

FURTHER HIGH-GRADE GOLD INTERSECTIONS AT CROWN PRINCE GOLD PROJECT

HIGHLIGHTS

Grade control drilling covering the early mining benches in the proposed pit design at the Crown Prince Gold Project has now been finalized.

High-grade gold assays in this announcement are from the central and eastern part of the South-Eastern Zone (SEB) received after the previous announcement to the market on 28 of May 2025 over an additional strike length of 140m.

Significant intersections include:

- 10 at 6.96g/t Au from 56m, including 1m at 56.67g/t Au from 58m in GC00314
- 2m at 195.79g/t Au from 26m in GC00364
- 15m at 3.67g/t Au from 23m, including 1m at 20.44g/t Au from 24m in GC00397
- 29m at 4.45g/t Au from 38m, including 2m at 38.39g/t Au from 42m in GC00399
- 25m at 4.18g/t Au from 4m, including 2m at 27.59g/t Au from 12m in GC00402
- 4m at 18.61g/t Au from 40m, including 1m at 53.72g/t Au from 40m in GC00403
- 40m at 11.79g/t Au from 3m, including 5m at 67.45g/t Au from 20m in GC00411
- 31m at 9.70g/t Au from 3m, including 5m at 46.47g/t Au from 24m in GC00419
- 16m at 12.86g/t Au from 4m, including 3m at 40g/t Au from 9m in GC00428
- 13m at 12.58g/t Au from 23m, including 2m at 58.33g/t Au from 28m in GC00429
- 7m at 14.56g/t Au from 23m, including 1m at 89.83g/t Au from 42m in GC00430
- 14m at 5.89g/t Au from 2m, including 3m at 17.49g/t Au from 4m in GC00437
- 13m at 10.02g/t Au from 15m, including 4m at 24.82g/t Au from 17m in GC00438
- 21m at 8.1g/t Au from 46m, including 3m at 22.57g/t Au from 53m in GC00439
- 11m at 8.80g/t Au from 65m, including 4m at 20.2g/t Au from 66m in GC00440
- 13m at 15.84g/t Au from 25m, including 4m at 46.52g/t Au from 29m in GC00444
- 8m at 10.73g/t Au from 55m, including 1m at 39.6g/t Au from 57m in GC00451
- 6m at 18.77g/t Au from 22m, including 1m at 97.7g/t Au from 23m in GC00454

New Murchison Gold Limited **(ASX:NMG)** ("**NMG**" or the "**Company**") is pleased to announce additional high-grade gold intercepts from reverse circulation (RC) grade control drilling beneath the cap rock zone at the Crown Prince Gold Project ("**Crown Prince**") (M51/886) at the Company's flagship Garden Gully Gold Project near Meekatharra, Western Australia.

Crown Prince is a high-grade gold deposit within New Murchison Gold's Garden Gully Project it is located 22 kilometres north-west of Meekatharra in Western Australia via the Great Northern Highway and the Mt Clere Road (**Figure 1**).

Registered Address New Murchison Gold Limited ACN 085 782 994

Level 2, 5 Ord Street West Perth WA 6005 E: info@newmurchgold.com.au

T: +61 (08) 9389 6927

w: newmurchgold.com.au

<u>Projects</u> Garden Gully Gold Project

<u>Corporate</u> Shares on Issue Share Price Market Cap

9,831m \$0.017 *(At 12/06/2025)* \$167m

NMG

NMG has finalized the grade control drilling program at Crown Prince to infill resource estimation drilling ahead of mining. A total of **330** inclined grade control drill holes have been designed to test and better delineate grade below the lateritic cap rock above the Crown Prince ore body. Assay results included in the current announcement follow the previous assays from the 101 holes announced at the end of May, 2025. This includes additional 149 holes, most of them over the central and eastern part of SEB.

The drilling was designed over the Crown Prince pit design area to a maximum depth of 83m and drilled northerly over the Main Zone and north-westerly over the South-Eastern Zone (SEB). Their distribution over the current pit design is shown in **Figures 2-3** and all the hole details are included in **Table 1**.

Figures 3 and **4** display the intersected South-Eastern Zones (SEB ore body). Assay results greater than 1g/t Au are included in **Appendix 1**.

Pleasingly this grade control drilling supports the continuity of the mineralised structures at Crown Prince and replicates the grades returned previously from resource drilling.

Alex Passmore, NMG's CEO, commented: "We are pleased to report high gold grades from this round of grade control drilling which adds further confidence to the mining proposition at Crown Prince in addition to the recently announced high-grade caprock results. The mineralised zones and grades defined by our grade control programs so far are confirming our expectations on a high grade, high return open pit proposition."

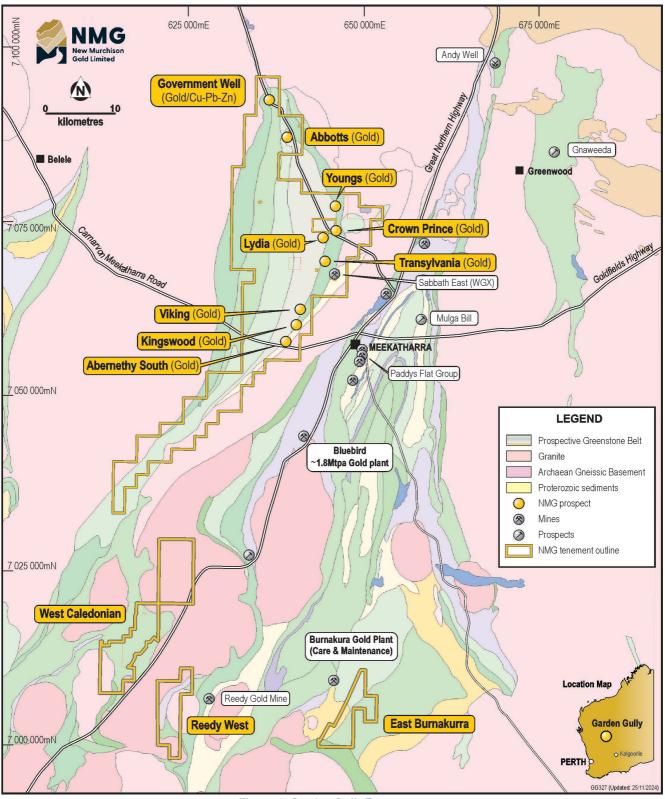


Figure 1: Garden Gully Tenements

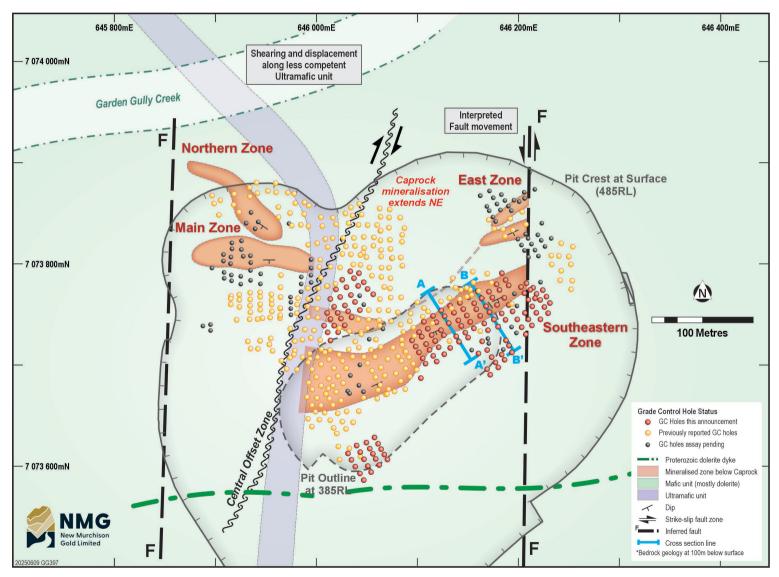


Figure 2: Grade control RC drill hole collars distribution over the Crown Prince Gold Prospect

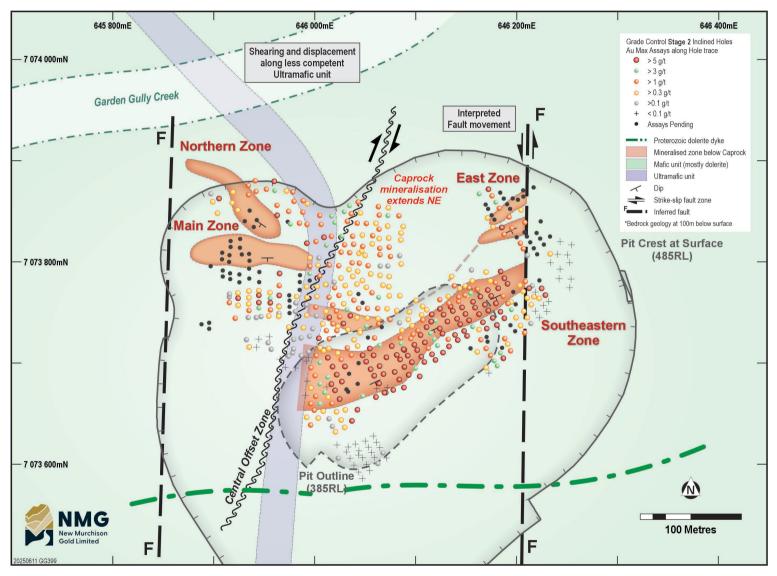


Figure 3: Grade control holes with maximum gold assays on traces over the Crown Prince Gold Prospect

