i></li> </ul> </li> <li>▪ <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i></li> </ul> | <ul style="list-style-type: none"> <li>▪ See the following drill hole summary. All coordinates are reported in the GDA2020 datum; UTM Zone 52 (MGA52).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Hole ID | Easting  | Northing  | RL    | Max Depth (m) | Hole Type | Dip | Azimuth | Year | Deposit  |
|---------|----------|-----------|-------|---------------|-----------|-----|---------|------|----------|
| SRC01   | 339741.8 | 7968471.4 | 422.6 | 100           | RC        | -60 | 113.7   | 1995 | Sandiego |
| SRC02   | 339768.4 | 7968330.2 | 424.9 | 100           | RC        | -61 | 113.7   | 1995 | Sandiego |
| SRC06   | 339696.8 | 7968403.7 | 419.5 | 129.5         | RC        | -61 | 114.7   | 1995 | Sandiego |
| SRC09   | 339704.2 | 7968271.4 | 418.9 | 131           | RC        | -60 | 113.7   | 1995 | Sandiego |
| SRCD03  | 339757.4 | 7968421.1 | 426.1 | 184           | RCDD      | -60 | 113.7   | 1995 | Sandiego |
| SRCD04  | 339717.1 | 7968438.5 | 421.2 | 307.75        | RCDD      | -60 | 113.7   | 1995 | Sandiego |
| SRCD05  | 339748.5 | 7968381.5 | 423.8 | 193.9         | RCDD      | -60 | 113.7   | 1995 | Sandiego |
| SRCD07  | 339681.6 | 7968368.2 | 417.5 | 393.7         | RCDD      | -60 | 113.7   | 1995 | Sandiego |
| SRCD08  | 339721.4 | 7968306.7 | 419.6 | 187.5         | RCDD      | -60 | 114.7   | 1995 | Sandiego |
| SRC11   | 339645   | 7968385.6 | 418.3 | 46            | RC        | -60 | 113.7   | 1996 | Sandiego |
| SRC12   | 339667.5 | 7968287.1 | 418.9 | 196           | RC        | -58 | 107.7   | 1996 | Sandiego |
| SRC17   | 339812.6 | 7968661   | 421.6 | 102           | RC        | -55 | 113.7   | 1996 | Sandiego |
| SRC18   | 339764.3 | 7968507.1 | 423.2 | 119           | RC        | -60 | 113.7   | 1996 | Sandiego |
| SRC19   | 339726.9 | 7968523.1 | 421   | 168           | RC        | -60 | 113.7   | 1996 | Sandiego |
| SRC20   | 339779.6 | 7968543.6 | 425   | 96            | RC        | -60 | 117.7   | 1996 | Sandiego |
| SRCD01  | 339741.8 | 7968471.4 | 424   | 303.7         | RCDD      | -60 | 113.7   | 1996 | Sandiego |
| SRCD10  | 339691.8 | 7968386.1 | 419.9 | 208.9         | RCDD      | -60 | 113.7   | 1996 | Sandiego |
| SRCD11A | 339646.7 | 7968384   | 418   | 429.8         | RCDD      | -61 | 113.7   | 1996 | Sandiego |
| SRCD11B | 339645   | 7968386.4 | 418   | 494.8         | RCDD      | -61 | 107.7   | 1996 | Sandiego |
| SRCD13  | 339631.6 | 7968303.4 | 418.4 | 217.9         | RCDD      | -58 | 107.7   | 1996 | Sandiego |
| SRCD14  | 339715.1 | 7968396.1 | 420.6 | 280.3         | RCDD      | -58 | 113.7   | 1996 | Sandiego |
| SRCD15  | 339675.9 | 7968455.3 | 418.3 | 369.8         | RCDD      | -58 | 107.7   | 1996 | Sandiego |
| SRCD16  | 339597.6 | 7968318   | 418   | 323.5         | RCDD      | -58 | 116.7   | 1996 | Sandiego |
| SRCD21  | 339697.8 | 7968406.6 | 420.1 | 366           | RCDD      | -58 | 113.7   | 2006 | Sandiego |
| SRCD22  | 339660.6 | 7968421.2 | 418.7 | 440.7         | RCDD      | -58 | 113.7   | 2006 | Sandiego |
| SRCD23  | 339692.1 | 7968539.7 | 418.7 | 294           | RCDD      | -60 | 113.7   | 2006 | Sandiego |
| SRCD24  | 339699.2 | 7968408.8 | 420.2 | 332.7         | RCDD      | -52 | 113.7   | 2006 | Sandiego |
| SRC026  | 339577.2 | 7968328.7 | 418.1 | 265           | RC        | -60 | 115.8   | 2008 | Sandiego |
| SRC027  | 339667   | 7968332.7 | 418.7 | 162           | RC        | -60 | 115.8   | 2008 | Sandiego |
| SRC028  | 339648.8 | 7968342   | 418.5 | 204           | RC        | -60 | 115.8   | 2008 | Sandiego |
| SRC029  | 339700.2 | 7968362.7 | 419.7 | 144           | RC        | -60 | 115.8   | 2008 | Sandiego |
| SRC033  | 339656.5 | 7968555.9 | 418   | 252           | RC        | -60 | 115.8   | 2008 | Sandiego |
| SRC034  | 339724.6 | 7968613.9 | 418.4 | 180           | RC        | -60 | 115.8   | 2008 | Sandiego |
| SRC035  | 339738.4 | 7968564.4 | 419.3 | 222           | RC        | -60 | 115.8   | 2008 | Sandiego |
| SRC036  | 339759.6 | 7968642.3 | 419.6 | 138           | RC        | -60 | 115.8   | 2008 | Sandiego |
| SRC037  | 339798.1 | 7968582.5 | 423.8 | 120           | RC        | -60 | 115.8   | 2008 | Sandiego |
| SRC038  | 339774.7 | 7968675.9 | 419.1 | 102           | RC        | -63 | 115.8   | 2008 | Sandiego |
| SRC039  | 339792   | 7968712   | 419.2 | 216           | RC        | -62 | 111     | 2008 | Sandiego |
| SRC040  | 339835.1 | 7968742.1 | 419.6 | 94            | RC        | -60 | 110     | 2008 | Sandiego |
| SRC041  | 339539.4 | 7968341.8 | 418   | 301           | RC        | -60 | 110     | 2008 | Sandiego |
| SRC043  | 339941.7 | 7968910.3 | 416   | 103           | RC        | -60 | 290     | 2008 | Sandiego |
| SRC044  | 339978.1 | 7968894.3 | 416   | 103           | RC        | -60 | 293.6   | 2008 | Sandiego |
| SRC045  | 340014.5 | 7968878.3 | 417   | 103           | RC        | -60 | 293.6   | 2008 | Sandiego |
| SRC046  | 339925   | 7968873.5 | 417   | 103           | RC        | -60 | 293.6   | 2008 | Sandiego |
| SRC047  | 339961.9 | 7968857.6 | 417   | 103           | RC        | -60 | 293.6   | 2008 | Sandiego |
| SRC048  | 339909.5 | 7968837   | 420   | 103           | RC        | -60 | 293.6   | 2008 | Sandiego |

| Hole ID  | Easting  | Northing  | RL    | Max Depth (m) | Hole Type | Dip | Azimuth | Year | Deposit  |
|----------|----------|-----------|-------|---------------|-----------|-----|---------|------|----------|
| SRC049   | 339945.8 | 7968821   | 420   | 103           | RC        | -60 | 293.6   | 2008 | Sandiego |
| SRC050   | 339857   | 7968816.3 | 418   | 103           | RC        | -60 | 293.6   | 2008 | Sandiego |
| SRC051   | 339893.3 | 7968800.3 | 419   | 103           | RC        | -60 | 293.6   | 2008 | Sandiego |
| SRCD025  | 339631.7 | 7968305.1 | 418.5 | 450.6         | RCDD      | -61 | 113.4   | 2008 | Sandiego |
| SRCD027A | 339668.2 | 7968332.1 | 418.7 | 312.9         | RCDD      | -56 | 114.2   | 2008 | Sandiego |
| SRCD028A | 339648   | 7968340.9 | 418.5 | 360.7         | RCDD      | -60 | 109.8   | 2008 | Sandiego |
| SRCD029A | 339699.7 | 7968361.6 | 419.7 | 252.8         | RCDD      | -58 | 112.8   | 2008 | Sandiego |
| SRCD030  | 339650.8 | 7968382.6 | 418.8 | 357.7         | RCDD      | -60 | 115.8   | 2008 | Sandiego |
| SRCD031  | 339750.8 | 7968427.2 | 425.3 | 224           | RCDD      | -60 | 115.8   | 2008 | Sandiego |
| SRCD032  | 339685.5 | 7968499.7 | 418.2 | 339.4         | RCDD      | -60 | 115.8   | 2008 | Sandiego |
| SRCD042  | 339591.4 | 7968410   | 421   | 649.5         | RCDD      | -61 | 111.2   | 2008 | Sandiego |
| SRCD052  | 339638.7 | 7968477.3 | 423   | 403.5         | RCDD      | -60 | 115.8   | 2008 | Sandiego |
| SRCD053A | 339608.4 | 7968446.4 | 422   | 557           | RCDD      | -60 | 115.8   | 2008 | Sandiego |
| SRCD054  | 339704.2 | 7968579.4 | 419   | 264.5         | RCDD      | -60 | 115.8   | 2008 | Sandiego |
| SRC056   | 339685.2 | 7968279.2 | 420   | 160           | RC        | -58 | 115.8   | 2010 | Sandiego |
| SRC057   | 339701.5 | 7968315.8 | 421   | 208           | RC        | -58 | 115.8   | 2010 | Sandiego |
| SRC060   | 339725.5 | 7968371.1 | 423   | 204           | RC        | -60 | 115.8   | 2010 | Sandiego |
| SRC061   | 339731.9 | 7968390.4 | 424   | 200           | RC        | -58 | 115.8   | 2010 | Sandiego |
| SRC062   | 339728.6 | 7968432.8 | 424   | 204           | RC        | -55 | 115.8   | 2010 | Sandiego |
| SRC065   | 339767.2 | 7968464.1 | 427   | 168           | RC        | -60 | 115.8   | 2010 | Sandiego |
| SRC066   | 339746.2 | 7968515.5 | 423   | 180           | RC        | -58 | 115.8   | 2010 | Sandiego |
| SRC067   | 339762.1 | 7968552.3 | 423   | 150           | RC        | -58 | 115.8   | 2010 | Sandiego |
| SRC068   | 339778.1 | 7968588.5 | 423   | 160           | RC        | -60 | 115.8   | 2010 | Sandiego |
| SRC076   | 339744.2 | 7968405.1 | 425   | 180           | RC        | -58 | 115.8   | 2010 | Sandiego |
| SRC077   | 339753.5 | 7968442.2 | 427   | 180           | RC        | -58 | 115.8   | 2010 | Sandiego |
| SRCD058  | 339727.7 | 7968326.2 | 422   | 142.2         | RCDD      | -58 | 115.8   | 2010 | Sandiego |
| SRCD059  | 339707.8 | 7968378.9 | 421   | 276           | RCDD      | -58 | 115.8   | 2010 | Sandiego |
| SRCD063  | 339999.6 | 7968316   | 419   | 346.7         | RCDD      | -60 | 295.8   | 2010 | Sandiego |
| SRCD064  | 340050.1 | 7968293.9 | 418   | 450.6         | RCDD      | -60 | 295.8   | 2010 | Sandiego |
| SRCD069  | 339924.6 | 7968750.5 | 424   | 27.1          | DD        | -60 | 157.8   | 2010 | Sandiego |
| SRCD070  | 339928.9 | 7968740.9 | 425   | 27.1          | DD        | -60 | 157.8   | 2010 | Sandiego |
| SRCD071  | 339901.6 | 7968665.4 | 429   | 51            | RCDD      | -60 | 115.8   | 2010 | Sandiego |
| SRCD072  | 339877.7 | 7968566.7 | 431   | 66            | RCDD      | -60 | 115.8   | 2010 | Sandiego |
| SRCD073  | 339852.7 | 7968468.4 | 430   | 81.1          | RCDD      | -60 | 115.8   | 2010 | Sandiego |
| SRCD074  | 339830.8 | 7968368.8 | 428   | 90.3          | RCDD      | -60 | 115.8   | 2010 | Sandiego |
| SRCD075  | 339811   | 7968289.9 | 423   | 111.3         | RCDD      | -60 | 115.8   | 2010 | Sandiego |
| SRCD078  | 340095.5 | 7968274   | 417   | 750.6         | RCDD      | -65 | 295.8   | 2010 | Sandiego |
| SRC079   | 340020.6 | 7968348.5 | 416   | 228           | RC        | -65 | 295.8   | 2011 | Sandiego |
| SRC080   | 340017.7 | 7968391.8 | 420   | 220           | RC        | -65 | 295.7   | 2011 | Sandiego |
| SRC081   | 340013.6 | 7968440.8 | 419   | 200           | RC        | -64 | 295.7   | 2011 | Sandiego |
| ASRC001  | 339826.7 | 7968189.9 | 419.2 | 158           | RC        | -65 | 296.8   | 2021 | Sandiego |
| ASRC002  | 339648   | 7968032.1 | 419.5 | 210           | RC        | -59 | 292.5   | 2021 | Sandiego |
| ASRD001  | 339950.2 | 7968229.7 | 418.3 | 120.53        | RC        | -60 | 295.1   | 2021 | Sandiego |
| ASRD002  | 340033   | 7968215.3 | 417.4 | 218.6         | RCDD      | -61 | 291.5   | 2021 | Sandiego |
| ASRD002A | 340033   | 7968215.3 | 417.4 | 621.51        | DD        | -61 | 291.5   | 2021 | Sandiego |
| ASRD003  | 339957.4 | 7968247.8 | 418.3 | 436.5         | RCDD      | -65 | 292.9   | 2021 | Sandiego |