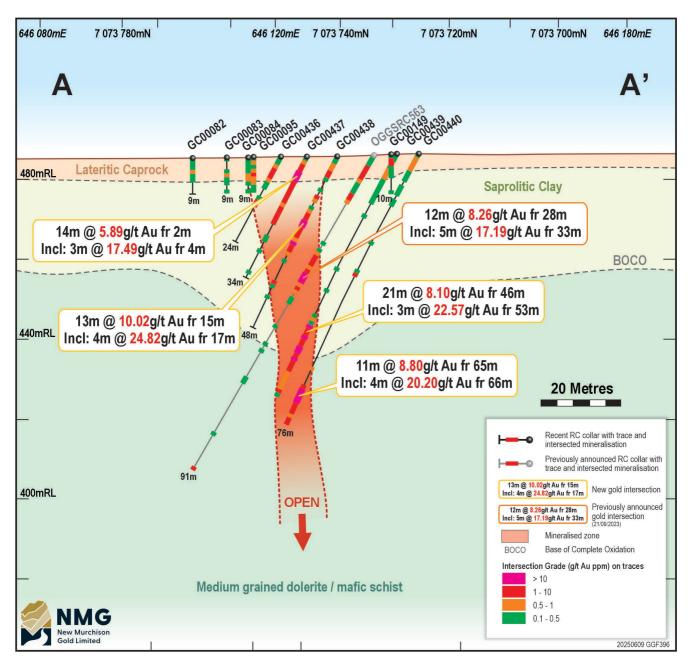


Figure 4: Cross section over the median part of the South-Eastern Zone (SEB)

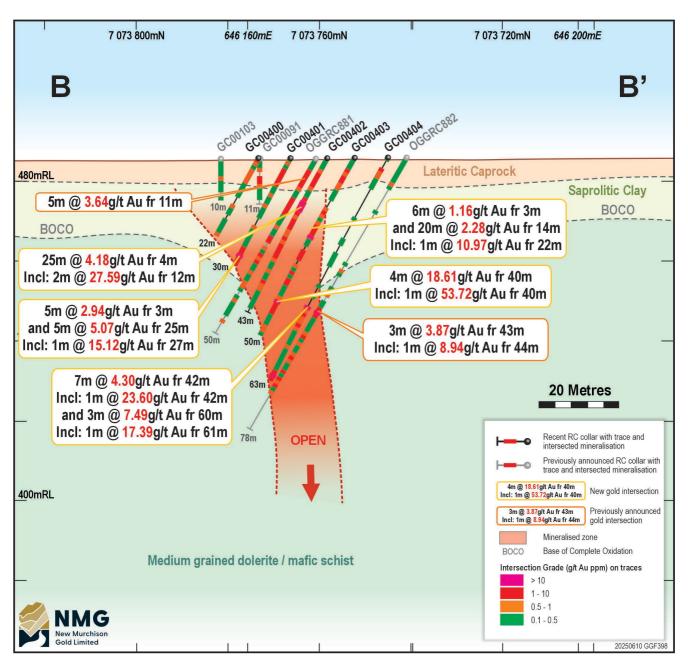


Figure 5: Cross section over the eastern part of the South-Eastern Zone (SEB)

Authorised for release to ASX by the Board of New Murchison Gold Limited

For further information, please contact:

Alex Passmore Chief Executive Officer E: info@newmurchgold.com newmurchgold.com.au Jane Morgan Investor and Media Relations E: jm@janemorganmanagement.com.au

ABOUT NEW MUCHISON GOLD

New Murchison Gold Ltd (ASX:NMG) is a mineral exploration and development company which holds a substantial package of tenements in the prolific Murchison goldfield near Meekatharra, Western Australia.

The Company is focused on the Garden Gully Gold Project which comprises a 677km2 tenure package covering the Abbotts Greenstone Belt and other key regional structures. The project has multiple gold deposits along the belt with the most advanced being the Crown Prince Deposit.

Gold mineralisation in the belt is controlled by major north trending structures and contact zones between felsic and mafic metamorphosed rocks.

NMG updated its Mineral Resource Estimate in November 2024, and reported a maiden Ore Reserve and Feasibility Study for the Crown Prince Deposit in February 2025. This places NMG on track towards becoming a gold producer.

Disclaimer

This release may include forward-looking and aspirational statements. These statements are based on NMG management's expectations and beliefs concerning future events as of the time of the release of this announcement. Forward-looking and aspirational statements are necessarily subject to risks, uncertainties and other factors, some of which are outside the control of NMG, which could cause actual results to differ materially from such statements. NMG makes no undertaking to subsequently update or revise the forward looking or aspirational statements made in this release to reflect events or circumstances after the date of this release, except as required by applicable laws and the ASX Listing.

Refer to www.newmurchgold.com.au for past ASX announcements.

Competent Person's Statement

Information in this Announcement that relates to exploration results is based upon work undertaken by Mr. Costica Vieru, a Competent Person who is a Member of the Australian Institute of Geoscientists (AIG). Mr Vieru has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr Vieru is an employee of NMG Limited and consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Information in this announcement that relates to Mineral Resources is based upon, and fairly represents, information and supporting documentation compiled by Mr Brian Fitzpatrick MAusIMM (CP). Mr Fitzpatrick is a Principal Geologist with Cube Consulting Pty Ltd and a Member of the Australasian Institute of Mining and Metallurgy with CP accreditation. The Competent Person has sufficient experience which is relevant to the style(s) of mineralisation and type(s) of deposit under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Fitzpatrick consents to the inclusion in this announcement of the matters based upon his input into the information in the form and context in which it appears.

The Competent Person for the Ore Reserve estimate is Mr Mark Chesher, a mining engineer with more than 40 years' experience in the mining industry. Mr. Chesher is a Fellow of the AusIMM, a Chartered Professional, a full-time employee of Chesher Mine Consulting Pty Ltd (CMC) and has sufficient open pit mining activity experience relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the JORC Code. Mr Chesher consents to the inclusion of information relating to the Ore Reserve in the form and context in which it appears.

In reporting the Ore Reserves referred to in this public release, CMC acted as an independent party, has no interest in the outcome of the Crown Prince Gold Project and has no business relationship with New Murchison Gold Ltd other than undertaking those individual technical consulting assignments as engaged, and being paid according to standard per diem rates with reimbursement for out-of-pocket expenses. Therefore, CMC and the Competent Person believe that there is no conflict of interest in undertaking the assignments which are the subject of the statements.

Past Exploration results and Mineral Resource Estimates reported in this announcement were previously prepared and disclosed by NMG in accordance with JORC Code. The Company confirms that it is not aware of any new information or data that materially affects the information included in these market announcements. The Company confirms that the form and content in which the Competent Person's findings are presented here have not been materially modified from the original market announcement, and all material assumptions and technical parameters underpinning Mineral Resource Estimates in the relevant market announcement continue to apply and have not materially changed. Refer to www.newmurch.com.au for details on past exploration results and Mineral Resource Estimates.

			N H C								-
Hole ID	Hole Depth	Easting	Northing	Grid ID	RL	Lease ID	Dip	Azimuth	Prospect	Method	Туре
GC00314	73	646104	7073687	MGA20_50	487.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00315	20	646058	7073628	MGA20_50	488.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00316	32	646061	7073622	MGA20_50	488.2	M51/886	-60	330	Crown Prince	DGPS	RC
GC00317	44	646065	7073616	MGA20_50	488.2	M51/886	-60	330	Crown Prince	DGPS	RC
GC00318	66	646071	7073606	MGA20_50	488.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00319	55	646068	7073611	MGA20_50	488.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00320	22	646050	7073623	MGA20_50	487.8	M51/886	-60	330	Crown Prince	DGPS	RC
GC00321	33	646053	7073617	MGA20_50	487.9	M51/886	-60	330	Crown Prince	DGPS	RC
GC00322	45	646056	7073612	MGA20_50	488.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00323	56	646059	7073607	MGA20_50	488.2	M51/886	-60	330	Crown Prince	DGPS	RC
GC00324	71	646062	7073601	MGA20_50	488.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00325	24	646040	7073620	MGA20_50	487.8	M51/886	-60	330	Crown Prince	DGPS	RC
GC00326	34	646044	7073613	MGA20_50	487.8	M51/886	-60	330	Crown Prince	DGPS	RC
GC00327	45	646047	7073606	MGA20_50	488.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00328	60	646051	7073600	MGA20_50	488.3	M51/886	-60	330	Crown Prince	DGPS	RC
GC00329	68	646054	7073594	MGA20_50	488.3	M51/886	-60	330	Crown Prince	DGPS	RC
GC00330	22	646032	7073612	MGA20_50	488.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00331	33	646035	7073606	MGA20_50	488.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00332	45	646039	7073599	MGA20_50	488.2	M51/886	-60	330	Crown Prince	DGPS	RC
GC00333	56	646043	7073592	MGA20_50	489.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00334	68	646047	7073586	MGA20_50	489.6	M51/886	-60	330	Crown Prince	DGPS	RC
GC00335	28	646042	7073791	MGA20_50	485.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00336	40	646047	7073782	MGA20_50	485.2	M51/886	-60	330	Crown Prince	DGPS	RC
GC00337	52	646051	7073775	MGA20_50	485.6	M51/886	-60	330	Crown Prince	DGPS	RC
GC00338	64	646057	7073770	MGA20_50	485.7	M51/886	-60	330	Crown Prince	DGPS	RC
GC00339	17	646034	7073792	MGA20_50	485.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00340	29	646038	7073786	MGA20_50	485.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00341	39	646042	7073778	MGA20_50	485.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00342	17	646026	7073784	MGA20_50	484.6	M51/886	-60	330	Crown Prince	DGPS	RC
GC00343	29	646030	7073777	MGA20_50	485.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00344	41	646035	7073769	MGA20_50	485.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00345	52	646039	7073762	MGA20_50	485.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00346	64	646043	7073754	MGA20_50	485.3	M51/886	-60	330	Crown Prince	DGPS	RC
GC00347	18	646020	7073775	MGA20_50	484.9	M51/886	-60	330	Crown Prince	DGPS	RC
GC00348	30	646024	7073767	MGA20 50	485.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00349	42	646029	7073759	 MGA20_50	485.2	M51/886	-60	330	Crown Prince	DGPS	RC
GC00350	54	646032	7073753	MGA20_50	485.2	M51/886	-60	330	Crown Prince	DGPS	RC
GC00351	65	646035	7073747	MGA20_50	485.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00352	19	646014	7073765	MGA20_50	485.2	M51/886	-60	330	Crown Prince	DGPS	RC
GC00353	31	646018	7073757	MGA20_50	485.5	M51/886	-60	330	Crown Prince	DGPS	RC
GC00354	43	646021	7073751	MGA20_50	485.6	M51/886	-60	330	Crown Prince	DGPS	RC
GC00355	55	646025	7073746	MGA20_50	485.7	M51/886	-60	330	Crown Prince	DGPS	RC
600333	55	040023	1013140	110AZ0_00	400.7	1.121/000	-00	550	STOWN FILLE	0010	nu