| Hole ID | Easting  | Northing  | RL    | Max Depth (m) | Hole Type | Dip | Azimuth | Year | Deposit  |
|---------|----------|-----------|-------|---------------|-----------|-----|---------|------|----------|
| ASRD004 | 340012   | 7968289.1 | 417.8 | 549           | RCDD      | -66 | 294.6   | 2021 | Sandiego |
| ASRD005 | 339996.9 | 7968339.6 | 418.1 | 531.7         | RCDD      | -65 | 292.2   | 2021 | Sandiego |
| ASRD006 | 339979.9 | 7968195.7 | 417.9 | 120           | RC        | -67 | 293.9   | 2021 | Sandiego |
| ASRD007 | 340010.9 | 7968264.7 | 417.7 | 120           | RC        | -65 | 292.4   | 2021 | Sandiego |
| ASWB01  | 340144.3 | 7969049.4 | 415.2 | 102           | RC        | -90 | 0       | 2021 | Sandiego |
| ASWB02  | 339640.2 | 7968301.9 | 418.5 | 120           | RC        | -90 | 0       | 2021 | Sandiego |
| ORC03   | 345747   | 7973564.3 | 446   | 100           | RC        | -61 | 140.2   | 1995 | Onedin   |
| ORC04   | 345722.2 | 7973595.2 | 445.8 | 142           | RC        | -61 | 140.2   | 1995 | Onedin   |
| ORC05   | 345716   | 7973539.6 | 446.1 | 151           | RC        | -61 | 140.2   | 1995 | Onedin   |
| ORC07   | 345746.8 | 7973501.4 | 452.1 | 124           | RC        | -61 | 140.2   | 1995 | Onedin   |
| ORC08   | 345764.5 | 7973477.2 | 456.9 | 100           | RC        | -61 | 140.2   | 1995 | Onedin   |
| ORC09   | 345684.7 | 7973514.1 | 445.9 | 151           | RC        | -61 | 140.2   | 1995 | Onedin   |
| ORC14   | 345764.6 | 7973605.3 | 446.5 | 70            | RC        | -61 | 140.2   | 1995 | Onedin   |
| ORC15   | 345777.7 | 7973589.7 | 446.5 | 60            | RC        | -61 | 140.2   | 1995 | Onedin   |
| ORC16   | 345783.9 | 7973645.8 | 447.3 | 96            | RC        | -61 | 140.2   | 1995 | Onedin   |
| ORC17   | 345796.3 | 7973630.6 | 447.4 | 70            | RC        | -61 | 140.2   | 1995 | Onedin   |
| ORC18   | 345760.1 | 7973675.1 | 452   | 119           | RC        | -61 | 140.2   | 1995 | Onedin   |
| ORC19   | 345780.6 | 7973617.9 | 447   | 70            | RC        | -61 | 140.2   | 1995 | Onedin   |
| ORC20   | 345767.8 | 7973633.1 | 446.9 | 96            | RC        | -61 | 140.2   | 1995 | Onedin   |
| ORC21   | 345754.6 | 7973648.7 | 447.3 | 114           | RC        | -62 | 140.2   | 1995 | Onedin   |
| ORC22   | 345759.8 | 7973548.2 | 446.4 | 96            | RC        | -62 | 140.2   | 1995 | Onedin   |
| ORC23   | 345648.2 | 7973433.3 | 449.3 | 96            | RC        | -62 | 140.2   | 1995 | Onedin   |
| ORC24   | 345679.9 | 7973457.8 | 448.9 | 120           | RC        | -62 | 140.2   | 1995 | Onedin   |
| ORC25   | 345710.8 | 7973483.2 | 450.8 | 102           | RC        | -62 | 140.2   | 1995 | Onedin   |
| ORC29   | 345573.1 | 7973525.3 | 444.5 | 149           | RC        | -62 | 140.2   | 1995 | Onedin   |
| ORC30   | 345623.3 | 7973463.7 | 444.1 | 203           | RC        | -62 | 140.2   | 1995 | Onedin   |
| ORC32   | 345637.6 | 7973633.8 | 445.3 | 173           | RC        | -60 | 140.2   | 1995 | Onedin   |
| ORCD01  | 345750.9 | 7973619.5 | 446.6 | 158           | RC        | -61 | 140.2   | 1995 | Onedin   |
| ORCD02  | 345727.3 | 7973650.9 | 446.9 | 158.1         | RCDD      | -61 | 140.2   | 1995 | Onedin   |
| ORCD06  | 345690.9 | 7973570.6 | 445   | 192.7         | RCDD      | -61 | 140.2   | 1995 | Onedin   |
| ORCD10  | 345659.6 | 7973544.7 | 444.5 | 202.4         | RCDD      | -61 | 140.2   | 1995 | Onedin   |
| ORCD11  | 345654.2 | 7973488.9 | 444.8 | 177.8         | RCDD      | -61 | 140.2   | 1995 | Onedin   |
| ORCD12  | 345628.8 | 7973519.4 | 444.2 | 225.6         | RCDD      | -61 | 140.2   | 1995 | Onedin   |
| ORCD13  | 345697.1 | 7973626.2 | 446.3 | 201.7         | RCDD      | -61 | 140.2   | 1995 | Onedin   |
| ORCD26  | 345633   | 7973576.4 | 444.8 | 258.8         | RCDD      | -62 | 140.2   | 1995 | Onedin   |
| ORCD27  | 345665.7 | 7973601.9 | 445.5 | 224.7         | RCDD      | -62 | 140.2   | 1995 | Onedin   |
| ORCD28  | 345602.4 | 7973551   | 444.3 | 288.4         | RCDD      | -62 | 140.2   | 1995 | Onedin   |
| ORCD31  | 345598.2 | 7973494.3 | 443.2 | 265           | RCDD      | -62 | 140.2   | 1995 | Onedin   |
| ORC35   | 345549.9 | 7973554.9 | 443.7 | 178           | RC        | -62 | 140.2   | 1996 | Onedin   |
| ORC39   | 345621.8 | 7973749.5 | 448.1 | 144           | RC        | -60 | 140.2   | 1996 | Onedin   |
| ORC40   | 346097.1 | 7974053.7 | 447.8 | 100           | RC        | -60 | 140.2   | 1996 | Onedin   |
| ORC41   | 345846.9 | 7973754.1 | 448.7 | 96            | RC        | -60 | 140.2   | 1996 | Onedin   |
| ORC43   | 345786.2 | 7973701.7 | 448.2 | 119           | RC        | -60 | 140.2   | 1996 | Onedin   |
| ORCD29A | 345569.4 | 7973528.1 | 442.6 | 361.6         | RCDD      | -65 | 140.2   | 1996 | Onedin   |
| ORCD33  | 345583.9 | 7973636.6 | 446.2 | 348.4         | RCDD      | -62 | 140.2   | 1996 | Onedin   |
| ORCD34  | 345552   | 7973611.9 | 447.8 | 441.9         | RCDD      | -65 | 140.2   | 1996 | Onedin   |

| Hole ID | Easting  | Northing  | RL    | Max Depth (m) | Hole Type | Dip | Azimuth | Year | Deposit |
|---------|----------|-----------|-------|---------------|-----------|-----|---------|------|---------|
| ORCD36  | 345671.2 | 7973657.9 | 444.1 | 263.3         | RCDD      | -62 | 140.2   | 1996 | Onedin  |
| ORCD37  | 345567.3 | 7973468   | 445.6 | 315.8         | RCDD      | -62 | 140.2   | 1996 | Onedin  |
| ORCD38  | 345440.7 | 7973335.3 | 439.8 | 297.8         | RCDD      | -58 | 133.2   | 1996 | Onedin  |
| ORCD45  | 345759.4 | 7973549.1 | 448   | 398.7         | DD        | -60 | 227     | 2006 | Onedin  |
| ORCD46  | 345731.5 | 7973708.5 | 453   | 192.5         | RCDD      | -60 | 137     | 2006 | Onedin  |
| ORCD47  | 345700.3 | 7973682.4 | 452   | 224.8         | RCDD      | -60 | 137     | 2006 | Onedin  |
| ORCD48  | 345593.3 | 7973437.4 | 445   | 126           | RC        | -60 | 137     | 2006 | Onedin  |
| ORC049  | 345633.4 | 7973445.9 | 450   | 79            | RC        | -60 | 53.3    | 2008 | Onedin  |
| ORC052  | 345458   | 7973300.2 | 439.7 | 301           | RC        | -60 | 53.3    | 2008 | Onedin  |
| ORC053  | 345574.8 | 7973523.8 | 444.3 | 199           | RC        | -60 | 143.3   | 2008 | Onedin  |
| ORC054  | 345573.7 | 7973587.8 | 444.8 | 205           | RC        | -60 | 143.3   | 2008 | Onedin  |
| ORCD050 | 345604   | 7973421.3 | 444.8 | 234.7         | RCDD      | -60 | 53.3    | 2008 | Onedin  |
| ORCD051 | 345557.8 | 7973383   | 443   | 357.6         | RCDD      | -60 | 53.3    | 2008 | Onedin  |
| AORC001 | 345651.5 | 7973459.7 | 446.4 | 192           | RC        | -60 | 139.1   | 2021 | Onedin  |
| AORC002 | 345680.6 | 7973488.2 | 446.7 | 138           | RC        | -63 | 141     | 2021 | Onedin  |
| AORC003 | 345709   | 7973517.4 | 447   | 138           | RC        | -61 | 142.8   | 2021 | Onedin  |
| AORC004 | 345720.2 | 7973566.5 | 445.6 | 174           | RC        | -61 | 138.7   | 2021 | Onedin  |
| AORC005 | 345651.7 | 7973619.9 | 446.1 | 358.5         | RCDD      | -70 | 138.4   | 2021 | Onedin  |
| AORC006 | 345597.4 | 7973464.3 | 442.5 | 278           | RC        | -60 | 141.8   | 2021 | Onedin  |
| AORD001 | 345685.5 | 7973549.8 | 445   | 155           | DD        | -60 | 139.7   | 2021 | Onedin  |
| AORD002 | 345660.1 | 7973516.6 | 444.3 | 174.8         | DD        | -60 | 139.8   | 2021 | Onedin  |
| AORD003 | 345638   | 7973477.8 | 444.3 | 215.3         | DD        | -67 | 140.5   | 2021 | Onedin  |
| AORD004 | 345696.9 | 7973601.8 | 445.7 | 196.2         | DD        | -60 | 139.1   | 2021 | Onedin  |
| AORD005 | 345613.7 | 7973516.2 | 443.9 | 268           | DD        | -63 | 139.7   | 2021 | Onedin  |
| AORD006 | 345630.6 | 7973546.4 | 444.5 | 243.8         | DD        | -60 | 140.4   | 2021 | Onedin  |
| AORD007 | 345662   | 7973572.2 | 445   | 183.1         | DD        | -60 | 139.4   | 2021 | Onedin  |
| AOWB01  | 345604   | 7973421.2 | 444.9 | 114           | RC        | -90 | 0       | 2021 | Onedin  |
| AOWB02  | 345820.8 | 7973630   | 448   | 120           | RC        | -90 | 0       | 2021 | Onedin  |
| AOWB03  | 345716.7 | 7973544.6 | 445.9 | 132           | RC        | -90 | 0       | 2021 | Onedin  |
| AOWB04  | 345721.7 | 7973539.6 | 446.2 | 126           | RC        | -90 | 0       | 2021 | Onedin  |

| Criteria                        | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Data aggregation methods</b> | <ul style="list-style-type: none"> <li>▪ <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i></li> <li>▪ <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i></li> <li>▪ <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i></li> </ul> | <ul style="list-style-type: none"> <li>▪ Drill hole intercept grades are reported as downhole length-weighted averages, ensuring each sample contributes proportionally to the final reported grade.</li> <li>▪ Length-weighted averages were calculated using the standard industry formula:<br/> <b>Weighted Average Grade =</b><br/> <math display="block">(L1 \times G1) + (L2 \times G2) + (Ln \times Gn) / L1 + L2 + Ln</math> <p>where L is the sample interval length and G is the corresponding grade.</p> <p><b>Example:</b> For an interval comprising 4 metres at 2.0% Cu and 6 metres at 3.0% Cu, the weighted average grade is:<br/> <math display="block">(4 \times 2.0) + (6 \times 3.0) / 4 + 6 = 2.6\% \text{ Cu}</math></p> </li> </ul> <p><b>Significant Cobalt Intersections</b></p> <ul style="list-style-type: none"> <li>▪ A nominal cut-off grade of 500 ppm Co was applied for reporting significant cobalt intercepts at the Sandiego deposit. Intervals meeting or exceeding this threshold were included in the reported aggregation. Internal dilution within aggregated intervals was not allowed to exceed two consecutive metres.</li> </ul> <p><b>Significant Copper Intersections – Onedin</b></p> <ul style="list-style-type: none"> <li>▪ A nominal cut-off grade of 0.4% Cu was applied for reporting significant copper intercepts at the Onedin deposit. Due to the complex nature of mineralisation, where copper is interspersed with zinc, internal dilution was generally accepted. However, consecutive internal dilution within aggregated intercepts did not exceed 12 metres.</li> <li>▪ Within low-grade intervals reported at the 0.4% Cu cut-off, high-grade sub-intervals were identified using a 1.0% Cu cut-off. Internal dilution was assessed within the geological context of copper-zinc mineralisation, with consecutive internal dilution in high-grade sub-intervals limited to 2 metres.</li> <li>▪ Reported intercepts were aggregated using a hierarchical approach, first identifying broader mineralised intervals at the lower cut-off grade (e.g., 0.4% Cu), and then defining high-grade sub-intervals at the 1.0% Cu threshold.</li> <li>▪ This methodology ensures that significant high-grade zones are reported within broader mineralised envelopes, maintaining geological and economic relevance. Internal dilution was minimised, and where included, was subject to constraints based on geological continuity and mineralisation style.</li> </ul> <p><b>Significant Copper Intersections – Sandiego</b></p> <ul style="list-style-type: none"> <li>▪ A nominal cut-off grade of 1% Cu was applied for reporting significant copper intercepts at the Sandiego deposit. Intervals meeting or exceeding this threshold were included in the reported aggregation. Internal dilution within aggregated intervals did not exceed 1 metre.</li> <li>▪ A nominal cut-off grade of 0.5% Cu was applied for reporting significant copper intercepts from AWSB. Intervals meeting or exceeding this threshold were included in the reported aggregation. No internal dilution was included within aggregated intervals.</li> </ul> |

| Criteria                                                                | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Relationship between mineralisation widths and intercept lengths</b> | <ul style="list-style-type: none"> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul> | <ul style="list-style-type: none"> <li>The geometry of mineralisation at the Sandiego deposit is well understood, enabling the inclusion of estimated true widths alongside downhole lengths in the table below. For the northern lenses, true width estimates are based on interpreted geometries consistent with the broader Sandiego deposit, except for ASWB001, where insufficient data prevents a reliable estimate.</li> <li>At the Onedin deposit, true widths of mineralisation through the oxide-transition zone are difficult to establish due to the extensive oxidation profile creating diffuse mineralisation patterns that complicate the interpretation of mineralisation geometry. Thus, only downhole lengths are reported.</li> </ul> |

| Drill Hole              | Downhole Interval (m) | Estimated True Width (m) | From (m) | Cu (%) | Pb (%) | Zn (%) | Co (%) | Ag (g/t) |
|-------------------------|-----------------------|--------------------------|----------|--------|--------|--------|--------|----------|
| <b>Onedin Deposit</b>   |                       |                          |          |        |        |        |        |          |
| AORD004                 | 55.1                  | True Width Not Known     | 94       | 3.5    | 1.2    | 0.8    | -      | 103      |
| including               | 16.6                  | True Width Not Known     | 130      | 10.2   | 0.5    | 1.0    | -      | 316      |
| AOWB03                  | 118                   | True Width Not Known     | 14       | 1.1    | 1.6    | 1.1    | -      | 52       |
| including               | 21                    | True Width Not Known     | 93       | 2.1    | -      | -      | -      | 66       |
| <b>Sandiego Deposit</b> |                       |                          |          |        |        |        |        |          |
| SRC060                  | 8                     | 4                        | 112      | 2.0    | 1.3    | 4.2    | 0.28   | 133      |
| SRC062                  | 18                    | 10.2                     | 128      | 0.7    | 0.8    | 5.7    | 0.10   | 62       |
| SRCD028A                | 37                    | 19.4                     | 267      | 3.9    | 0.1    | 0.3    | 0.10   | 28       |
| SRCD030                 | 12.4                  | 7.6                      | 208      | 4.8    | 1.0    | 12.1   | 0.13   | 129      |
| and                     | 18                    | 10.7                     | 274      | 7.3    | -      | 0.3    | 0.14   | 42       |
| SRCD031                 | 22                    | 10.3                     | 100      | 12.6   | 1.3    | 8.0    | 0.17   | 121      |
| and                     | 12.9                  | 6.4                      | 149.5    | 12.2   | 0.1    | 2.8    | 0.27   | 37       |
| SRCD064                 | 10.37                 | 7.6                      | 393.73   | 9.9    | -      | 0.3    | 0.46   | 19       |
| SRC065                  | 12                    | 5.4                      | 121      | 1.3    | -      | 0.04   | 0.02   | 2        |
| SRC18                   | 3                     | 1.5                      | 103      | 3.3    | -      | 0.1    | -      | 1        |
| SRC20                   | 11                    | 5.1                      | 53       | 2.5    | -      | 0.1    | -      | -        |
| ASRD004                 | 11                    | 6                        | 395      | 3.0    | -      | 0.9    | 0.03   | 3        |
| ASRD005                 | 13.1                  | 7.6                      | 455      | 2.5    | -      | 0.06   | 0.03   | 4        |
| SRCD078                 | 12.25                 | 6.6                      | 543.35   | 1.7    | -      | 0.02   | 0.05   | 3        |
| ASWB001                 | 5                     | True Width Not Known     | 50       | 1.4    | -      | -      | -      | -        |
| and                     | 2                     | True Width Not Known     | 85       | 1.7    | -      | -      | -      | -        |

| Criteria                  | JORC Code Explanation                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Diagrams</b>           | <ul style="list-style-type: none"> <li>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</li> </ul> | <ul style="list-style-type: none"> <li>Appropriate maps and diagrams are presented in the body of this announcement.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>Balanced reporting</b> | <ul style="list-style-type: none"> <li>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.</li> </ul>                                          | <ul style="list-style-type: none"> <li>Only mineralised drill hole intersections regarded as highly anomalous and of economic interest are reported. The proportion of each hole represented by the reported intervals can be ascertained from the sum of the reported intervals divided by the total drill hole depth.</li> <li>Mineral Resource estimates have been completed for the Onedin and Sandiego deposits, incorporating all assay results from drilling within the deposit areas, including those not necessarily considered anomalous.</li> <li>All soils samples pertaining to the Sandiego north trend are reported in the following table.</li> </ul> |