Table 1: Drill hole details

Hole ID	Hole Depth	Easting	Northing	Grid ID	RL	Lease ID	Dip	Azimuth	Prospect	Method	Туре
GC00356	66	646028	7073739	MGA20_50	485.5	M51/886	-60	330	Crown Prince	DGPS	RC
GC00357	30	646011	7073751	MGA20_50	485.3	M51/886	-60	330	Crown Prince	DGPS	RC
GC00358	43	646014	7073745	MGA20_50	485.6	M51/886	-60	330	Crown Prince	DGPS	RC
GC00359	52	646018	7073739	MGA20_50	485.7	M51/886	-60	330	Crown Prince	DGPS	RC
GC00360	66	646022	7073732	MGA20_50	485.8	M51/886	-60	330	Crown Prince	DGPS	RC
GC00361	42	646008	7073739	MGA20_50	486.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00362	55	646011	7073732	MGA20_50	485.9	M51/886	-60	330	Crown Prince	DGPS	RC
GC00363	67	646014	7073724	MGA20_50	486.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00364	28	646225	7073774	MGA20_50	485.3	M51/886	-60	330	Crown Prince	DGPS	RC
GC00365	40	646228	7073767	MGA20_50	485.5	M51/886	-60	330	Crown Prince	DGPS	RC
GC00366	51	646232	7073761	MGA20_50	485.5	M51/886	-60	330	Crown Prince	DGPS	RC
GC00367	17	646215	7073776	MGA20_50	485.3	M51/886	-60	330	Crown Prince	DGPS	RC
GC00368	28	646218	7073770	MGA20_50	485.3	M51/886	-60	330	Crown Prince	DGPS	RC
GC00369	39	646222	7073764	MGA20_50	485.3	M51/886	-60	330	Crown Prince	DGPS	RC
GC00370	51	646226	7073757	MGA20_50	485.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00371	62	646230	7073751	MGA20_50	485.7	M51/886	-60	330	Crown Prince	DGPS	RC
GC00372	40	646208	7073781	MGA20_50	485.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00373	50	646212	7073774	MGA20_50	485.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00374	62	646217	7073766	MGA20_50	485.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00375	46	646203	7073777	MGA20_50	485.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00376	54	646206	7073771	MGA20_50	485.2	M51/886	-60	330	Crown Prince	DGPS	RC
GC00377	63	646210	7073764	MGA20_50	485.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00378	40	646214	7073758	MGA20_50	485.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00379	52	646218	7073751	MGA20_50	485.5	M51/886	-60	330	Crown Prince	DGPS	RC
GC00380	64	646222	7073745	MGA20_50	485.6	M51/886	-60	330	Crown Prince	DGPS	RC
GC00381	22	646184	7073791	MGA20_50	484.8	M51/886	-60	330	Crown Prince	DGPS	RC
GC00382	31	646188	7073784	MGA20_50	484.7	M51/886	-60	330	Crown Prince	DGPS	RC
GC00383	40	646191	7073778	MGA20_50	484.7	M51/886	-60	330	Crown Prince	DGPS	RC
GC00384	41	646207	7073751	MGA20_50	485.2	M51/886	-60	330	Crown Prince	DGPS	RC
GC00385	52	646210	7073745	MGA20_50	485.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00386	65	646214	7073739	MGA20_50	485.5	M51/886	-60	330	Crown Prince	DGPS	RC
GC00387	29	646179	7073780	MGA20_50	484.9	M51/886	-60	330	Crown Prince	DGPS	RC
GC00388	36	646182	7073774	MGA20_50	485.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00389	48	646186	7073766	MGA20_50	485.2	M51/886	-60	330	Crown Prince	DGPS	RC
GC00390	55	646191	7073759	MGA20_50	485.3	M51/886	-60	330	Crown Prince	DGPS	RC
GC00391	66	646195	7073753	MGA20_50	485.3	M51/886	-60	330	Crown Prince	DGPS	RC
GC00392	40	646199	7073745	MGA20_50	485.6	M51/886	-60	330	Crown Prince	DGPS	RC
GC00393	52	646204	7073737	MGA20_50	485.5	M51/886	-60	330	Crown Prince	DGPS	RC
GC00394	64	646208	7073730	MGA20_50	485.7	M51/886	-60	330	Crown Prince	DGPS	RC
GC00395	28	646171	7073772	MGA20_50	485.3	M51/886	-60	330	Crown Prince	DGPS	RC
GC00396	35	646175	7073766	MGA20_50	485.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00397	44	646179	7073759	MGA20_50	485.5	M51/886	-60	330	Crown Prince	DGPS	RC
GC00398	55	646184	7073751	MGA20_50	485.6	M51/886	-60	330	Crown Prince	DGPS	RC

Hole ID	Hole Depth	Easting	Northing	Grid ID	RL	Lease ID	Dip	Azimuth	Prospect	Method	Туре
GC00399	67	646188	7073744	MGA20_50	485.7	M51/886	-60	330	Crown Prince	DGPS	RC
GC00400	22	646160	7073773	MGA20_50	485.6	M51/886	-60	330	Crown Prince	DGPS	RC
GC00401	30	646164	7073766	MGA20_50	485.7	M51/886	-60	330	Crown Prince	DGPS	RC
GC00402	43	646168	7073758	MGA20_50	485.6	M51/886	-60	330	Crown Prince	DGPS	RC
GC00403	50	646172	7073752	MGA20_50	485.6	M51/886	-60	330	Crown Prince	DGPS	RC
GC00404	63	646176	7073745	MGA20_50	485.9	M51/886	-60	330	Crown Prince	DGPS	RC
GC00405	75	646180	7073738	MGA20_50	485.9	M51/886	-60	330	Crown Prince	DGPS	RC
GC00406	44	646188	7073724	MGA20_50	486.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00407	53	646191	7073719	MGA20_50	486.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00408	65	646194	7073712	MGA20_50	486.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00409	25	646151	7073767	MGA20_50	485.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00410	35	646157	7073761	MGA20_50	485.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00411	43	646159	7073755	MGA20_50	485.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00412	56	646163	7073748	MGA20_50	485.5	M51/886	-60	330	Crown Prince	DGPS	RC
GC00413	67	646167	7073741	MGA20_50	485.7	M51/886	-60	330	Crown Prince	DGPS	RC
GC00414	74	646170	7073734	MGA20_50	485.6	M51/886	-60	330	Crown Prince	DGPS	RC
GC00415	54	646184	7073710	MGA20_50	486.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00416	67	646187	7073705	MGA20_50	485.9	M51/886	-60	330	Crown Prince	DGPS	RC
GC00417	23	646142	7073761	MGA20_50	485.7	M51/886	-60	330	Crown Prince	DGPS	RC
GC00418	33	646146	7073755	MGA20_50	485.7	M51/886	-60	330	Crown Prince	DGPS	RC
GC00419	43	646149	7073749	MGA20_50	485.8	M51/886	-60	330	Crown Prince	DGPS	RC
GC00420	50	646153	7073742	MGA20_50	486.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00421	60	646156	7073736	MGA20_50	486.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00422	24	646165	7073723	MGA20_50	486.2	M51/886	-60	330	Crown Prince	DGPS	RC
GC00423	33	646169	7073714	MGA20_50	486.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00424	43	646174	7073707	MGA20_50	486.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00425	56	646178	7073702	MGA20_50	485.9	M51/886	-60	330	Crown Prince	DGPS	RC
GC00426	68	646181	7073697	MGA20_50	485.9	M51/886	-60	330	Crown Prince	DGPS	RC
GC00427	24	646133	7073758	MGA20_50	485.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00428	33	646137	7073751	MGA20_50	485.2	M51/886	-60	330	Crown Prince	DGPS	RC
GC00429	43	646141	7073744	MGA20_50	485.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00430	53	646144	7073738	MGA20_50	485.5	M51/886	-60	330	Crown Prince	DGPS	RC
GC00431	66	646148	7073732	MGA20_50	485.6	M51/886	-60	330	Crown Prince	DGPS	RC
GC00432	75	646151	7073727	MGA20_50	485.7	M51/886	-60	330	Crown Prince	DGPS	RC
GC00433	31	646161	7073711	MGA20_50	486.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00434	53	646169	7073695	MGA20_50	486.3	M51/886	-60	330	Crown Prince	DGPS	RC
GC00435	67	646173	7073690	MGA20_50	486.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00436	24	646124	7073754	MGA20_50	485.5	M51/886	-60	330	Crown Prince	DGPS	RC
GC00437	34	646127	7073748	MGA20_50	485.5	M51/886	-60	330	Crown Prince	DGPS	RC
GC00438	48	646131	7073741	MGA20_50	485.7	M51/886	-60	330	Crown Prince	DGPS	RC
GC00439	68	646139	7073728	MGA20_50	486.2	M51/886	-60	330	Crown Prince	DGPS	RC
GC00440	76	646142	7073723	MGA20_50	486.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00441	22	646116	7073748	MGA20_50	486.0	M51/886	-60	330	Crown Prince	DGPS	RC