| Sample ID | Sample Type | Easting | Northing | Cu (ppm) | Pb (ppm) | Zn (ppm) |
|-----------|-------------|---------|----------|----------|----------|----------|
| AKUF00241 | SOIL        | 339860  | 7968477  | 86.1     | 177      | 60.2     |
| AKUF00242 | SOIL        | 339846  | 7968491  | 91.6     | 132      | 60.7     |
| AKUF00243 | SOIL        | 339832  | 7968505  | 127      | 242      | 90.4     |
| AKUF00244 | SOIL        | 339818  | 7968519  | 165      | 252      | 49.1     |
| AKUF00246 | SOIL        | 339790  | 7968547  | 301      | 878      | 134      |
| AKUF00247 | SOIL        | 339775  | 7968561  | 280      | 299      | 162      |
| AKUF00248 | SOIL        | 339761  | 7968576  | 105      | 332      | 167      |
| AKUF00249 | SOIL        | 339747  | 7968590  | 96.8     | 255      | 169      |
| AKUF00250 | SOIL        | 339733  | 7968604  | 97.4     | 152      | 195      |
| AKUF00251 | SOIL        | 339716  | 7968620  | 119      | 221      | 1400     |
| AKUF00252 | SOIL        | 339705  | 7968632  | 64.7     | 160      | 189      |
| AKUF00253 | SOIL        | 339691  | 7968646  | 45.4     | 143      | 109      |
| AKUF00254 | SOIL        | 339676  | 7968660  | 51.5     | 131      | 114      |
| AKUF00255 | SOIL        | 339662  | 7968675  | 47.1     | 103      | 125      |
| AKUF00256 | SOIL        | 339648  | 7968689  | 50.8     | 134      | 136      |
| AKUF00257 | SOIL        | 339634  | 7968703  | 41.4     | 84.5     | 142      |
| AKUF00258 | SOIL        | 339620  | 7968717  | 35.1     | 81.7     | 131      |
| AKUF00259 | SOIL        | 339606  | 7968731  | 34.8     | 74.7     | 106      |
| AKUF00266 | SOIL        | 339882  | 7968526  | 90.9     | 142      | 115      |
| AKUF00267 | SOIL        | 339867  | 7968540  | 93.3     | 139      | 102      |
| AKUF00272 | SOIL        | 339797  | 7968611  | 125      | 207      | 180      |
| AKUF00273 | SOIL        | 339785  | 7968622  | 107      | 165      | 161      |
| AKUF00274 | SOIL        | 339772  | 7968634  | 73.5     | 160      | 194      |
| AKUF00275 | SOIL        | 339754  | 7968648  | 83.5     | 345      | 296      |
| AKUF00276 | SOIL        | 339740  | 7968667  | 52.7     | 133      | 223      |
| AKUF00277 | SOIL        | 339726  | 7968682  | 54.3     | 156      | 154      |

| Sample ID | Sample Type | Easting | Northing | Cu (ppm) | Pb (ppm) | Zn (ppm) |
|-----------|-------------|---------|----------|----------|----------|----------|
| AKUF00278 | SOIL        | 339712  | 7968696  | 50.5     | 55.9     | 82.6     |
| AKUF00279 | SOIL        | 339698  | 7968710  | 35       | 38       | 70.6     |
| AKUF00280 | SOIL        | 339684  | 7968724  | 29.9     | 107      | 99       |
| AKUF00281 | SOIL        | 339674  | 7968737  | 40       | 127      | 142      |
| AKUF00282 | SOIL        | 339655  | 7968752  | 31.4     | 63.4     | 123      |
| AKUF00283 | SOIL        | 339641  | 7968766  | 29.4     | 65.6     | 126      |
| AKUF00288 | SOIL        | 339931  | 7968547  | 62.2     | 77.4     | 82.3     |
| AKUF00289 | SOIL        | 339914  | 7968558  | 84       | 123      | 103      |
| AKUF00290 | SOIL        | 339903  | 7968576  | 59       | 91.2     | 77.3     |
| AKUF00291 | SOIL        | 339889  | 7968590  | 51.3     | 124      | 68.3     |
| AKUF00292 | SOIL        | 339882  | 7968604  | 47.2     | 89.2     | 62.2     |
| AKUF00294 | SOIL        | 339846  | 7968632  | 68.3     | 197      | 78       |
| AKUF00295 | SOIL        | 339835  | 7968648  | 100      | 253      | 291      |
| AKUF00296 | SOIL        | 339818  | 7968660  | 86.7     | 219      | 168      |
| AKUF00297 | SOIL        | 339808  | 7968674  | 80.5     | 188      | 174      |
| AKUF00298 | SOIL        | 339795  | 7968686  | 66.8     | 215      | 151      |
| AKUF00299 | SOIL        | 339774  | 7968703  | 57.8     | 129      | 264      |
| AKUF00300 | SOIL        | 339761  | 7968717  | 64.9     | 204      | 130      |
| AKUF00301 | SOIL        | 339747  | 7968731  | 37       | 109      | 105      |
| AKUF00302 | SOIL        | 339733  | 7968745  | 27.5     | 40       | 74.1     |
| AKUF00303 | SOIL        | 339719  | 7968759  | 25.9     | 105      | 80.8     |
| AKUF00304 | SOIL        | 339705  | 7968774  | 37.2     | 72.8     | 152      |
| AKUF00305 | SOIL        | 339691  | 7968788  | 35.7     | 58.6     | 131      |
| AKUF00306 | SOIL        | 339676  | 7968802  | 26.8     | 43.8     | 117      |
| AKUF00307 | SOIL        | 339662  | 7968816  | 24.5     | 35.4     | 105      |
| AKUF00310 | SOIL        | 339966  | 7968583  | 157      | 233      | 143      |
| AKUF00311 | SOIL        | 339952  | 7968597  | 71.9     | 128      | 85.1     |
| AKUF00312 | SOIL        | 339938  | 7968611  | 57.8     | 129      | 63.1     |
| AKUF00313 | SOIL        | 339924  | 7968625  | 70.3     | 124      | 68.3     |
| AKUF00314 | SOIL        | 339910  | 7968639  | 59.2     | 94.8     | 60       |
| AKUF00315 | SOIL        | 339896  | 7968653  | 88.6     | 181      | 68.9     |
| AKUF00317 | SOIL        | 339873  | 7968683  | 107      | 219      | 88.7     |
| AKUF00318 | SOIL        | 339856  | 7968696  | 92.9     | 181      | 84.1     |
| AKUF00319 | SOIL        | 339842  | 7968712  | 127      | 250      | 135      |
| AKUF00320 | SOIL        | 339825  | 7968724  | 118      | 244      | 155      |
| AKUF00321 | SOIL        | 339811  | 7968738  | 104      | 125      | 124      |
| AKUF00322 | SOIL        | 339797  | 7968752  | 62.9     | 155      | 103      |
| AKUF00323 | SOIL        | 339783  | 7968766  | 37.4     | 103      | 161      |
| AKUF00324 | SOIL        | 339768  | 7968779  | 22.5     | 58.6     | 79       |
| AKUF00325 | SOIL        | 339754  | 7968795  | 22       | 59       | 87.2     |
| AKUF00326 | SOIL        | 339742  | 7968811  | 41.5     | 33       | 112      |
| AKUF00327 | SOIL        | 339726  | 7968823  | 27.6     | 37.8     | 110      |
| AKUF00328 | SOIL        | 339712  | 7968837  | 20.5     | 34.7     | 101      |
| AKUF00333 | SOIL        | 340002  | 7968618  | 256      | 125      | 193      |
| AKUF00334 | SOIL        | 339988  | 7968630  | 81.1     | 128      | 78.6     |
| AKUF00335 | SOIL        | 339974  | 7968644  | 53.8     | 163      | 67.2     |
| AKUF00336 | SOIL        | 339959  | 7968660  | 47       | 118      | 64.5     |
| AKUF00337 | SOIL        | 339945  | 7968675  | 61.5     | 92.1     | 59.9     |