Hole ID	Hole Depth	Easting	Northing	Grid ID	RL	Lease ID	Dip	Azimuth	Prospect	Method	Туре
GC00442	32	646119	7073742	MGA20_50	486.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00443	44	646124	7073734	MGA20_50	486.3	M51/886	-60	330	Crown Prince	DGPS	RC
GC00444	54	646126	7073729	MGA20_50	486.3	M51/886	-60	330	Crown Prince	DGPS	RC
GC00445	75	646133	7073717	MGA20_50	486.5	M51/886	-60	330	Crown Prince	DGPS	RC
GC00446	20	646107	7073743	MGA20_50	485.9	M51/886	-60	330	Crown Prince	DGPS	RC
GC00447	31	646111	7073736	MGA20_50	485.9	M51/886	-60	330	Crown Prince	DGPS	RC
GC00448	41	646114	7073729	MGA20_50	486.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00449	51	646118	7073723	MGA20_50	486.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00450	61	646121	7073717	MGA20_50	486.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00451	70	646127	7073710	MGA20_50	485.9	M51/886	-60	330	Crown Prince	DGPS	RC
GC00452	18	646102	7073732	MGA20_50	485.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00453	29	646105	7073728	MGA20_50	485.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00454	39	646109	7073720	MGA20_50	485.6	M51/886	-60	330	Crown Prince	DGPS	RC
GC00455	51	646112	7073715	MGA20_50	485.7	M51/886	-60	330	Crown Prince	DGPS	RC
GC00456	59	646116	7073709	MGA20_50	485.8	M51/886	-60	330	Crown Prince	DGPS	RC
GC00457	68	646119	7073703	MGA20_50	485.9	M51/886	-60	330	Crown Prince	DGPS	RC
GC00458	18	646095	7073724	MGA20_50	485.5	M51/886	-60	330	Crown Prince	DGPS	RC
GC00459	28	646099	7073718	MGA20_50	485.6	M51/886	-60	330	Crown Prince	DGPS	RC
GC00460	36	646102	7073712	MGA20_50	485.7	M51/886	-60	330	Crown Prince	DGPS	RC
GC00461	46	646106	7073706	MGA20_50	485.9	M51/886	-60	330	Crown Prince	DGPS	RC
GC00462	58	646108	7073701	MGA20_50	486.5	M51/886	-60	330	Crown Prince	DGPS	RC

Appendix 1. Assay results (>1g/t Au) - Fire Assay 50g charge and analysed by ICP-OES at Intertek labs, Perth.

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
	56	57	1	0.408			
	57	58	1	1.276			
	58	59	1	49.834	63.512	56.673	
	59	60	1	6.459	6.184	6.3215	10m at 6.96g/t Au (56-66m)
	60	61	1	0.561			incl
GC00314	61	62	1	0.557			incl.
	62	63	1	0.4			1m at 56.67g/t Au (58-59m)
	63	64	1	0.34			
	64	65	1	2.406	2.349	2.3775	
	65	66	1	0.68			
	34	35	1	1.032			
	35	36	1	0.567			
GC00350	36	37	1	4.522	3.937	4.2295	5m at 1.85g/t Au (34-39m)
	37	38	1	3.055	2.751	2.903	
	38	39	1	0.524			
GC00351	46	47	1	0.904			P_{m} at E $O(g/t)/(4C) = A_{m}$
6000351	47	48	1	4.477	4.065	4.271	8m at 5.06g/t Au (46-54m)

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
	48	49	1	1.47			
	49	50	1	2.387			
	50	51	1	12.569	12.319	12.444	incl.
GC00351	51	52	1	3.506			1m at 12.44g/t Au (50-51m)
	52	53	1	9.384	9.464	9.424	
	53	54	1	6.244	5.916	6.08	
	27	28	1	1.476			
	28	29	1	1.046			
0000050	41	42	1	0.623			
GC00356	43	44	1	0.654			
	44	45	1	1.479			
	45	46	1	6.688	6.495	6.5915	2m at 4.04g/t Au (44-46m)
	35	36	1	1.027			3m at 6.17g/t Au (35-38m)
GC00358	36	37	1	1.798	1.784	1.791	incl.
	37	38	1	15.528	15.868	15.698	1m at 15.7g/t Au (37-38m)
0000004	26	27	1	387.652	389.943	388.7975	0m at 105 70×// Au (00 00m)
GC00364	27	28	1	2.856	2.703	2.7795	2m at 195.79g/t Au (26-28m)
GC00373	38	39	1	19.268	19.198	19.233	2m at 11.32g/t Au (38-40m) incl.
	39	40	1	3.459	3.351	3.405	1m at 19.23/t Au (38-39m)
	18	19	1	0.711			
0000001	19	20	1	1.298			4m at 8.28g/t Au (18-22m)
GC00381	20	21	1	30.871	30.54	30.7055	incl. 1m at 30.7g/t Au (20-21m)
	21	22	1	0.521	0.277	0.399	
	10	11	1	1.131			
	21	22	1	1.388			
000000	27	28	1	4.826	4.847	4.8365	
GC00382	28	29	1	0.04			4m ot 2.02 s/t Au (27.24m)
	29	30	1	8.466	8.549	8.5075	4m at 3.92g/t Au (27-31m)
	30	31	1	2.279			
	20	21	1	0.742			
	21	22	1	0.906			
	23	24	1	1.194			
GC00383	25	26	1	0.954			
6000303	26	27	1	0.843			
	30	31	1	1.695			
	31	32	1	1.599			
	32	33	1	5.584	5.811	5.6975	
GC00384	38	39	1	0.856			
GC00387	1	2	1	1.271			
000007	14	15	1	0.766			

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
	15	16	1	1.732			
	16	17	1	2.099			
	17	18	1	0.876			
	18	19	1	1.339			
	19	20	1	0.38			
	20	21	1	0.508			
000007	21	22	1	1.645			
GC00387	22	23	1	0.417			15m at 1.12g/t Au (14-29m)
	23	24	1	0.879			
	24	25	1	2.055			
	25	26	1	0.248			
	26	27	1	0.537			
	27	28	1	2.236			
	28	29	1	1.08			
	1	2	1	3.53			
	30	31	1	1.481			
	31	32	1	0.035			
GC00388	32	33	1	2.809	2.849	2.829	6m at 1.97g/t Au (30-36m)
	33	34	1	6.397	6.094	6.2455	611 at 1.97g/t Au (50-3611)
	34	35	1	0.113			
	35	36	1	1.114			
	2	3	1	0.87			
	3	4	1	0.896			
	4	5	1	0.813			7m at 1.04g/t Au (2-9m)
	5	6	1	1.14			
	6	7	1	1.913	1.771	1.842	and
	7	8	1	1.212			
	8	9	1	0.49			
	12	13	1	1.036			
GC00395	13	14	1	0.766			
	14	15	1	1.296			
	15	16	1	1.275			10m at 2.38g/t Au (12-22m)
	16	17	1	0.735			incl.
	17	18	1	0.618			
	18	19	1	1.756			1m at 14.44/t Au (21-22m)
	19	20	1	0.627			
	20	21	1	1.249			
	21	22	1	14.572	14.315	14.4435	
	25	26	1	1.403			
GC00396	5	6	1	0.936			3m at 1.21g/t Au (5-8m)
200000	6	7	1	1.585			