| Sample ID | Sample Type | Easting | Northing | Cu (ppm) | Pb (ppm) | Zn (ppm) |
|-----------|-------------|---------|----------|----------|----------|----------|
| AKUF00338 | SOIL        | 339931  | 7968689  | 62       | 101      | 56.9     |
| AKUF00339 | SOIL        | 339917  | 7968703  | 114      | 140      | 165      |
| AKUF00340 | SOIL        | 339904  | 7968715  | 95.6     | 145      | 153      |
| AKUF00341 | SOIL        | 339888  | 7968730  | 106      | 171      | 134      |
| AKUF00342 | SOIL        | 339874  | 7968745  | 174      | 186      | 374      |
| AKUF00343 | SOIL        | 339860  | 7968759  | 108      | 208      | 184      |
| AKUF00344 | SOIL        | 339846  | 7968774  | 82.7     | 236      | 141      |
| AKUF00345 | SOIL        | 339832  | 7968788  | 83.5     | 51.1     | 109      |
| AKUF00346 | SOIL        | 339819  | 7968800  | 46       | 103      | 129      |
| AKUF00347 | SOIL        | 339804  | 7968816  | 21.2     | 21.4     | 104      |
| AKUF00348 | SOIL        | 339792  | 7968829  | 13.6     | 29.3     | 71       |
| AKUF00349 | SOIL        | 339775  | 7968841  | 31.7     | 65.9     | 91.1     |
| AKUF00350 | SOIL        | 339761  | 7968858  | 22       | 30       | 85.7     |
| AKUF00351 | SOIL        | 339748  | 7968870  | 15.3     | 24.3     | 102      |
| AKUF00352 | SOIL        | 339733  | 7968887  | 12       | 22       | 89.9     |
| AKUF00355 | SOIL        | 340038  | 7968654  | 76.3     | 120      | 90.4     |
| AKUF00356 | SOIL        | 340020  | 7968668  | 58.6     | 123      | 75.8     |
| AKUF00357 | SOIL        | 340008  | 7968683  | 48.3     | 109      | 72.7     |
| AKUF00358 | SOIL        | 339995  | 7968696  | 52.1     | 120      | 67.2     |
| AKUF00359 | SOIL        | 339981  | 7968710  | 69.8     | 148      | 66.7     |
| AKUF00360 | SOIL        | 339966  | 7968724  | 65       | 142      | 58.4     |
| AKUF00361 | SOIL        | 339952  | 7968739  | 64       | 163      | 71       |
| AKUF00362 | SOIL        | 339938  | 7968755  | 84.5     | 136      | 141      |
| AKUF00363 | SOIL        | 339924  | 7968766  | 72.7     | 158      | 116      |
| AKUF00364 | SOIL        | 339910  | 7968781  | 84.5     | 215      | 157      |
| AKUF00365 | SOIL        | 339896  | 7968795  | 156      | 88       | 191      |
| AKUF00366 | SOIL        | 339882  | 7968809  | 125      | 75       | 152      |
| AKUF00367 | SOIL        | 339867  | 7968823  | 105      | 94.6     | 138      |
| AKUF00368 | SOIL        | 339853  | 7968837  | 88.3     | 130      | 128      |
| AKUF00369 | SOIL        | 339839  | 7968851  | 34.8     | 44.7     | 93.6     |
| AKUF00370 | SOIL        | 339825  | 7968868  | 26.3     | 31.5     | 109      |
| AKUF00371 | SOIL        | 339811  | 7968880  | 14.8     | 18.5     | 96.2     |
| AKUF00372 | SOIL        | 339797  | 7968894  | 10.9     | 14.4     | 87.6     |
| AKUF00373 | SOIL        | 339783  | 7968908  | 7.7      | 12.8     | 76.6     |
| AKUF00374 | SOIL        | 339766  | 7968930  | 9.9      | 22.1     | 92.7     |
| AKUF00377 | SOIL        | 340059  | 7968702  | 76.4     | 93.8     | 110      |
| AKUF00378 | SOIL        | 340046  | 7968718  | 75.2     | 128      | 111      |
| AKUF00379 | SOIL        | 340030  | 7968730  | 57.6     | 94.7     | 69.4     |
| AKUF00380 | SOIL        | 340014  | 7968745  | 61.5     | 125      | 88.7     |
| AKUF00381 | SOIL        | 340001  | 7968759  | 110      | 230      | 84.9     |
| AKUF00382 | SOIL        | 339987  | 7968774  | 86.1     | 150      | 121      |
| AKUF00383 | SOIL        | 339972  | 7968788  | 106      | 185      | 139      |
| AKUF00384 | SOIL        | 339960  | 7968801  | 98.7     | 292      | 128      |
| AKUF00385 | SOIL        | 339945  | 7968817  | 134      | 118      | 321      |
| AKUF00386 | SOIL        | 339932  | 7968830  | 262      | 253      | 308      |
| AKUF00387 | SOIL        | 339917  | 7968844  | 157      | 310      | 204      |
| AKUF00388 | SOIL        | 339904  | 7968859  | 140      | 144      | 219      |
| AKUF00389 | SOIL        | 339891  | 7968871  | 112      | 150      | 164      |

| Sample ID | Sample Type | Easting | Northing | Cu (ppm) | Pb (ppm) | Zn (ppm) |
|-----------|-------------|---------|----------|----------|----------|----------|
| AKUF00390 | SOIL        | 339876  | 7968884  | 63.4     | 131      | 149      |
| AKUF00391 | SOIL        | 339860  | 7968899  | 37.6     | 38.3     | 234      |
| AKUF00392 | SOIL        | 339846  | 7968915  | 23.3     | 27.9     | 216      |
| AKUF00393 | SOIL        | 339832  | 7968930  | 10.8     | 13       | 62.5     |
| AKUF00394 | SOIL        | 339817  | 7968942  | 13.3     | 18.8     | 79.3     |
| AKUF00398 | SOIL        | 340094  | 7968738  | 52.6     | 59.3     | 102      |
| AKUF00399 | SOIL        | 340080  | 7968752  | 45.2     | 44.7     | 77.7     |
| AKUF00400 | SOIL        | 340068  | 7968765  | 50       | 74.8     | 78.8     |
| AKUF00401 | SOIL        | 340051  | 7968779  | 62.2     | 89.2     | 81.9     |
| AKUF00402 | SOIL        | 340038  | 7968797  | 110      | 146      | 115      |
| AKUF00403 | SOIL        | 340023  | 7968809  | 132      | 110      | 175      |
| AKUF00404 | SOIL        | 340010  | 7968822  | 153      | 216      | 118      |
| AKUF00405 | SOIL        | 339995  | 7968836  | 234      | 245      | 167      |
| AKUF00406 | SOIL        | 339981  | 7968851  | 159      | 194      | 176      |
| AKUF00407 | SOIL        | 339972  | 7968865  | 159      | 134      | 250      |
| AKUF00408 | SOIL        | 339952  | 7968880  | 127      | 181      | 171      |
| AKUF00409 | SOIL        | 339938  | 7968893  | 167      | 201      | 257      |
| AKUF00410 | SOIL        | 339925  | 7968907  | 151      | 243      | 222      |
| AKUF00411 | SOIL        | 339911  | 7968919  | 106      | 195      | 193      |
| AKUF00412 | SOIL        | 339895  | 7968938  | 36.9     | 33.8     | 205      |
| AKUF00413 | SOIL        | 339881  | 7968950  | 23.5     | 14.4     | 124      |
| AKUF00414 | SOIL        | 339868  | 7968964  | 19.1     | 15.7     | 126      |
| AKUF00415 | SOIL        | 339853  | 7968979  | 11.4     | 14.7     | 92.7     |
| AKUF00419 | SOIL        | 340100  | 7968788  | 47.3     | 46.1     | 75.5     |
| AKUF00420 | SOIL        | 340089  | 7968803  | 58.9     | 30.7     | 78.5     |
| AKUF00421 | SOIL        | 340072  | 7968816  | 44.5     | 33.3     | 84.4     |
| AKUF00422 | SOIL        | 340058  | 7968830  | 50.8     | 88.1     | 140      |
| AKUF00423 | SOIL        | 340044  | 7968844  | 82.9     | 86.9     | 189      |
| AKUF00424 | SOIL        | 340032  | 7968858  | 156      | 171      | 169      |
| AKUF00425 | SOIL        | 340016  | 7968872  | 160      | 143      | 212      |
| AKUF00426 | SOIL        | 339998  | 7968887  | 258      | 271      | 167      |
| AKUF00427 | SOIL        | 339988  | 7968905  | 205      | 123      | 225      |
| AKUF00428 | SOIL        | 339973  | 7968915  | 299      | 66.2     | 273      |
| AKUF00429 | SOIL        | 339959  | 7968929  | 146      | 84.6     | 196      |
| AKUF00430 | SOIL        | 339947  | 7968943  | 98.8     | 119      | 140      |
| AKUF00431 | SOIL        | 339931  | 7968955  | 78.4     | 157      | 161      |
| AKUF00432 | SOIL        | 339917  | 7968971  | 29.6     | 33.3     | 149      |
| AKUF00433 | SOIL        | 339899  | 7968986  | 19.4     | 14.1     | 90.7     |
| AKUF00434 | SOIL        | 339889  | 7968999  | 12.8     | 13       | 110      |
| AKUF00441 | SOIL        | 340122  | 7968836  | 42.6     | 32.1     | 73.8     |
| AKUF00442 | SOIL        | 340109  | 7968851  | 24.7     | 13.7     | 33.1     |
| AKUF00443 | SOIL        | 340094  | 7968865  | 38.3     | 43.4     | 72       |
| AKUF00444 | SOIL        | 340084  | 7968880  | 66       | 82.7     | 193      |
| AKUF00445 | SOIL        | 340063  | 7968896  | 106      | 120      | 258      |
| AKUF00446 | SOIL        | 340052  | 7968910  | 226      | 222      | 318      |
| AKUF00447 | SOIL        | 340037  | 7968925  | 245      | 200      | 256      |
| AKUF00448 | SOIL        | 340023  | 7968936  | 188      | 125      | 276      |
| AKUF00449 | SOIL        | 340009  | 7968950  | 205      | 142      | 381      |