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
	7	8	1	1.098			
	15	16	1	4.49			
	23	24	1	1.165			
	27	28	1	2.709			
	28	29	1	1.42			
GC00396	29	30	1	2.129			
	30	31	1	2.378			0m -t 0 50-(t Au (07 05m)
	31	32	1	0.865			8m at 2.58g/t Au (27-35m)
	32	33	1	6.3			
	33	34	1	0.674			
	34	35	1	4.139		OPEN	
	6	7	1	2.279			3m at 1.43g/t Au (6-9m)
	7	8	1	1.443			
	8	9	1	0.578			and
	23	24	1	1.332			
	24	25	1	19.824	21.051	20.4375	
	25	26	1	0.961			
	26	27	1	3.446			
	27	28	1	2.787			
GC00397	28	29	1	3.607			15m at 3.67g/t Au (23-38m)
0000007	29	30	1	1.64			
	30	31	1	0.244			incl.
	31	32	1	0.363			1m at 20.44g/t Au (24-25m)
	32	33	1	0.123			1111 at 20.44g/t Au (24-2511)
	33	34	1	0.197			
	34	35	1	0.761			
	35	36	1	3.941			
	36	37	1	19.791	8.338	14.0645	
	37	38	1	1.128			
	25	26	1	2.187			
	34	35	1	1.055			
	35	36	1	1.438			
	36	37	1	1.637			
	37	38	1	0.852			10m at 2.71g/t Au (34-44m)
GC00398	38	39	1	0.472			incl.
	39	40	1	17.458			
	40	41	1	2.561			1m at 17.46g/t Au (39-40m)
	41	42	1	0.427			
	42	43	1	0.317			
	43	44	1	0.858			
GC00399	38	39	1	2.066			

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
	39	40	1	0.514			
	40	41	1	0.56			
	41	42	1	12.241			
	42	43	1	54.527	53.769	54.148	
	43	44	1	17.959	27.309	22.634	
	44	45	1	2.384			
	45	46	1	0.884			
	46	47	1	0.253			
	47	48	1	2.21			
	48	49	1	4.75			29m at 4.45g/t Au (38-67m)
	49	50	1	4.958			2511 at 4.45g/(Ad (50-6711)
	50	51	1	1.593			incl.
	51	52	1	2.152			2m of 20.67 s/t Au (41.44m)
CC00200	52	53	1	1.919			3m at 29.67g/t Au (41-44m)
GC00399	53	54	1	1.882			
	54	55	1	1.178			
	55	56	1	0.294			
	56	57	1	0.432			
	57	58	1	0.267			
	58	59	1	0.374			
	59	60	1	0.144			
	60	61	1	0.364			
	61	62	1	3.713			
	62	63	1	1.437			
	63	64	1	2.181			
	64	65	1	1.747	1.483	1.615	
	65	66	1	1.331			00571
	66	67	1	0.674			OPEN
	3	4	1	2.188			
	4	5	1	4.065			5m at 2.94g/t Au (3-8m)
	5	6	1	5.066			
	6	7	1	1.51			and
GC00401	7	8	1	1.849			
	25	26	1	1.929			5m at 5.07g/t Au (25-30m)
	26	27	1	5.736			
	27	28	1	15.227	15.022	15.1245	incl.
	28	29	1	1.245			1m at 15.12g/t Au (27-28m)
	29	30	1	1.325		OPEN	2
	4	5	1	1.392			25m at 4.18g/t Au (4-29m)
GC00402	5	6	1	2.266			ingl
	6	7	1	1.636			incl.

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection	
	7	8	1	1.04				
	8	9	1	0.654				
	9	10	1	0.321				
	10	11	1	0.186				
	11	12	1	1.133				
	12	13	1	16.19	15.885	16.0375		
	13	14	1	37.729	40.557	39.143		
	14	15	1	14.747				
	15	16	1	1.243				
	16	17	1	0.651				
	17	18	1	1.261				
GC00402	18	19	1	5.839			2m at 27.59g/t Au (12-14m)	
	19	20	1	1.677				
	20	21	1	0.672				
	21	22	1	0.722				
	22	23	1	4.47				
	23	24	1	0.808				
	24	25	1	2.592				
	25	26	1	1.111				
	26	27	1	2.873				
	27	28	1	1.243				
	28	29	1	0.804				
	34	35	1	2.094				
	3	4	1	1.099				
	4	5	1	0.668				
	5	6	1	1.698			6m at 1.16g/t Au	
	6	7	1	1.993			<mark>(3-9m)</mark> and	
	7	8	1	0.662			unu	
	8	9	1	0.866				
	14	15	1	0.681			20m at 2.28g/t Au	
	15	16	1	1.838			(14-36m)	
GC00403	16	17	1	0.642			incl.	
	17	18	1	0.288			1m at 10.97g/t Au	
	18	19	1	0.926			(22-23m)	
	19	20	1	2.572				
	20	21	1	1.548				
	21	22	1	9.815				
	22	23	1	10.972				
	23	24	1	0.383				
	24	25	1	0.16				
	26	27	1	2.648				

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
	27	28	1	2.6			
	28	29	1	3.422			
	30	31	1	0.913			
	31	32	1	0.159			
	32	33	1	2.507			
	33	34	1	0.12			
	34	35	1	1.011			
	35	36	1	2.298			and
	40	41	1	52.241	55.204	53.7225	4m at 18.61g/t Au
	41	42	1	3.627			(40-44m)
	42	43	1	8.496			incl.
	43	44	1	8.599			1m at 53.72g/t Au
							(40-41m)
	45	46	1	1.201			
GC00404	3	4	1	1.373			
	42	43	1	26.832	20.359	23.5955	7m at 4.3g/t Au
	43	44	1	0.92			(42-49m)
	44	45	1	2.056			incl.
	45	46	1	0.647			1m at 23.6g/t Au
	46	47	1	0.86			(42-43m)
	47	48	1	1.011			
	48	49	1	0.993			and
	60	61	1	1.828			3m at 7.49g/t Au
	61	62	1	17.39			(60-63m)
	62	63	1	3.252		OPEN	incl.
							1m at 17.39g/t Au
							(61-62m)
GC00405	53	54	1	2.852			13m at 2.81g/t Au
	54	55	1	0.755			(53-66m)
	55	56	1	8.647	8.798	8.7225	
	56	57	1	1.403			
	57	58	1	0.951			
	58	59	1	1.261			
	59	60	1	0.833			
	60	61	1	3.554			
	61	62	1	3.643			
	62	63	1	4.979			
	63	64	1	2.465			
	64	65	1	3.166			
	65	66	1	1.915			
GC00408	42	43	1	0.805			6m at 1.41g/t Au

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
	43	44	1	2.602			(42-48m)
	44	45	1	0.956			
	45	46	1	0.303			
	46	47	1	1.891			
	47	48	1	1.901			
GC00410	3	4	1	0.93			5m at 3.64g/t Au
	4	5	1	6.747			(3-8m)
	5	6	1	6.683			
	6	7	1	6.842			
	7	8	1	3.643			
	14	15	1	2.151			
	25	26	1	2.376			
	26	27	1	2.819			
GC00411	3	4	1	1.881			40m at 11.79g/t Au
	4	5	1	4.982			(3-43m)
	5	6	1	4.188			incl.
	6	7	1	4.243			5m at 67.45g/t Au
	7	8	1	26.001	29.017	27.509	(20-25m)
	8	9	1	43.182	47.161	45.1715	
	9	10	1	4.188	4.609	4.3985	
	10	11	1	2.116			
	11	12	1	0.773			
	12	13	1	4.299			
	13	14	1	0.237			
	14	15	1	0.312			
	15	16	1	0.522			
	16	17	1	0.761			
	17	18	1	1.857			
	18	19	1	1.31			
	19	20	1	1.051			
	20	21	1	6.203			
	21	22	1	241.242	222.03	231.636	
	22	23	1	69.224	74.524	71.874	
	23	24	1	8.459			
	24	25	1	19.115			
	25	26	1	1.457			
	26	27	1	2.049			
	27	28	1	1.715			
	28	29	1	3.703			
	29	30	1	1.045			
	30	31	1	0.214			

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
	31	32	1	0.394			
	32	33	1	5.119			
	33	34	1	1.739			
	34	35	1	0.725			
	35	36	1	1.383			
	36	37	1	1.003			
	37	38	1	0.521			
	38	39	1	0.109			
	39	40	1	0.177			
	40	41	1	0.788			
	41	42	1	3.465			
	42	43	1	3.176			OPEN
GC00415	33	34	1	1.678			
	50	51	1	2.21			
	51	52	1	3.227	1.501	2.364	
	53	54	1	2.311		OPEN	
GC00416	40	41	1	5.463			4m at 2.42g/t Au
	41	42	1	2.937			(40-44m)
	42	43	1	0.527			
	43	44	1	0.768			
	47	48	1	1.287			
	54	55	1	1.112			
	55	56	1	1.777			
GC00417	2	3	1	1.011			6m at 1.32g/t Au
	3	4	1	0.696			(2-8m)
	4	5	1	0.984			
	5	6	1	2.847			
	6	7	1	1.442			
	7	8	1	0.951			
GC00418	2	3	1	0.726			
	3	4	1	2.348			19m at 1.32g/t Au
	4	5	1	4.792			(2-21m)
	5	6	1	1.759			incl.
	6	7	1	2.181			1m at 12.75g/t Au
	7	8	1	2.085			(19-20m)
	8	9	1	0.172			
	9	10	1	4.636			
	10	11	1	5.066			
	11	12	1	4.097			
	12	13	1	4.911			
	13	14	1	1.341			

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
	14	15	1	1.204			
	15	16	1	2.591			
	16	17	1	0.424			
	17	18	1	0.863			
	18	19	1	0.15			
	19	20	1	12.211	13.288	12.7495	
	20	21	1	3.227			
	25	26	1	2.234			
GC00419	3	4	1	2.638			31m at 9.70g/t Au
	4	5	1	5.849			(3-34m)
	5	6	1	1.376			incl.
	6	7	1	1.2			5m at 46.47g/t Au
	7	8	1	12.882	13.537	13.2095	(24-29m)
	8	9	1	3.55			
	9	10	1	1.135			
	10	11	1	0.442			
	11	12	1	0.637			
	12	13	1	1.476			
	13	14	1	0.669			
	14	15	1	1.328			
	15	16	1	1.32	0.693	1.0065	
	16	17	1	0.306			
	17	18	1	0.233			
	18	19	1	1.651			
	19	20	1	2.166			
	20	21	1	0.309			
	21	22	1	0.139			
	22	23	1	5.861			
	23	24	1	3.522			
	24	25	1	6.272			
	25	26	1	53.427	59.083	56.255	
	26	27	1	138.3	158.916	148.608	
	27	28	1	10.676	11.717	11.1965	
	28	29	1	10.03			
	29	30	1	5.891			
	30	31	1	6.593			
	31	32	1	3.349			
	32	33	1	2.669			
	33	34	1	1.206			
	37	38	1	1.243			
	42	43	1	13.671	13.023	13.347	

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
GC00420	3	4	1	0.941			5m at 1.71g/t Au
	4	5	1	3.955	3.729	3.842	(3-8m)
	5	6	1	1.936			
	6	7	1	1.024			
	7	8	1	0.825			and
	23	24	1	2.129			
	42	43	1	1.237			8m at 2.91 g/t Au
	43	44	1	13.78	14.385		(42-50m)
	44	45	1	1.086			
	45	46	1	0.92			
	46	47	1	2.448			
	47	48	1	1.005			
	48	49	1	1.351			
	49	50	1	1.427	OPEN		
GC00421	4	5	1	1.826			5m at 1.41g/t Au
	5	6	1	1.665			(4-9m)
	6	7	1	1.817			
	7	8	1	0.927			
	8	9	1	0.801			
	16	17	1	1.77	1.422	1.596	
	26	27	1	1.656			and
	53	54	1	4.838	6.835	5.8365	4m at 2.83g/t Au
	54	55	1	1.431			(53-57m)
	55	56	1	3.474	2.549	3.0115	
	56	57	1	1.04			
GC00422	19	20	1	1.181			
GC00423	29	30	1	2.735			2m at 2.74g/t Au
	30	31	1	2.745			(29-31m)
GC00424	38	39	1	1.101			4m at 1.14g/t Au
	39	40	1	0.171			(38-42m)
	40	41	1	1.936	5.933	3.9345	
	41	42	1	1.104			
GC00425	0	1	1	1.29			
	41	42	1	4.214			8m at 2.11g/t Au
	42	43	1	0.763			(41-49m)
	43	44	1	0.187			
	44	45	1	4.745	3.781	4.263	
	45	46	1	3.11			
	46	47	1	2.486			
	47	48	1	0.787			
	48	49	1	1.073			

53 55 56 57	54 56 57	1 1	1.704			
56		1				
	57	-	1.265			4m at 1.04g/t Au
57	• • •	1	0.461			(55-59m)
	58	1	1.499			
58	59	1	0.948			and
66	67	1	2.46			2m at 3.25g/t Au
67	68	1	4.038		OPEN	(66-68m)
3	4	1	1.604			5m at 1.89g/t Au
4	5	1	1.984			(3-8m)
5	6	1	2.49			
6	7	1	2.557			
7	8	1	0.817			
4	5	1	1.501			16m at 12.86g/t Au
5	6	1	3.632			(4-20m)
6	7	1	0.899			incl.
7	8	1	5.78			3m at 40g/t Au
8	9	1	11.967			(9-12m)
9	10	1	13.631	12.613	13.122	
10	11	1	17.941	14.464		
11	12	1	91.3	90.073		
	13					
				19.908	20.2535	
						3m at 1.54g/t Au
				1.699	1.717	(3-6m)
						. ,
						and
						13m at 12.58g/t Au
				12.654	11.8105	(23-36m)
					+	incl.
						2m at 58.33g/t Au
						(28-30m)
				106.65	102.0375	()
	3 4 5 6 7 4 5 6 7 8 9	3 4 4 5 5 6 6 7 7 8 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 3 4 4 5 5 6 15 16 16 17 17 18 18 19 19 20 3 4 4 5 5 6 15 16 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31	3 4 1 4 5 1 5 6 1 6 7 1 7 8 1 4 5 1 5 6 1 6 7 1 7 8 1 6 7 1 7 8 1 6 7 1 7 8 1 8 9 1 9 10 1 10 11 1 11 12 1 12 13 1 13 14 1 14 15 1 15 16 1 18 19 1 19 20 1 3 4 1 4 5 1 5 6 1 15 16	3 4 1 1.604 4 5 1 1.984 5 6 1 2.49 6 7 1 2.557 7 8 1 0.817 4 5 1 1.501 5 6 1 3.632 6 7 1 0.899 7 8 1 5.78 8 9 1 11.967 9 10 1 3.631 10 11 1 7.941 11 12 1 91.3 12 13 1 8.311 13 14 1 7.793 14 15 1 11.516 15 16 1 1.475 3 4 1 1.982 18 19 1 1.475 3 4 1 1.64 4 5	3 4 1 1.604	3 4 1 1.604

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
	32	33	1	2.092			
	33	34	1	2.188			
	34	35	1	4.225			
	35	36	1	3.373			
GC00430	4	5	1	1.5			
	5	6	1	1.252			
	14	15	1	2.163			
	42	43	1	82.451	97.201	89.826	7m at 14.56g/t Au
	43	44	1	2.236			(23-36m)
	44	45	1	1.532			incl.
	45	46	1	4.412			1m at 89.83g/t Au
	46	47	1	1.043			(42-43m)
	47	48	1	1.127			
	48	49	1	1.777			
GC00431	3	4	1	1.345			
	30	31	1	2.115			
	55	56	1	9.596			8m at 2.36g/t Au
	56	57	1	0.085			(55-63m)
	57	58	1	1.417			
	58	59	1	1.56			
	59	60	1	0.499			
	60	61	1	3.343			
	61	62	1	1.636			
	62	63	1	0.761			
GC00432	16	17	1	2.187			
	62	63	1	3.1	2.219	2.6595	8m at 1.94g/t Au
	63	64	1	8.33	5.785	7.0575	(62-70m)
	64	65	1	2.666	1.661	2.1635	
	65	66	1	0.696			
	66	67	1	0.533			
	67	68	1	0.2			
	68	69	1	0.918			
	69	70	1	1.326			
GC00436	3	4	1	1.118			4m at 1.17g/t Au
	4	5	1	1.358			(3-7m)
	5	6	1	1.568			
	6	7	1	0.653			and
	12	13	1	1.147			3m at 2.51g/t Au
	13	14	1	5.603			(12-15m)
	14	15	1	0.788			
GC00437	2	3	1	1.302			14m at 5.89g/t Au

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
	3	4	1	1.403			(2-16m)
	4	5	1	10.158			incl.
	5	6	1	27.785	25.469	26.627	3m at 17.49g/t Au
	6	7	1	15.674			(4-7m)
	7	8	1	7.003			
	8	9	1	3.806			
	9	10	1	1.177			
	10	11	1	2.622			
	11	12	1	1.053			
	12	13	1	1.274			
	13	14	1	0.895			
	14	15	1	2.106			
	15	16	1	6.188	8.634	7.411	
GC00438	3	4	1	0.781			3m at 1.32g/t Au
	4	5	1	1.594			(3-6m)
	5	6	1	1.577			
	11	12	1	1.046			and
	15	16	1	0.675			13m at 10.02g/t Au
	16	17	1	5.172			(15-28m)
	17	18	1	6.971			incl.
	18	19	1	82.621	63.634	73.1275	4m at 24.82g/t Au
	19	20	1	13.615			(17-21m)
	20	21	1	7.583			
	21	22	1	3.056			
	22	23	1	3.129			
	23	24	1	0.867			
	24	25	1	12.305			
	25	26	1	1.233			
	26	27	1	3.788			
	27	28	1	0.752			
	35	36	1	1.003			
GC00439	3	4	1	2.028			
	46	47	1	0.58			21m at 8.1g/t Au
	47	48	1	0.448			(46-67m)
	48	49	1	32.036	40.874	36.455	incl.
	49	50	1	7.594			3m at 22.57g/t Au
	50	51	1	7.136			(53-56m)
	51	52	1	13.82			
	52	53	1	7.519			
	53	54	1	9.668			
	54	55	1	38.579	37.251	37.915	

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
	55	56	1	20.694	19.538	20.116	
	56	57	1	3.805			
	57	58	1	12.138			
	58	59	1	2.277			
	59	60	1	3.875			
	60	61	1	1.853			
	61	62	1	0.76			
	62	63	1	0.586			
	63	64	1	0.822			
	64	65	1	0.584			
	65	66	1	0.548			
	66	67	1	1.578			
GC00440	34	35	1	2.628			
	65	66	1	5.337			11m at 8.80g/t Au
	66	67	1	22.775	24.2	23.4875	(65-76m)
	67	68	1	11.243	10.321	10.782	incl.
	68	69	1	33.688	31.73	32.709	4m at 20.2g/t Au
	69	70	1	13.819			(66-70m)
	70	71	1	2.705			
	71	72	1	2.051			
	72	73	1	1.432			
	73	74	1	0.615			
	74	75	1	2.011			
	75	76	1	1.859			
GC00441	14	15	1	0.88			7m at 1.83g/t Au
	15	16	1	0.985			(14-21m)
	16	17	1	1.719			
	17	18	1	1.159			
	18	19	1	5.607			
	19	20	1	1.52			
	20	21	1	0.933			
GC00442	2	3	1	1.421			8m at 2.03g/t Au
	2	3	1	1.275			(2-10m)
	3	4	1	1.083			
	4	5	1	2.59			
	5	6	1	3.464			
	6	7	1	2.22			
	7	8	1	4.469			
	8	9	1	1.082			
	9	10	1	0.703			
	15	16	1	1.71			

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
GC00443	3	4	1	2.159			
	4	5	1	1.895			
	12	13	1	8.136			11m at 6.13g/t Au
	13	14	1	9.786			(12-23m)
	14	15	1	3.569			incl.
	15	16	1	6.767			1m at 13.06g/t Au
	16	17	1	13.059			(16-17m)
	17	18	1	5.253	4.5140	4.8835	
	18	19	1	2.414			
	19	20	1	9.03			
	20	21	1	0.384			
	21	22	1	8.01			
	22	23	1	1.395			
	28	29	1	1.439			
	29	30	1	3.018			
GC00444	2	3	1	2.194			
	3	4	1	1.641			
	25	26	1	1.205			13m at 15.84g/t Au
	26	27	1	2.464			(25-38m)
	27	28	1	3.154			incl.
	28	29	1	2.208			4m at 46.52g/t Au
	29	30	1	118.863	120.711		(29-33m)
	30	31	1	24.118	21.125		
	31	32	1	14.456	14.519		
	32	33	1	29.362	29.726		
	33	34	1	0.343			
	34	35	1	0.455			
	35	36	1	6.671			
	36	37	1	0.103			
	37	38	1	3.294			
GC00445	0	1	1	2.698			
	56	57	1	16.347	13.524	14.9355	9m at 7.66g/t Au
	57	58	1	10.384			(56-65m)
	58	59	1	10.493			incl.
	59	60	1	8.687			3m at 11.94g/t Au
	60	61	1	11.39	12.98	12.185	(56-59m)
	61	62	1	0.886			
	62	63	1	6.866			
	63	64	1	2.286			
	64	65	1	2.254			
	68	69	1	1.003			

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
GC00446	2	3	1	1.402			
	4	5	1	2.299			
	14	15	1	1.639			
GC00447	2	3	1	1.291			7m at 7.42g/t Au
	3	4	1	1.473			(2-9m)
	4	5	1	3.368			incl.
	5	6	1	35.029	34.966	34.9975	1m at 35g/t Au
	6	7	1	4.001			(5-6m)
	7	8	1	5.568			
	8	9	1	1.229			
	12	13	1	1.797	2.345	2.071	
	13	14	1	1.591			
GC00448	11	12	1	1.418			6m at 1.68g/t Au
	12	13	1	4.546			(11-17m)
	13	14	1	1.666			
	14	15	1	0.738			
	15	16	1	0.133			
	16	17	1	1.571			
GC00449	2	3	1	1.163			3m at 1.28g/t Au
	3	4	1	1.582			(2-5m)
	4	5	1	1.093			
	9	10	1	1.391			
	21	22	1	1.73			
	26	27	1	1.064			
	30	31	1	0.617			4m at 2.85g/t Au
	31	32	1	4.51	4.611	4.5605	(30-34m)
	32	33	1	3.575	3.584	3.5795	
	33	34	1	2.631			
GC00450	12	13	1	3.478	3.695	3.5865	
	42	43	1	2.249			
	44	45	1	1.139			
GC00451	5	6	1	0.185			
	55	56	1	0.933			8m at 10.73g/t Au
	56	57	1	22.416	21.259	21.8375	(55-63m)
	57	58	1	40.746	38.466	39.606	incl.
	58	59	1	6.784	8.342	7.563	1m at 39.6g/t Au
	59	60	1	12.185	9.478	10.8315	(57-58m)
	60	61	1	2.651			
	61	62	1	1.636			
	62	63	1	0.8			
GC00452	1	2	1	1.174			

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
GC00453	0	1	1	0.506			16m at 2.55g/t Au
	1	2	1	1.249			(0-16m)
	2	3	1	4.962			
	3	4	1	8.85			
	4	5	1	5.116			
	5	6	1	3.166			
	6	7	1	0.973			
	7	8	1	0.866			
	8	9	1	3.067			
	9	10	1	0.744			
	10	11	1	4.934			
	11	12	1	0.481			
	12	13	1	0.987			
	13	14	1	0.325			
	14	15	1	2.453			
	15	16	1	2.087			
GC00454	3	4	1	1.386			
	16	17	1	1.151			
	22	23	1	7.618			6m at 18.77g/t Au
	23	24	1	71.271	124.134	97.7025	(22-28m)
	24	25	1	4.651			incl.
	25	26	1	1.405			1m at 97.7g/t Au
	26	27	1	0.549			(23-24m)
	27	28	1	0.693			
GC00455	33	34	1	1.124			
	35	36	1	1.103			
GC00456	42	43	1	3.02			4m at 3.49g/t Au
	43	44	1	5.5	2.722	4.111	(42-46m)
	44	45	1	4.533	4.016	4.27	
	45	46	1	2.55			
	46	47	1	0.298			
	47	48	1	0.419			
	48	49	1	0.235			
GC00457	2	3	1	1.812	0.702	1.257	
	54	55	1	5.606	5.102	5.354	6m at 4.67g/t Au
	55	56	1	0.116			(54-60m)
	56	57	1	14.331	17.298	15.8145	incl.
	57	58	1	3.175			1m at 15.81g/t Au
	58	59	1	2.624			(56-57m)
	59	60	1	0.931			
GC00458	4	5	1	1.097			

Hole ID	From	То	Interval	Au ppm	Au2 ppm	Average	Intersection
	14	15	1	2.026			
GC00459	0	1	1	0.275			17m at 2.12g/t Au
	1	2	1	1.191			(0-17m)
	2	3	1	0.956			
	3	4	1	0.899			
	4	5	1	3.151			
	5	6	1	0.979			
	6	7	1	3.629			
	7	8	1	3.861			
	8	9	1	2.498			
	9	10	1	4.119			
	10	11	1	0.216			
	11	12	1	0.46			
	12	13	1	1.005			
	13	14	1	0.512			
	14	15	1	0.902			
	15	16	1	1.495			
	16	17	1	9.657	10.245	9.951	
GC00460	14	15	1	1.028			
	33	34	1	1.423			
GC00461	34	35	1	1.267			
	36	37	1	0.58			
	37	38	1	7.928	8.87	8.399	
	38	39	1	3.007			
GC00462	33	34	1	1.201			
	46	47	1	30.355	37.147	33.751	
	47	48	1	5.599	5.181	5.39	
	48	49	1	0.746			

Appendix 2: JORC Table 1 Checklist of Assessment and Reporting Criteria

JORC Table 1 Checklist of Assessment and Reporting Criteria

Section 1. Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 New Murchison Gold Limited (NMG) RC sample was collected and split in even metre intervals where sample was dry. Wet sample was speared or on occasion sampled by scooping. RC drill chips from each metre were examined visually and logged by the geologist. Evidence of alteration or the presence of mineralisation was noted on the drill logs. Intervals selected by the site geologist were tested by hand-held XRF and all those with elevated arsenic contents have been bagged and numbered for laboratory analysis. Duplicate samples are submitted at a rate of approximately 10% of total samples taken (ie one duplicate submitted for every 20 samples). The Vanta XRF Analyser is calibrated before each session and is serviced according to the manufacturer's (Olympus) recommended schedule. The presence or absence of mineralisation is initially determined visually by the site geologist, based on experience and expertise in evaluating the styles of mineralisation being sought.
Drilling techniques	• Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 <u>NMG</u> Drilling technique was Reverse Circulation (RC) with a hammer diameter of 5.5" (140 mm) using a KWL700/T685 drill rig and a B7/1000 Atlas Copco booster unit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 NMG Volume of material collected from each metre interval of drilling completed is monitored visually by the site geologist and field assistants. Dry sample recoveries were estimated at ~95%. Samples were collected and dry sample split using a riffle splitter. Based on the relatively small number of assays received to date, there is no evidence of either a recovery/grade relationship or of sample bias.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral 	 <u>NMG</u> RC chips are logged visually by qualified geologists. Lithology, and where possible