| Sample ID | Sample Type | Easting | Northing | Cu (ppm) | Pb (ppm) | Zn (ppm) |
|-----------|-------------|---------|----------|----------|----------|----------|
| AKUF00450 | SOIL        | 339993  | 7968964  | 150      | 46       | 211      |
| AKUF00451 | SOIL        | 339981  | 7968979  | 137      | 76.2     | 248      |
| AKUF00452 | SOIL        | 339967  | 7968993  | 66.4     | 69.2     | 151      |
| AKUF00453 | SOIL        | 339952  | 7969010  | 47.6     | 48.3     | 124      |
| AKUF00454 | SOIL        | 339939  | 7969021  | 44       | 38.6     | 140      |
| AKUF00455 | SOIL        | 339924  | 7969033  | 29.3     | 17.8     | 82       |
| AKUF00456 | SOIL        | 339909  | 7969049  | 30.3     | 32.4     | 210      |
| AKUF00457 | SOIL        | 339896  | 7969063  | 6.7      | 9.78     | 112      |
| AKUF00458 | SOIL        | 339881  | 7969078  | 7.1      | 9.97     | 89.9     |
| AKUF00459 | SOIL        | 339867  | 7969093  | 11.1     | 12.3     | 49.6     |
| AKUF00460 | SOIL        | 340115  | 7969105  | 13.4     | 15.1     | 37       |
| AKUF00462 | SOIL        | 340171  | 7968872  | 64.1     | 58.9     | 77.1     |
| AKUF00463 | SOIL        | 340157  | 7968887  | 37.5     | 31.4     | 61.4     |
| AKUF00464 | SOIL        | 340143  | 7968901  | 37       | 44.1     | 81.9     |
| AKUF00465 | SOIL        | 340129  | 7968913  | 35       | 44.2     | 85       |
| AKUF00466 | SOIL        | 340115  | 7968929  | 80.7     | 81.5     | 86.7     |
| AKUF00467 | SOIL        | 340101  | 7968943  | 190      | 72.5     | 211      |
| AKUF00468 | SOIL        | 340087  | 7968957  | 259      | 129      | 332      |
| AKUF00469 | SOIL        | 340072  | 7968971  | 317      | 132      | 572      |
| AKUF00470 | SOIL        | 340058  | 7968986  | 216      | 131      | 374      |
| AKUF00471 | SOIL        | 340044  | 7969000  | 176      | 154      | 294      |
| AKUF00472 | SOIL        | 340030  | 7969014  | 158      | 101      | 278      |
| AKUF00473 | SOIL        | 340019  | 7969027  | 92       | 166      | 193      |
| AKUF00474 | SOIL        | 340000  | 7969040  | 66.6     | 114      | 160      |
| AKUF00475 | SOIL        | 339988  | 7969056  | 54       | 26.6     | 96.5     |
| AKUF00476 | SOIL        | 339973  | 7969070  | 46.9     | 25.3     | 113      |
| AKUF00477 | SOIL        | 339959  | 7969085  | 30.4     | 23.1     | 132      |
| AKUF00478 | SOIL        | 339945  | 7969099  | 21.1     | 11.6     | 116      |
| AKUF00479 | SOIL        | 339931  | 7969113  | 13.4     | 10.7     | 71.9     |
| AKUF00480 | SOIL        | 339919  | 7969125  | 9.8      | 8.23     | 61.2     |
| AKUF00481 | SOIL        | 339903  | 7969141  | 17.7     | 23.3     | 60.3     |
| AKUF00482 | SOIL        | 340207  | 7968908  | 40.7     | 38.3     | 74.6     |
| AKUF00483 | SOIL        | 340188  | 7968925  | 35.3     | 30.5     | 60.7     |
| AKUF00484 | SOIL        | 340178  | 7968938  | 34       | 32.3     | 58.6     |
| AKUF00485 | SOIL        | 340164  | 7968950  | 43.1     | 49.4     | 71.4     |
| AKUF00486 | SOIL        | 340148  | 7968969  | 93.1     | 63.1     | 97.3     |
| AKUF00487 | SOIL        | 340136  | 7968979  | 143      | 104      | 176      |
| AKUF00488 | SOIL        | 340122  | 7968993  | 96.3     | 101      | 136      |
| AKUF00489 | SOIL        | 340104  | 7969005  | 125      | 95.1     | 158      |
| AKUF00490 | SOIL        | 340094  | 7969021  | 98.4     | 41.6     | 132      |
| AKUF00491 | SOIL        | 340079  | 7969035  | 180      | 149      | 366      |
| AKUF00492 | SOIL        | 340064  | 7969053  | 78.9     | 157      | 192      |
| AKUF00493 | SOIL        | 340053  | 7969063  | 77.7     | 158      | 175      |
| AKUF00494 | SOIL        | 340037  | 7969078  | 66.6     | 128      | 168      |
| AKUF00495 | SOIL        | 340023  | 7969092  | 37.8     | 25.1     | 108      |
| AKUF00496 | SOIL        | 340009  | 7969108  | 39.9     | 25       | 98.8     |
| AKUF00497 | SOIL        | 339995  | 7969120  | 40.4     | 12.1     | 95.6     |
| AKUF00498 | SOIL        | 339981  | 7969134  | 33.4     | 17.8     | 79       |

| Sample ID | Sample Type | Easting | Northing | Cu (ppm) | Pb (ppm) | Zn (ppm) |
|-----------|-------------|---------|----------|----------|----------|----------|
| AKUF00499 | SOIL        | 339966  | 7969148  | 16.8     | 13.9     | 100      |
| AKUF00500 | SOIL        | 339948  | 7969164  | 13.7     | 19       | 89.6     |
| AKUF00501 | SOIL        | 339938  | 7969177  | 13.7     | 12       | 56.1     |
| AKUF00504 | SOIL        | 340214  | 7968971  | 44.7     | 41.3     | 80.5     |
| AKUF00505 | SOIL        | 340201  | 7968985  | 59.1     | 62       | 79.1     |
| AKUF00506 | SOIL        | 340186  | 7969000  | 70       | 33.6     | 81.6     |
| AKUF00507 | SOIL        | 340171  | 7969014  | 66.1     | 68.8     | 121      |
| AKUF00508 | SOIL        | 340159  | 7969025  | 81.8     | 85.5     | 90       |
| AKUF00509 | SOIL        | 340143  | 7969042  | 67.2     | 55       | 91.7     |
| AKUF00510 | SOIL        | 340129  | 7969056  | 71.3     | 48.6     | 92.7     |
| AKUF00511 | SOIL        | 340116  | 7969070  | 89.9     | 54.5     | 110      |
| AKUF00512 | SOIL        | 340101  | 7969084  | 121      | 65.1     | 232      |
| AKUF00513 | SOIL        | 340087  | 7969099  | 71.6     | 107      | 169      |
| AKUF00514 | SOIL        | 340071  | 7969113  | 50.6     | 71       | 149      |
| AKUF00515 | SOIL        | 340060  | 7969127  | 46.8     | 28.1     | 114      |
| AKUF00516 | SOIL        | 340044  | 7969141  | 58.4     | 44.9     | 103      |
| AKUF00517 | SOIL        | 340031  | 7969154  | 29.6     | 23.5     | 91.8     |
| AKUF00518 | SOIL        | 340016  | 7969169  | 29.6     | 15.6     | 113      |
| AKUF00519 | SOIL        | 340002  | 7969184  | 16.2     | 12.5     | 96.3     |
| AKUF00520 | SOIL        | 339988  | 7969198  | 14.7     | 15.6     | 85       |
| AKUF00521 | SOIL        | 339973  | 7969212  | 12       | 11.4     | 35.6     |
| AKUF00524 | SOIL        | 340235  | 7969021  | 33.9     | 28.1     | 84       |
| AKUF00525 | SOIL        | 340221  | 7969035  | 43.1     | 42.2     | 76.7     |
| AKUF00526 | SOIL        | 340207  | 7969049  | 41.6     | 25.1     | 68       |
| AKUF00527 | SOIL        | 340193  | 7969063  | 50.9     | 25.3     | 77.2     |
| AKUF00528 | SOIL        | 340178  | 7969078  | 59.5     | 31.2     | 71       |
| AKUF00529 | SOIL        | 340163  | 7969089  | 89.9     | 32.1     | 140      |
| AKUF00530 | SOIL        | 340150  | 7969106  | 75.8     | 43       | 106      |
| AKUF00531 | SOIL        | 340136  | 7969120  | 91.6     | 73       | 194      |
| AKUF00532 | SOIL        | 340117  | 7969134  | 83       | 177      | 199      |
| AKUF00533 | SOIL        | 340108  | 7969151  | 35.2     | 23.6     | 99.9     |
| AKUF00534 | SOIL        | 340091  | 7969161  | 24.7     | 15.5     | 61.5     |
| AKUF00535 | SOIL        | 340079  | 7969177  | 29.7     | 15.3     | 63       |
| AKUF00536 | SOIL        | 340062  | 7969192  | 41.5     | 16.7     | 72.8     |
| AKUF00537 | SOIL        | 340051  | 7969206  | 33.5     | 17.4     | 86.9     |
| AKUF00538 | SOIL        | 340038  | 7969220  | 28.4     | 16.7     | 92.1     |
| AKUF00539 | SOIL        | 340023  | 7969233  | 21.8     | 14.7     | 103      |
| AKUF00540 | SOIL        | 340010  | 7969248  | 16.3     | 14.3     | 62.7     |
| AKUF00541 | SOIL        | 339995  | 7969261  | 12.1     | 13.3     | 76.9     |
| AKUF00544 | SOIL        | 340270  | 7969054  | 29.9     | 36.6     | 78       |
| AKUF00545 | SOIL        | 340256  | 7969070  | 33.2     | 48.8     | 90       |
| AKUF00546 | SOIL        | 340242  | 7969085  | 34.1     | 32.9     | 52.4     |
| AKUF00547 | SOIL        | 340228  | 7969099  | 37       | 27.3     | 63.7     |
| AKUF00548 | SOIL        | 340214  | 7969113  | 42.5     | 34.5     | 77.4     |
| AKUF00549 | SOIL        | 340200  | 7969126  | 57.1     | 28.4     | 65.6     |
| AKUF00550 | SOIL        | 340185  | 7969143  | 66.7     | 36.3     | 73       |
| AKUF00551 | SOIL        | 340171  | 7969155  | 107      | 48.4     | 206      |
| AKUF00552 | SOIL        | 340158  | 7969170  | 80.2     | 130      | 187      |