Criteria	JORC Code Explanation	Commentary
Sub- sampling techniques	 Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, 	 structures, textures, colours, alteration types and minerals estimates are recorded. Representative chips are retained in chip trays for each metre interval drilled. The entire length of each drill hole is logged and evaluated. <u>NMG</u> RC samples were collected and dry sample split using a riffle splitter. Material too moist for
and sample preparation	 rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 effective riffle splitting was sampled using a 4cm diameter spear. Sample submitted to the laboratory comprised three spear samples in different directions into the material for each meter interval. The samples were sent to Intertek labs in Perth for Au analysis by FA50 (Fire Assay on 50g charge). Sample preparation techniques are well-established standard industry best practice techniques. Drill chips are dried and crushed and pulverised (whole sample) to 95% of the sample passing -75µm grind size. Field QC procedures include using certified reference materials as assay standards at every 20m. One duplicate sample is submitted for every 20 samples and a blank at 50 samples, approximately. Evaluation of the standards, blanks and duplicate samples assays shows them to be within acceptable limits of variability. Sample representativity and possible relationship between grain size and grade was confirmed following re-sampling and re- assaying of high-grade interval. Sample size follows industry standard best practice and is considered appropriate for these style(s) of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable 	 NMG The assay techniques used for these assays are international standard and can be considered total. Samples were dried, crushed and pulverised to 95% passing -75µm using 50g Fire Assay and analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry. The handheld XRF equipment used is an Olympus Vanta XRF Analyser and Ora Gold Ltd. follows the manufacturer's recommended calibration protocols and usage practices but does not consider XRF readings sufficiently robust for public reporting. Ora Gold Ltd. uses

Criteria	JORC Code Explanation	Commentary
	levels of accuracy (ie lack of bias) and precision have been established.	 the handheld XRF data as an indicator to support the selection of intervals for submission to laboratories for formal assay. The laboratory that carried out the assays is an AQIS registered site and is ISO certified. It conducts its own internal QA/QC processes in addition to the QA/QC implemented by Ora Gold Ltd, as its sample submission procedures. Evaluation of the relevant data indicates satisfactory performance of the field sampling protocols in place and of the assay laboratory. The laboratory uses check samples and assay standards to complement the duplicate sampling procedures practiced by Ora Gold Ltd.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 NMG All significant intersections are calculated and verified on screen and are reviewed prior to reporting. The program included no twin holes. Data is collected and recorded initially on handwritten logs with summary data subsequently transcribed in the field to electronic files that are then copied to head office. No adjustment to assay data has been needed.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 <u>NMG</u> Drill hole locations have been established using a differential GPS with an accuracy of ±0.3m. Regular surveys were undertaken every 18m using a Gyro survey tool. The map projection applicable to the area is Australian Geodetic GDA2020, Zone 50.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 <u>NMG</u> Drill hole collars were located and oriented to deliver maximum relevant geological information to allow the geological model to be tested and assessed effectively. This is still early-stage exploration and is not sufficiently advanced for this to be applicable. Various composite sampling was applied depending on the geology of the hole. All anomalous sample intervals over 1.0.g/t Au are reported in Appendix 1. Zones where geological logging and/or XRF analyses indicated the presence of mineralised intervals were sampled on one metre intervals.
Orientation of data in relation to geological structure	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 <u>NMG</u> This programme is part of the grade control drilling to test the ore bodies of the Crown Prince gold project. All drill holes have been inclined at 60 degrees to a vertical depth of

Criteria	JORC Code Explanation	Commentary	
	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 50m. Sufficient data has been collected and compiled to be able to establish true widths, orientation of lithologies, relationships between lithologies, or the nature of any structural controls as no diamond drilling was undertaken. The main aim of this programme is to generate geological data to develop an understanding of these parameters. Data collected so far presents no suggestion that any sampling bias has been introduced. 	
Sample security	The measures taken to ensure sample security.	 NMG When all relevant intervals have been sampled, the samples are collected and transported by company personnel to secure locked storage in Perth before delivery by company personnel to the laboratory for assay. 	
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 <u>NMG</u> Internal reviews are carried out regularly as a matter of policy. All assay results are considered representative as both the duplicates, standards and blanks from this program have returned satisfactory replicated results. 	

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 NMG The Garden Gully project comprises one granted prospecting licence, P51/3009, six granted exploration licences E51/1661, E51/1737, E51/1609, E51/1708, E51/1790, E51/1791 and four mining leases M51/390, M51/567, M51/886 and M51/889, totaling approximately 217 square kilometres. Ora Gold Limited holds a 100% interest in each lease. The project is partially located in the Yoothapina pastoral lease, 15km north of Meekatharra, in the Murchison of WA. The licences are in good standing and there are no known impediments to obtaining a licence to operate.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 NMG First workings in the Garden Gully area: 1895 - 1901 with the Crown gold mine. 264 tonnes gold at 1.99 oz/t average (~ 56 g/t Au). Maximum depth~24m. Kyarra Gold Mine (1909 – 1917): 18,790 oz gold from quartz veins in "strongly sheared, decomposed, sericite rich country rock".

Criteria	10	RC Code Explanation	Co	mmentary
Gintena	50		•	Seltrust explored for copper and zinc from 1977,
			•	
				reporting stratigraphically controlled
				"gossanous" rock from chip sampling and
				drilling.
			•	In 1988, Dominion gold exploration at Crown
				defined a >100ppb gold soil anomaly. RAB to
				32m: "no significant mineralisation": drilling
				was "sub-parallel to the dip of mineralisation";
				best intersection: 15m at 2.38g/t from 5m.
			•	1989 at Lydia: Julia Mines RAB drill holes 30 m
				intervals 100m apart across the shear zone
				targeting the arsenic anomaly. 12m at 5.16 g/t
				Au from 18m; 6m at 3.04 g/t Au from 18m. No
				samples deeper than 24m due to poor recovery,
				so open at depth in the prospective shear zone.
	1			Julia also drilled shallow air core at Crown mine,
				returned best intersection of 2m at 0.4g/t Au
				from 34m in quartz veins in felsic volcanics.
			•	In 1989, Matlock Mining explored North Granite
				Well and Nineteenth Hole; best result 8m at 2.1
				g/t Au. Supergene zone: grades to 3.17 g/t Au
				and still open.
			•	1993 – 2003: St Barbara Mines: RAB, RC on
				E51/1661. Gold associated with black shale
				(best: 1m at 0.64 g/t).
			•	In 1996, Australian Gold Resources RAB and RC
				drilling found Cu, Zn and Ag anomalies (up to
				1800ppm Cu, 1650ppm Zn and 3.8 g/t Ag)
				associated with saprolitic clay and black shales
				at 60-80m deep on current E51/1661.
			•	2001-2002, Gamen (Bellissimo & Red Bluff
				Noms) trenched, sampled, mapped and RC
				drilled at Crown. Results (up to 0.19 g/t Au)
	1			suggest the presence of gold mineralisation
				further to the east of Crown Gold Mine.
	1		٠	2008 – 2009: Accent defined targets N and S of
				Nineteenth Hole from satellite imagery and
	<u> </u>		<u> </u>	airborne magnetics.
Geology	•	Deposit type, geological setting and style of	NM	
		mineralisation.	٠	The Garden Gully project comprises now most
	1			of the Abbotts Greenstone Belt; comprised of
				Archaean rocks of the Greensleeves Formation
	1			(Formerly Gabanintha); a bimodal succession of
				komatiitic volcanic mafics and ultramafics
	1			overlain by felsic volcanics and volcaniclastic
				sediments, black shales and siltstones and
	1			interlayered with mafic to ultramafic sills.
				Regional synclinal succession trending N-NE
	1			with a northern fold closure postdating E-W
				synform, further transected by NE trending
	1			shear zones, linearity with the NE trend of the

Criteria	JORC Code Explanation	Commentary
		 Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within the Kyarra Schist Series, schistose derivatives of dolerites, gabbros and tuffs, typically occurring close to axial planes of folds and within anastomosing ductile shear zones.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 <u>NMG</u> The principal geologic conclusion of the work reported from this program at the Crown Prince prospect confirms the presence of high-grade gold mineralization in what are interpreted to be steep plunging shoots. Extensive primary gold mineralization was also intercepted below the base of oxidation; primary mineralization associated with sulphides, mainly pyrite and arsenopyrite, which offers a very positive outlook for deep potential for the prospect which is to be further tested in follow-up drilling.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 NMG All significant drill intercepts are displayed in Figures 2-5. Full assay data over 1g/t Au are included in Appendix 1. No assay grades have been cut. Arithmetic weighted averages are used. For example, 35m to 38m in GC00358 is reported as 3m at 6.17g/t Au. This comprised 3 samples, each of 1m, calculated as follows: [(1*1.027)+(1*1.721)+(1*15.698)] = [18.516/3] = 6.17g/t Au.

Criteria	JORC Code Explanation	Commentary
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known'). 	 NMG Sufficient geological data have been collected to allow the geometry of mineralization to be interpreted. Reported intercepts are downhole intercepts and are noted as such.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views.	 NMG Relevant location maps and figures are included in the body of this announcement (Figures 1-3). Two representative cross sections are shown in Figures 4-5.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 NMG This announcement includes the results of further 149 RC holes drilled at the Crown Prince Prospect. The reporting is comprehensive and thus by definition balanced. It represents the third batch of results of a larger program to investigate the potential for economic mineralization at Garden Gully.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including, but not limited to: geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density; groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 <u>NMG</u> This announcement includes qualitative data relating to interpretations and potential significance of geological observations made during the program. As additional relevant information becomes available it will be reported and announced to provide context to current and planned programs.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 <u>NMG</u> Deeper and inclined grade control holes are going to follow below the depth of 50m vertical depth with the large RC rig.