| Sample ID | Sample Type | Easting | Northing | Cu (ppm) | Pb (ppm) | Zn (ppm) |
|-----------|-------------|---------|----------|----------|----------|----------|
| AKUF00553 | SOIL        | 340140  | 7969184  | 53.8     | 70.7     | 145      |
| AKUF00554 | SOIL        | 340129  | 7969198  | 32.2     | 15.9     | 86.9     |
| AKUF00555 | SOIL        | 340114  | 7969214  | 44.2     | 50.1     | 100      |
| AKUF00556 | SOIL        | 340101  | 7969226  | 42       | 31.5     | 109      |
| AKUF00557 | SOIL        | 340087  | 7969240  | 35.5     | 16.7     | 108      |
| AKUF00558 | SOIL        | 340072  | 7969254  | 36.4     | 19.1     | 148      |
| AKUF00559 | SOIL        | 340058  | 7969268  | 30.7     | 16       | 125      |
| AKUF00560 | SOIL        | 340044  | 7969283  | 22.1     | 13.1     | 84.6     |
| AKUF00561 | SOIL        | 340030  | 7969296  | 15.1     | 14.8     | 99.6     |
| AKUF00563 | SOIL        | 340315  | 7969084  | 40.9     | 38       | 70.9     |
| AKUF00564 | SOIL        | 340306  | 7969092  | 34.2     | 38       | 76.8     |
| AKUF00565 | SOIL        | 340292  | 7969105  | 47       | 37.2     | 82.7     |
| AKUF00566 | SOIL        | 340278  | 7969117  | 46.1     | 31       | 71.4     |
| AKUF00567 | SOIL        | 340263  | 7969134  | 42.4     | 31.4     | 75.4     |
| AKUF00568 | SOIL        | 340249  | 7969148  | 51.1     | 21.4     | 71.8     |
| AKUF00569 | SOIL        | 340238  | 7969163  | 70.4     | 20.1     | 89.5     |
| AKUF00570 | SOIL        | 340178  | 7969218  | 48.6     | 48       | 136      |
| AKUF00571 | SOIL        | 340220  | 7969177  | 104      | 61.8     | 192      |
| AKUF00572 | SOIL        | 340207  | 7969191  | 87.6     | 41       | 171      |
| AKUF00573 | SOIL        | 340195  | 7969206  | 66.4     | 79.8     | 174      |
| AKUF00574 | SOIL        | 340161  | 7969232  | 41.7     | 34.9     | 135      |
| AKUF00575 | SOIL        | 340150  | 7969248  | 32.3     | 26.3     | 149      |
| AKUF00576 | SOIL        | 340136  | 7969261  | 28.6     | 17.9     | 131      |
| AKUF00577 | SOIL        | 340122  | 7969274  | 26.5     | 15       | 144      |
| AKUF00578 | SOIL        | 340108  | 7969290  | 19.6     | 15.8     | 134      |
| AKUF00579 | SOIL        | 340094  | 7969304  | 26.4     | 16.4     | 94.7     |
| AKUF00580 | SOIL        | 340079  | 7969318  | 24.9     | 19.4     | 71       |
| AKUF00581 | SOIL        | 340065  | 7969332  | 24.1     | 19.1     | 58       |

| Criteria                                  | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Other substantive exploration data</b> | <ul style="list-style-type: none"> <li>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</li> </ul> | <p><b>Density Measurements</b></p> <ul style="list-style-type: none"> <li>Density measurements were taken from 1,197 diamond core billets (Sandiego) and 459 billets (Onedin) over the life of the project. Samples were selected from every 1 m or 5 m downhole. Density measurements were carried out by field staff at the Halls Creek sample yard. During AAR's ownership, core billets were initially wrapped in cling film, and density was determined using a conventional sample weight in air and then water. Samples with measured density values of &gt;4.7 were discarded from the density database as these were considered too high for the style of mineralisation.</li> </ul> |

| Criteria                                              | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Other substantive exploration data (continued)</i> |                                                                                                                                                                                                                                                                                                                                                                                                                    | <p><b>Aeromagnetic Data</b></p> <ul style="list-style-type: none"> <li>Open file and multiclient survey data (including the Lamboo Hoistem Survey) have been reprocessed and merged with the statewide 20 m magnetic grid.</li> <li>The key dataset is the 1996 'Halls Creek' survey, flown at 50 m spacing, which provides high-quality magnetic data over the Sandiego-Onedin area but lacks radiometric data.</li> <li>Several areas within the project have only broader line spacing (200 m or 400 m), limiting structural interpretation in those zones.</li> </ul> <p><b>Historical Ground Geophysical Data</b></p> <ul style="list-style-type: none"> <li>A comprehensive compilation of historical geophysical data was completed in 2004 by Southern Geoscience Consultants. The review assessed the effectiveness of past geophysical surveys conducted over the Project area and considered the following key data sources: <ul style="list-style-type: none"> <li><b>Kenecott (early to mid-1970s):</b> Phase Domain Induced Polarisation ('IP') surveys</li> <li><b>Newmont Australia (late 1970s):</b> Fixed Loop Transient Electromagnetic ('TEM') surveys</li> <li><b>Shell-Billiton-Acacia (late 1980s to early 1990s):</b> Moving loop EM ('MLEM'), Fixed loop EM, Downhole EM ('DHEM'), IP surveys and Airborne EM</li> <li><b>Lachlan Resources (mid-1990s):</b> MLEM and DHEM</li> </ul> </li> <li>Between 2006 and 2010, DHEM surveys were conducted on multiple drill holes across various prospects, contributing to the ongoing exploration evaluation.</li> </ul> |
| <b>Further work</b>                                   | <ul style="list-style-type: none"> <li><i>The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling).</i></li> <li><i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i></li> </ul> | <ul style="list-style-type: none"> <li>The Company is undertaking a comprehensive audit of historical drilling, sampling, sub-sampling, and analytical data to inform the development of the forward work program for the Project. The scope and scale of future work will be finalised upon completion of this audit. Notwithstanding, the Company intends to progress the Onedin and Sandiego deposits through feasibility studies, with priority exploration activities focused on the key targets identified in this release.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |