

MINERAL RESOURCE ESTIMATE 180MT FELDSPAR & ARFVEDSONITE ADDITIONAL TO 45MT MRE @ 0.38% TREO INCLUDING 27% HREO

European Lithium Ltd (ASX: EUR, FRA:PF8, OTC: EULIF) (European Lithium or the Company) is pleased to announce an Addendum to the Mineral Resource Estimate (MRE) for the Tanbreez Project in Greenland, (see ASX Announcement 13 March 2025) (see Tables 1 and 2).

The Tanbreez Fjord and the Tanbreez Hill rare-earth mineral sites are contained within a mineralised Kakortokite host unit covering an area of approximately 5km x 2.5km and 270 meters thick, estimated at 4.7 billion tonnes of Kakortokite. The host does not indicate any certainty of hosting economic mineralisation.

The MRE drilling tested the entire drill intersection from surface to the end of each respective drill hole averaging the REE and metal oxides within the kakortokite that includes eudialyte, feldspar and arfvedsonite

The Mineral Resource Estimate prepared by Al Maynard & Associates (2016) for Rimbal Pty Ltd reports eudialyte as the highest grade of contained REE with Feldspar and arfvedsonite considered to be lesser REE content-based assay results from the resource drilling within the kakortokite unit.

The Company acknowledges that the economic potential of the Tanbreez project relies on the recovery of multiple mineral products and are critical for accurate economic assessment and not based solely on the eudialyte content.

The Company has provided an addendum for reference in accordance with ASX Listing Rules as a basis for further public disclosures relating to the Tanbreez Project.

Today's announcement adds to the maiden eudialyte Mineral Resource for the feldspar and arfvedsonite components contained within the kakortokite host unit that have been assessed from the existing drilling and using the same estimation procedures.

The Company has reviewed existing studies to quantify the proportions of eudialyte, feldspar, and arfvedsonite throughout the Fjord and Hill Deposits. This work included:

- 1. Quantitative X-ray diffraction (QXRD) analysis on representative samples
- 2. QEMSCAN or Mineral Liberation Analysis (MLA) to determine mineral associations and liberation characteristics
- 3. Mass balance calculations to reconcile elemental assays with mineral proportions
- 4.Dry Magnetic separation and alignment for magnetic variable charges for eudialyte being para magnetic compared arfvedsonite being highly magnetic and felspar non-magnetic. This allows splitting of the host kakortokite into 3 separated concentrates
- 5.Layer-specific mineral quantification for the black (arfvedsonite-rich), red (eudialyte-rich), and white (feldspar-rich) layers of the kakortokite unit (see figure 2).

Results from this mineralogical assessment have been incorporated into this addendum to the maiden Mineral Resource Estimate (see table 1 and 2).

TANBREEZ PROJECT	Mtonnes	TREO	ZrO ₂	Nb ₂ O ₅
Tanbreez Hill and Fjord				
Eudialyte				
Indicated Resource	25.4	0.37%	1.37%	0.13%
Inferred Resource	19.5	0.39%	1.42%	0.15%
Total	44.9	0.38%	1.39%	0.14%

Table 1 Fjord and Hill Deposit MRE for Inferred and Indicated TREO, Zr and Nb oxides

TANBREEZ PROJECT	Industrial Mineral Components
	Mtonnes
Feldspar	
Indicated Resource	51.0
Inferred Resource	39.0
Arfvedsonite	
Indicated Resource	51.0
Inferred Resource	39.0
Total Feldspar and Arfvedso	nite
Indicated Resource	102.0
Inferred Resource	78.0
Total	180.0

Table 2 Fjord and Hill Deposits MRE for Inferred and Indicated Resources Feldspar and Arfvedsonite

Feldspar and arfvedsonite for industrial applications from the Tanbreez deposit will be processed in Greenland to form a concentrate and further processing will be required to meet certain standards:

1. Feldspar:

- High alkali content (Na₂O and K₂O) for ceramic and glass applications
- Low iron oxide content (usually <0.1% Fe₂O₃ for premium applications)
- Controlled particle size distribution based on end-use
- Low free silica content for certain applications

2. Arfvedsonite (a sodium amphibole mineral):

- Consistent chemical composition
- Controlled particle size
- Minimal contaminants

Commenting on the 45MT MRE, Tony Sage, Executive Chairman of the Company, said:

"I am pleased to report Tanbreez has reached a further milestone by declaring the addendum for the maiden MRE for arfvedsonite and feldspars estimated at 180MT adding to our 45MT MRE for our REE's."

"My team continue to measure the real potential for Tanbreez on significant milestones advancing the Tanbreez deposit into a world class REE development project".

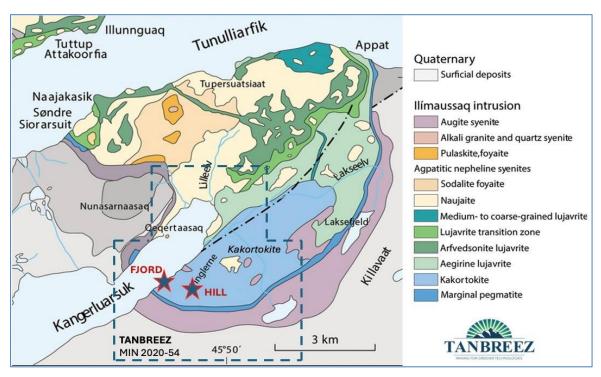


Figure 1 The Tanbreez Fjord and the Tanbreez Hill rare-earth mineral sites are hosted within a Kakortokite unit covering an area of approximately 5km x 2.5km, estimated at 4.7 billion tonnes of Kakortokite of which host that does not indicate any certainty of hosting mineralization

Review of Kakortokite in the Ilimaussaq Intrusive Complex

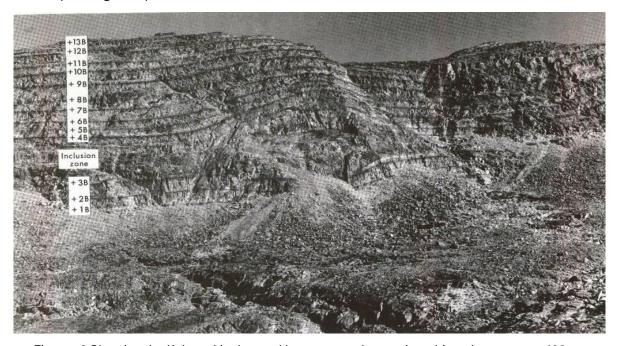

The Ilimaussaq Intrusive Complex in South Greenland represents one of the world's most highly differentiated and studied alkaline igneous complexes. The complex is approximately 1.13 billion years old and hosts the significant Tanbreez rare earth element (REE) deposit. Within this complex, the kakortokite unit is of economic importance, as it contains substantial concentrations of rare and valuable minerals, particularly eudialyte, which is the primary rare earth bearing mineral targeted by the Tanbreez mining project as well as feldspar and arfvedsonite that are industrial minerals and may be exploited for local and export revenue.

Figure 2 The layered Ilimaussaq intrusion, host of the Tanbreez Project

Kakortokite Structure and Layering

Kakortokite is a variety of agpaitic nepheline syenite displaying pronounced cumulate textures and distinctive igneous layering. The kakortokite sequence is outcropping over an area of approximately 5×2.5 km and has a total thickness of 250-350 meters. The sequence consists of at least 29-30 rhythmically layered units, each averaging about 8 meters in thickness (see Figure 2)

Figures 2 Showing the Kakortokite layered host mapped a stratigraphic column over a 400m vertical face. The Fjord MRE lies at the base of the measured column and extends over 50m below ground The Kakortokite stratigraphic column was mapped and has not been sampled. The Kakortokite host does not indicate any certainty of hosting economic mineralization.

The kakortokite unit exhibits a tripartite layering pattern:

- 1. Black layer (bottom) dominated by arfvedsonite (a sodium amphibole)
- 2. Red layer (middle) enriched in eudialyte (the main REE-bearing mineral)
- 3. White layer (top) rich in alkali feldspar and nepheline with local sodalite

The contacts between layers within each unit are typically gradational, while the black layers are separated from the white layers of the underlying unit by sharp contacts.

Eudialyte: The Primary Ore Mineral

Eudialyte is a complex zirconosilicate mineral with the approximate formula $Na_{15}Ca_6Fe_3Zr_3Si(Si_3O_9)_2(Si_9O_{27})_2(OH)_3Cl_2$, though its composition can vary significantly. It is the primary host of rare earth elements (REEs) in the kakortokite unit and exhibits several important characteristics:

Economic Importance: Eudialyte contains economically significant concentrations of Zirconium (ZrO_2), Niobium (Nb_2O_5), Total Rare Earth Oxides (REO), including Heavy Rare Earth Elements (HREE): ~28-30% of total REEs (including yttrium) and Light Rare Earth Elements (LREE): ~69-72% of total REEs

Mineralogical Characteristics: Linear correlations between $\rm ZrO_2$ and individual REE contents in bulk rock analyses indicate that eudialyte is by far the main REE-bearing mineral in kakortokite. Eudialyte in the kakortokite shows minimal cryptic variation (little change in chemical composition throughout the sequence), which is advantageous for processing. The mineral has magnetic susceptibility between arfvedsonite and feldspar/nepheline, making magnetic separation feasible

Alkali Feldspar and Nepheline

These light-coloured minerals dominate the white layers of the kakortokite units. Alkali feldspar (primarily microcline and albite) and nepheline (a feldspathoid) have potential commercial applications, particularly in the ceramics, glass industries and chemical industries.

Arfvedsonite

Arfvedsonite is a sodium-rich amphibole with the approximate formula $Na_3Fe_4^{\ 2+}Fe^3+Si_8O_{22}(OH)_2$. It forms the distinctive black layers in the kakortokite sequence and has potential value as a by-product for construction materials.

This approach to utilizing all three main mineral components could result in minimal waste material from the mining operation.

Environmental considerations include Low levels of radioactive elements - Uranium and thorium are present at background levels (approximately 20 ppm and 53 ppm, respectively). There are no sulphide minerals of concern and no significant acid-generating potential.

Key processing characteristics of the mineralisation include:

The TANBREEZ deposit contains three main mineral species: arfvedsonite, eudialyte and feldspar. The eudialyte contains all the valuable metals of interest in the ore. The valuable elements have been shown to occur in constant proportion to the zirconium content. This has enabled testwork and design to progress based on Zr assays.

The eudialyte is liberated at the relatively coarse grain size of 330 μ m. The eudialyte can be physically upgraded by a factor of three by magnetic separation.

The three primary minerals within the orebody have been shown to have specific magnetic properties. The arfvedsonite is highly magnetic and the feldspar is nonmagnetic, while the eudialyte exhibits magnetic behaviour in a strongly magnetic field. These properties have been utilised in formatting a testwork programme at Ammtec with the results from that campaign taken into the scoping study.

Mineral Resource Classification

The drill program at both the Fjord and Hill sites penetrates the entire kakortokite sequence including the eudialyte, feldspar and arrivedsonite components. In 2016 the eudialyte component was estimated by in 2016 and announced the Company (ASX announcement of 13 March 2025).

A thorough review of the drilling was undertaken to assess and include the feldspar and arfvedsonite components in the Mineral Resource Estimate under the same parameters and assumptions a those used in the 2016 assessment. The comments in JORC Table 1 have been updated to include these resource components.

Drilling Techniques

Between 2000 and 2013, the Tanbreez deposit in southern Greenland underwent extensive drilling to evaluate and confirm the presence of eudialyte, feldspar and arfvedsonite components within the kakortokite unit. Initial exploration efforts in the early 2000s focused on geological surveys and sampling, which identified significant mineralization of eudialyte—a mineral rich in zirconium, niobium, tantalum, and REEs—within the Ilímaussaq intrusive complex.

2007 and 2010: Targeted drilling programs were conducted. Several stratigraphic drill holes were completed to establish a clearer picture of the deposit's scale and mineral composition. These efforts supported Tanbreez Mining's application for an exploitation license. Rimbal drilled 14 diamond holes in 2007 and 46 diamond holes plus 48 RC holes in 2010

2013: Additional drilling and metallurgical testing refined estimates of the deposit's size and economic feasibility. Studies confirmed that approximately 27% of the total REEs at Tanbreez were heavy REEs, which are particularly valuable. Rimbal drilled 9 diamond holes in 2013. The overall drill database of approximately 400 drill holes was used to compile a Mineral Resource Estimate and a Definitive Feasibility Study in 2016 (not published for private use only). 181 drill holes completed by Rimbal and Tanbreez were included in the MRE assessment.

The combined maiden drilling (2007-2013) was used to formulate the MRE.

2017: This work and the Environmental Impact Assessment (EIA), Social Impact Assessment (SIA) and Impact Benefit Agreement (IBA) were presented to the Government as an application for an exploitation licence, (not published for private use only).

2020: The Greenland Government granted an exploitation license (MIN 2020-54), marking a transition from exploration to development. This was based on extensive prior drilling and feasibility studies.

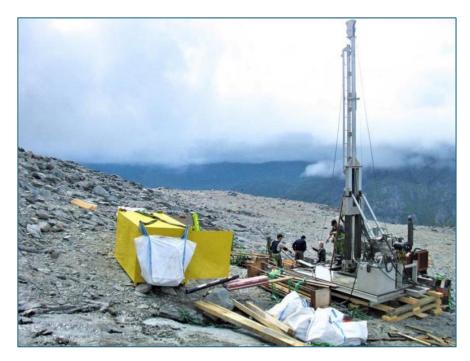


Figure 3 Diamond drilling 2013 over kakortokite surface outcrop (in foreground) at the Fjord deposit

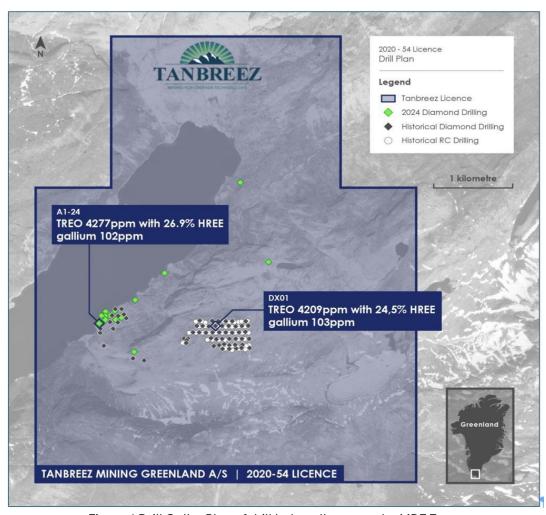


Figure 4 Drill Collar Plan of drill hole collars over the MRE Zones

YEAR	AREA	TYPE	No Holes	Metres
2007	FJORD MRE	DDH	14	2,148.20
2007	FJORD MRE	ECP	64	1,051.60
2013	FJORD MRE	DDH	9	829.50
Total			87	4029.3
2010	HILL MRE	DDH	46	1,380.00
2010	HILL MRE	RCP	48	983.00
Total			94	2363
TOTAL	Both Areas		181	6392.3

Drilling in the Mineral Resource Areas at Tanbreez

Criteria Used for Classification

The drill hole data was first compiled then verified and checked for errors. No significant problems were found in the data once it was compiled. East-west cross sections were created by digitising the Upper and Lower blocks at Tanbreez Hill and the mineralised zone at Tanbreez Fjord, snapping to the drill hole intercepts.

Given that the eudialyte, feldspar and arfvedsonite mineralisation is distributed throughout the Kakortokite host rock there is sufficient geological mapping to give confidence on the limits of the modelling and the quality of drill hole data is sound, all resources within 50 m of a drill hole intersection are considered Indicated Resource and between 50-100 m of a drill hole intersection Inferred Resource according to the JORC (2012) code. Due to the lack of drilling on a regular grid at Fiord East the resources within 50 m of a drill hole intersection are considered only Inferred.

Sample Analysis Method

Diamond drill holes, R.C. holes, channel chip samples with samples cross checked at separate laboratories, at different times. The samples have also been independently checked twice with a handheld XRF machine using pressed duplicates.

Drill holes have been twinned with diamond, R.C. and even channel samples repeat. Repeat holes of diamond drilling, R.C. holes and surface samples are almost identical in assays.

The sampling shows very even grade with no nugget effect at approx. 2% ZrO₂ the grade remaining remarkably constant. All mineralisation is within the mineral eudialyte with as a result the Zr is directly proportional to HF, Ta, Nb, all the REE and HREE mineralization.

All the assaying was completed by Ultra Trace Pty Ltd in Perth, Western Australia by ICP analysis. The remaining pulps not used for assaying are stored in Perth.

Estimation and modelling techniques

The resource modelling method using digital block models with grades interpolated using the Inverse Distance Squared algorithm with restricted search ellipses and domain wireframes is appropriate for the style of mineralisation modelled. No deleterious element was identified. Cutting and capping of grades was not used as the grade of each unit is remarkably constant along strike and down dip with very few outliers. The resource

model was validated by visually checked against drilling and statistically comparing the resource grades against the drill assays.

The modelling was done in two passes. The first pass with a wider 100 m horizontal circular radius was used to model the Inferred resource and the second pass 50 m horizontal radius was used to model the Indicated resource. The wider 100 m horizontal search radius with a 10m vertical ellipse radius produced a more smoothed grade model than the second pass with a tighter 5 m vertical radius. Once the modelling was complete the model above the topography was removed.

The resources were modelled using MineMap software. Search radii of 250 m horizontal circular and 50 m vertical was used to model resources. The search ellipses were oriented vertically in the edge zone and horizontally in the core.

Cut-off parameters

No cut-off grades applied to the resources as the deposit will be bulk mined. The anticipated mining method and detailed review of grade variability suggests that all the mineralised zones will be sent to the ROM Pad. Arfvedsonite and Feldspar will be recovered and sold.

Mining, Metallurgical and Environmental Factors

The kakortokite will be bulk mined in open pits and no mining losses or dilution factors are required. Extensive metallurgical test work has been undertaken on samples of eudialyte and a bulk sample through a pilot plant. Pilot Plant scale tests have been carried out prior to Tanbreez material by Highwood, EURARE and Curtin University. In 2009 and in 2011 Tanbreez commissioned an Australian metallurgical test laboratory (Ammtec) to conduct detailed metallurgical testing to establish the parameters required for the design of a physical processing circuit for the ore. The results of the testwork are to be included in the design criteria to enable the completion of a feasibility study.

TANBREEZ PROJECT	Million	TREO	ZrO ₂	Nb ₂ O ₅	Total
	Tonnes	%	%	%	%
TANBREEZ HILL					
Eudialyte					
Indicated Resource					
Upper	3.20	0.47%	1.72%	0.14%	2.33%
Lower	13.46	0.30%	1.11%	0.11%	1.52%
Total	16.66	0.33%	1.22%	0.12%	1.68%
Inferred Resource					
Upper	0.93	0.40%	1.48%	0.13%	2.01%
Lower	4.72	0.28%	1.04%	0.10%	1.42%
Total	5.65	0.30%	1.11%	0.11%	1.52%
FJORD DEPOSIT					
Eudialyte					
Indicated Resource	8.76	0.44%	1.63%	0.17%	2.25%
Inferred Resource	13.80	0.42%	1.55%	0.16%	2.13%
TOTAL	22.56	0.43%	1.58%	0.16%	2.17%

Table 3 MRE eudialyte component

TANBREEZ PROJECT	Industrial Minera	al Components
TANBREEZ HILL		
Feldspar		
Indicated Resource	33.00	Mtonnes
Inferred Resource	11.00	Mtonnes
Arfvedsonite		
Indicated Resource	33.00	Mtonnes
Inferred Resource	11.00	Mtonnes
FJORD DEPOSIT		
Feldspar		
Indicated Resource	18.00	Mtonnes
Inferred Resource	28.00	Mtonnes
Arfvedsonite		
Indicated Resource	18.00	Mtonnes
Inferred Resource	28.00	Mtonnes

Table 4 MRE details for feldspar and arfvedsonite

The Company confirms that it is not aware of any new information or data that materially affects the information included in the Company's previous ASX announcement dated 13 March 2025 or the estimation of the feldspar and arfvedsonite resources in this announcement dated 29 May 2025 for 180Mt of Feldspar ad Arfvedsonite and that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The information in this announcement relating to new exploration results is provided pursuant to ASX Listing Rule 5.7.

The Company will release a clarification to its scoping study to expressly support the production target by reference to the MRE update; and it considers the production target and forecast financial information as originally announced on 23 April 2025 will not change materially when the clarified scoping study is announced.

The Company cautions that any production targets or forward-looking statements related to the recovery and sale of specific mineral products (eudialyte concentrate, feldspar concentrate, arfvedsonite) are based on extensive testwork that clearly demonstrated the relationship between the Mineral resource estimates, based elemental oxide content, and the production of concentrates through the process plant and can be relied on even though the mineral resource estimations reports only elemental oxide contents. Extensive testwork has clearly demonstrated the relationship between the Mineral resource estimates and the production of concentrates through the process plant.

The Company considers the production target and forecast financial information as originally announced on 23 April 2025 are not expected to change materially when the clarified scoping study is announced.

Competent Person Statement – George C Karageorge

The information in this report that relates to mineral resource estimates for eudialyte, feldspar and arfvedsonite released on 13 March 2025 and 29 May 2025 is based on information compiled and evaluated by George Karageorge. Mr Karageorge is Principal of Geosan Consulting, and a Member of the Australian Institute of Mining and Metallurgy (AusIMM). Mr Karageorge is a geologist with sufficient relevant experience in relation to rare earth and rare metal mineralization being reported on to qualify as a Competent

Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" ("JORC Code").

Mr Karageorge is responsible for the form and context of the new mineral resource and consents to the form and context in which the estimate of mineral resources appears in the announcement

About Tanbreez

The Tanbreez Rare Earth Project is one of the world's largest hard rock rare earth elements (REE) deposits, located in southern Greenland near the town of Quaqortoq. The project is notable for its high concentration of heavy rare earth oxides (HREOs), which are critical for high-tech applications, clean energy, and defence industries. Unlike other major TREO deposits, Tanbreez contains very low levels of uranium and thorium, making it more environmentally and politically viable.

- Deposit Type: Kakortokite (a layered igneous rock rich in TREOs)
- Kakortokite Estimate: ~4.7 billion tonnes of REE-bearing mineralisation
- Heavy REE Content: ~27% of Total Rare Earth Oxides (TREO)
- Ownership: Acquired by Critical Metals Corp. and EUR 7.5% (2024)
- Uranium & Thorium: Extremely low (avoiding nuclear regulatory issues)
- Location: Near Quagortog, southern Greenland
- Target drilling ongoing to achieve proven and probable ore reserves
- Project Stage: is evolving from exploration to feasibility and predevelopment phases
- Kakortokite host may not always contain any economic mineralisation of TREO

Kakortokite

Kakortokite is a rare, layered igneous rock composed primarily of feldspar, eudialyte (a zirconium-rich silicate), and arfvedsonite (an iron-rich amphibole). It is notable for being a major host rock for rare earth elements (REEs), zirconium, and other critical minerals.

Major Occurrences: Ilímaussaq Complex, Greenland (including the Tanbreez and Kvanefjeld deposits), Lovozero Massif, Russia, Mont Saint-Hilaire, Canada.

Economic Importance: Rare Earth oxides (REOs): High concentrations of heavy REOs), crucial for advanced technology, Zirconium & Hafnium: Used in nuclear reactors and aerospace, Low Uranium & Thorium: Unlike carbonatite-hosted deposits, Kakortokite has minimal radioactive elements, making extraction easier and more environmentally friendly.

About European Lithium

European Lithium Limited is an exploration and development stage mining company focused mainly on lithium, rare earth, precious metals and base metals in Austria, Ireland, Ukraine, and Australia.

European Lithium currently holds 66,416,641 (Approximately 68%) ordinary shares in Critical Metals. Based on the closing share price of Critical Metals being US\$2.14 per share as of 7 May 2025, the Company's current investment in Critical Metals is valued at US\$108.923.291 (A\$168,831,101) noting that this valuation is subject to fluctuation in the share price of Critical Metals.

For more information, please visit https://europeanlithium.com.

This announcement has been approved for release on ASX by the Board of Directors. About CRML

Critical Metals Corp. is a leading mining development company focused on critical metals and minerals, and producing strategic products essential to electrification and next generation technologies for Europe and its western world partners. CRML currently holds a 42% direct interest in the Tanbreez Greenland Rare Earth Mine and has the right to earn up to a 92.5% equity interest subject to the investment of US\$10 million in exploration expenses by June 2026 at the Tanbreez Project and CRML's other flagship asset is the Wolfsberg Lithium Project located in Carinthia, 270 km south of Vienna, Austria.

The Wolfsberg Lithium Project is the first fully permitted mine in Europe and is strategically located with access to established road and rail infrastructure and is expected to be the next major producer of key lithium products to support the European market. Wolfsberg is well positioned with offtake and downstream partners to become a unique and valuable building block in an expanding geostrategic critical metals portfolio. In addition, Critical Metals owns a 20% interest in prospective Austrian mineral projects.

For more information, please visit https://criticalmetalscorp.com for an updated investor presentation.

Appendix 1: JORC Table 1

JORC Code, 2012 Edition – Table 1 TANBREEZ DEPOSIT

Section 1 Sampling Techniques and Data

Al Maynard & Associates Pty Ltd, 2016, Resource Estimates at Two Sites within the Tanbreez Project (JORC 2012) for Rimbal Pty Ltd, Revised: 30 August 2016

Criteria	JORC Code explanation	Commentary
Sampling	, , , , , ,	Diamond drill holes, R.C. holes, channel chip samples with samples
techniques	random chips, or specific specialised industry standard measurement tools appropriate to the	cross checked at separate laboratories, at different times. The
	minerals under investigation, such as down hole	samples have also been independently checked twice with a hand
	gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the	held XRF machine using pressed duplicates. Drill holes have been
	broad meaning of sampling.	twinned with diamond, R.C. and even channel samples repeat.
	Include reference to measures taken to ensure	2 Repeat holes of diamond drilling, R.C. holes and surface samples are
	sample representivity and the appropriate calibration of any measurement tools or systems	almost identical in assays.
	used.	2 At this stage about 97% of the body is economic and can be mined
	 Aspects of the determination of mineralisation that are Material to the Public Report. 	and treated.
	 In cases where 'industry standard' work has been 	2 The sampling shows very even grade with no nugget effect at approx.
	done this would be relatively simple (e.g. 'reverse	2% ZrO2 the grade is remarkably constant. All mineralisation is
	circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g	within the mineral eudialyte with as a result the Zr is directly
	charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	proportional to HF, Ta, Nb, all the REE etc.

Criteria	JORC Code explanation	Commentary
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Diamond, R.C., channel chip sampling – partly in previously diamond cut channels. The deposit has no weathering and virtually outcrops 100%.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All cores have been logged Sample recovery is virtually 100% No loss of material and as a result no bias.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All cores are logged and photographed Virtually all sections of all cores are in ore grade material with only sections in the augite syenite and black Madonna not being economic

Criteria	JORC Code explanation	Commentary
Sub-	If core, whether cut or sawn and whether quarter,	🛮 Usually half core has been assayed, in some sections core has been
sampling techniques	half or all cores taken.	taken for petrological work
and sample	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	2 R.C. holes were riffle split to size
preparatio	For all sample types, the nature, quality and	2 Sample preparation is standard of core split, all crushed and split
n	appropriateness of the sample preparation	(usually by an independent laboratory)
	technique.	2 Quality control, standards, repeats, duplicates and blanks have been
	 Quality control procedures adopted for all sub- sampling stages to maximise representivity of 	used
	samples.	The grain size is about sand size and these samples on re-assaying
	Measures taken to ensure that the sampling is	give almost identical results.
	representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Image: All assaying methods and techniques are appropriate
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Handheld XRF results have not been used for resource modelling Different assay techniques all match within acceptable limits These samples assayed, often twice, were used to calibrate the XRF machines successfully. All have been done and all showed results at acceptable levels of recovery or better
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The nature of the geology does not lead to significant variable grade intersections, rather a constant grade Twin holes have been used to give similar results No adjustment to assay data was required.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill holes were surveyed using an independent surveyor The early holes (1989) used a local grid subsequent transferred to a GPS (1994). Topographic control from existing maps and from a recent geophysical survey.

Criteria	JORC Code explanation	Commentary
Data	Data spacing for reporting of Exploration Results.	2 Drill hole spacing varies to accommodate steep topography meaning
spacing and	Whether the data spacing and distribution is	holes on standard grids have to be slightly shifted
distributio n	sufficient to establish the degree of geological and grade continuity appropriate for the Mineral	2 Sample distribution is adequate for good geological control
	Resource and Ore Reserve estimation procedure(s) and classifications applied.	2 Sample compositing to 5m sections done in some percussion holes
	Whether sample compositing has been applied.	
Orientation	Whether the orientation of sampling achieves	2 No structural bias is possible in this large deposit
of data in relation to	unbiased sampling of possible structures and the extent to which this is known, considering the	2 Variation to grade is slight as the rocks generally dip shallowly to
geological	deposit type.	the north – most holes were vertically drilled
structure	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	
Sample security	The measures taken to ensure sample security.	2 Samples taken and kept in locked containers in nearby town
Audits or	The results of any audits or reviews of sampling	2 All data is reviewed as a matter of fact about every 3 years. External
reviews	techniques and data.	reviews by banks and the government have occurred on several
		occasions – so far no differences to the interpretation, results, size
		have been advanced

Section 2 Reporting Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JO	RC Code explanation	Commentary
Mineral tenement and land tenure status	•	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The exploration licence is controlled 100% by the group. An application for an exploitation licence has been submitted, under Greenland law this cannot be refused. The Exploitation Licence MEL 2020-54 was granted in August 2020
Exploration done by other parties	•	Acknowledgment and appraisal of exploration by other parties.	Earlier exploration by other groups is included and acknowledged with all their drill cores being re-assayed
Geology	•	Deposit type, geological setting and style of mineralisation.	2 A zone 5km x 3km x 400m of disseminated mineralisation in very
			large igneous intrusions
Drill hole Information	•	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	② All holes have been surveyed – earlier drilled holes have been placed by translating the local coordinates then used to today's GPS.
		 easting and northing of the drill hole collar 	2 Summaries of drill holes and location maps included in report.
		 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	o dip and azimuth of the hole		
		o down hole length and interception depth	See appendix 2
		o hole length.	

Criteria	JORC Code explanation	Commentary
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be	2 No cut off grades have been used except to the west where about 1% ZrO2 is used.
	 stated. Where aggregate intercepts incorporate short lengths of high- 	2 Most holes were assayed at 1m intervals irrespective of geology
	grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	2 No metal equivalents used
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	The mineralisation is layered at a relatively flat dip of up to 20 degrees so the mainly vertical holes intersect the mineralisation at an
mineralisati on widths and	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	angle that makes the apparent thicknesses longer than the true
intercept lengths	If it is not known and only the down hole lengths are reported,	widths. The resource modelling method accounts for these apparent
tongtho	there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	thicknesses
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	2 All the appropriate maps and sections are included in the report
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades	2 Only grades of resource estimates are quoted in report to avoid
practicable, representative reporting of both tow and high grades		biased reporting of drilling results

Criteria	JORC Code explanation	Commentary
	and/or widths should be practiced avoiding misleading reporting of Exploration Results.	{
Other substantive	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; 	2 All the meaningful and material exploration data included in the report
exploration data	geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	2 So far, no contaminants such as U, Th, F known to affect the ore
Further	The nature and scale of planned further work (e.g. tests for lateral	al Immediate future work will concentrate on in-fill drilling on the
work	extensions or depth extensions or large-scale step-out drilling).	Tanbreez Fiord and Tanbreez Hill deposits in preparation for mining.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database	Measures taken to ensure that data has not been corrupted by, for	2 All results have been proofread by several personnel and
integrity	example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	independent consultants
	Data validation procedures used.	2 All data checked against original logs and assay certificates were
		possible, checked in MineMap software for down-hole integrity
Site visits	Comment on any site visits undertaken by the Competent Person and the	2 There have been no site visits by the Competent Person due to a lack
	outcome of those visits.	of time to visit the isolated site.
	If no site visits have been undertaken indicate why this is the case.	
Geological	Confidence in (or conversely, the uncertainty of) the geological	12 Total confidence as the orebody is simple structurally and outcrops
interpretation	interpretation of the mineral deposit.	almost 100%.
	 Nature of the data used and of any assumptions made. 	If All the drill holes match the mapped surface geology
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	In the geology was used to confine the mineralisation in the resource
	The use of geology in guiding and controlling Mineral Resource estimation.	modelling.
	The factors affecting continuity both of grade and geology.	
Dimensions	The extent and variability of the Mineral Resource expressed as length	5km x 3km x 400m all outcrop below that level and plunging the
	(along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	north not assessed
Estimation and	The nature and appropriateness of the estimation technique(s) applied and	The resource modelling method, digital block models with grades
modelling techniques	key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from	interpolated using Inverse Distance Squared algorithm with restricted
	data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	search ellipses and domain wireframes is appropriate for the style of
	The availability of check estimates, previous estimates and/or mine	mineralisation modelled.
	production records and whether the Mineral Resource estimate takes appropriate account of such data.	2 No deleterious element so far identified

Criteria	JORC Code explanation	Commentary
	The assumptions made regarding recovery of by-products.	🛚 Cutting and capping of grades was not used as the grade of each unit
	Estimation of deleterious elements or other non-grade variables of	is remarkably constant along strike and down dip with very few
	economic significance (e.g. sulphur for acid mine drainage characterisation).	outliers.
	In the case of block model interpolation, the block size in relation to the	The resource model was validated by visually checked against drilling
	average sample spacing and the search employed.	and statistically comparing the resource grades against the drill assays
	 Any assumptions behind modelling of selective mining units. 	
	Any assumptions about correlation between variables.	
	 Description of how the geological interpretation was used to control the resource estimates. 	
	 Discussion of basis for using or not using grade cutting or capping. 	
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The bulk densities used for tonnage estimates are on a dry basis
Cut-off	The basis of the adopted cut-off grade(s) or quality parameters applied.	2 No cut-off grades applied to the resources as the deposit will be bulk
parameters		mined.
Mining factors	Assumptions made regarding possible mining methods, minimum mining	The resources will be bulk mined in open pits so no mining losses or
or assumptions	dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable	dilution factors are required.
	prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and	Metallurgical and economic studies conducted by the client indicate
	parameters when estimating Mineral Resources may not always be	that the resources can be economically exploited
	rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	
Metallurgical	The basis for assumptions or predictions regarding metallurgical	Mechanical separation proven for over 100 years (since 1889) – bulk
factors or assumptions	amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider	testing by Tanbreez backed up these earlier results.
-	potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting	2 All separation work has been done by independent consultants

Criteria	JORC Code explanation	Commentary
	Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a Greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 All products and potential wastes have been fully tested by independent environmental consultants All waste samples tested have proved to be inert Full E.I.A completed and accepted by the government
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	Image: As expected with a large igneous intrusion with no vugs, bulk density tests produced consistent results throughout the mineralisation. Image: All the bulk density measurements were taken of dry samples.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	The Competent Person believes that the quoted resource categories in the resource statements are appropriate and properly take into consideration the geology and style of the mineralisation, the density, spacing and quality of the sampling data and grade variability of the mineralisation.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	There has been no independent audit of the current resource estimates

Criteria	JORC Code explanation	Commentary
Discussion of	Where appropriate a statement of the relative accuracy and confidence	The global resources quoted have been checked by the Competent
relative accuracy/	level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the	Person and the resource categories used properly reflect the
confidence	application of statistical or geostatistical procedures to quantify the	accuracy and confidence level of the resource estimates.
	relative accuracy of the resource within stated confidence limits, or, if such	The resource modelling was checked using appropriate statistical and
	an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the	qualitatively against the drilling.
	estimate.	There has been no mine production from any of the resource
	The statement should specify whether it relates to global or local	locations however bulk metallurgical samples, when tested, returned
	estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	assays as expected from the resource modelling.
	 These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	

Drill Holes for MRE Calculations 2007- 2013

Appendix 2

Drillhole	Easting	Northing	Elevation	Dip	Azimuth	Total Depth
DDH-07-01	452657.3	6748241	19	-45	148	93
DDH-07-02	452657.3	6748241	19	-45	174	129
DDH-07-03	452657.3	6748241	19	-45	322	162
DDH-07-04	452657.3	6748241	19	-45	56	228
DDH-07-05	452657.3	6748241	19	-45	88	182
DDH-07-06	452770	6748174	62	-45	232	99
DDH-07-07	452770	6748174	62	-60	232	111
DDH-07-08	452770	6748174	62	-45	322	171

DDH-07-09	452770	6748174	62	-45	52	168
DDH-07-10	452770	6748174	62	-45	142	150
DDH-07-11	452810.1	6748417	25	-80	160	249
DDH-07-12	452899.6	6748332	77	-90	0	78
DDH-07-13	453160.5	6747889	326	-45	200	85. <i>2</i>
DDH-07-14	453160.5	6747889	326	-60	290	243

hole_id	х	У	Z	max_depth	Azimuth	dip	priority	purpose	site	comment
DDH0801	452960	6748022	189	230	240	-60	1	Geotech	6	geotech03
DDH0802	452960	6748022	189	225	120	-60	2	Resource	6	
DDH0803	452960	6748022	189	250	60	-60	3	Geotech	6	geotech04
DDH0804	452960	6748022	189	270	35	-45	4	Resource	6	
DDH0805	452960	6748022	189	270	350	-45	5	Resource	6	
DDH0806	452960	6748022	189	270	300	-45	6	Resource	6	
DDH0807	453186	6748178	1 <i>7</i> 5	220	240	-60	7	Geotech	9	geotech06
DDH0808	453186	6748178	1 <i>7</i> 5	220	60	-60	8	Geotech	9	geotech05
DDH0809	453161	6747889	326	385	350	-60	9	Resource	5	
DDH0810	453161	6747889	326	250	125	-60	10	Resource	5	
DDH0811	453250	6748000	308	320	315	-70	11	Geotech	7	geotech01
DDH0812	453250	6748000	308	440	315	-45	12	Reserve	7	
DDH0813	453250	6748000	308	440	285	-45	13	Resource	7	

hole_id	X	у	Z	max_depth	Azimuth	dip	priority	purpose	site	comment
DDH0814	453250	6748000	308	350	240	-60	14	Resource	7	
DDH0815	453250	6748000	308	350	144	-60	15	Geotech	7	geotech02
DDH0816	453250	6748000	308	350	30	-60	16	Reserve	7	
DDH0817	453250	6748000	308	250	355	-45	17	Reserve	7	
DDH0818	453375	6748080	300	430	285	-45	18	Reserve	8	
DDH0819	453375	6748080	300	430	315	-45	19	Reserve	8	
DDH0820	453000	6748325	<i>7</i> 8	110	225	-45	20	Geotech	10	new geotech10
DDH0821	453000	6748325	<i>7</i> 8	110	315	-45	21	Reserve	10	
DDH0822	453000	6748325	<i>7</i> 8	110	45	-45	22	Geotech	10	new geotech09
DDH0823	453000	6748325	<i>7</i> 8	110	90	-45	23	Reserve	10	
DDH0824	453000	6748325	<i>7</i> 8	110	135	-45	24	Reserve	10	
DDH0825	453000	6748325	<i>7</i> 8	110	180	-45	25	Reserve	10	
DDH0826	453000	6748325	<i>7</i> 8	80	0	-90	26	Reserve	10	

Stratigraphic Diamond Holes 2010 within the Hill Zone MRE & no assay results used in the MRE

Hole ID	ID	Easting	Northing	Elevation	Dip	Azimuth	Depth [m]
DX-01	DX-01	454197.9	6748261	384.266	-90	0	384.177

Hole ID	ID	Easting	Northing	Elevation	Dip	Azimuth	Depth [m]
D01	1	454276	6748022	438.043	-90	-90	30
D02	2	453839.2	6748068	395.706	-90	-90	30
D03	3	454178.9	6748059	434.575	-90	0	30
D04	5	454241	6748063	433.382	-90	0	30
D05	7	454300.1	6748059	434.92	-90	0	30
D06	9	453842.7	6748099	388.043	-90	-90	30
D07	10	453809	6748142	378.024	-90	0	30
D08	12	453859	6748137	375.149	-90	0	30
D09	14	454144.7	6748149	417.838	-90	0	30
D10	16	454208.5	6748138	423.982	-90	0	30
D11	18	454276.7	6748151	415.571	-90	0	30
D12	20	453920.1	6748220	360.684	-90	0	30
D13	22	453998.4	6748220	375.055	-90	0	30
D14	24	454083.9	6748219	387.261	-90	0	30

Hole ID	ID	Easting	Northing	Elevation	Dip	Azimuth	Depth [m]
D15	26	454162.4	6748220	395.556	-90	0	30
D16	28	454239.9	6748220	400.73	-90	0	30
D17	30	453966.2	6748296	364.252	-90	0	30
D18	32	454040	6748300	372.082	-90	0	30
D19	34	454116.2	6748299	370.677	-90	0	30
D20	36	454200.2	6748299	375.902	-90	0	30
D21	38	454278	6748305	381.282	-90	0	30
D22	40	454360.7	6748306	394.097	-90	0	30
D23	42	454441.3	6748292	401.104	-90	0	30
D24	44	454000.9	6748367	343.889	-90	0	30
D25	47	454323.8	6748359	378.067	-90	-90	30
D26	103	454159.5	6748364	361.813	-90	-90	30
D27	105	454233	6748364	366.326	-90	-90	30
D28	107	454400.9	6748362	384.5	-90	-90	30
D29	111	454564.6	6748358	383.302	-90	-90	30
D30	119	454518.4	6748307	396.303	-90	-90	30
D31	121	454597.1	6748302	385.18	-90	-90	30
D32	127	454323.8	6748226	402.655	-90	-90	30
D33	129	454395.4	6748220	402.649	-90	-90	30
D34	131	454480.6	6748220	405.604	-90	-90	30

Hole ID	ID	Easting	Northing	Elevation	Dip	Azimuth	Depth [m]
D35	133	454555.7	6748225	398.606	-90	-90	30
D36	141	454361.4	6748141	409.327	-90	-90	30
D37	143	454440.2	6748141	406.996	-90	-90	30
D38	145	454520.7	6748140	404.172	-90	-90	30
D39	147	454601.6	6748136	406.27	-90	-90	30
D40	154	454360.9	6748052	420.045	-90	-90	30
D41	156	454435.7	6748057	412.87	-90	-90	30
D42	158	454520.8	6748057	414.733	-90	-90	30
D43	167	454358.8	6748020	423.22	-90	-90	30
D44	169	454441.9	6748021	417.365	-90	-90	30
D45	171	454510.9	6748024	420.154	-90	-90	30
D46	173	454603.9	6748024	434.434	-90	-90	30
RC01	4	454195.2	6748057	435.588	-90	-90	30
RC02	6	454285.4	6748059	433.796	-90	-90	30
RC03	8	453800	6748100	392.429	-90	-90	30
RC04	11	453838.2	6748148	372.383	-90	-90	30
RC05	13	454105.5	6748139	412.55	-90	-90	30
RC06	15	454160	6748140	422.804	-90	-90	30
RC07	17	454239.9	6748140	419.935	-90	-90	30
RC08	19	453881.7	6748214	353.181	-90	-90	30

Hole ID	ID	Easting	Northing	Elevation	Dip	Azimuth	Depti [m]
RC09	21	453961.7	6748218	367.381	-90	-90	30
RC10	23	454040.1	6748219	381.865	-90	-90	30
RC11	25	454119.5	6748220	390.042	-90	-90	30
RC12	27	454200.2	6748219	398.567	-90	-90	30
RC13	29	454280	6748220	405.663	-90	-90	30
RC14	31	454000	6748300	368.497	-90	-90	30
RC15	33	454079.2	6748301	370.222	-90	-90	30
RC16	35	454160.1	6748300	372.514	-90	-90	30
RC17	37	454240.9	6748293	379.487	-90	-90	30
RC18	39	454327.3	6748299	392.556	-90	-90	30
RC19	41	454399.4	6748298	396.436	-90	-90	30
RC20	43	453956.3	6748364	341.678	-90	-90	30
RC21	45	454040.2	6748360	352.618	-90	0	30
RC22	46	454295.7	6748371	373.996	-90	-90	30
RC23	101	454077	6748351	361.444	-90	0	30
RC24	102	454116.6	6748350	366.036	-90	0	30
RC25	104	454193.8	6748359	367.667	-90	0	30
RC26	106	454368.4	6748358	383.243	-90	0	30
RC27	108	454434.2	6748354	389.252	-90	0	30
RC28	109	454483.1	6748355	391.653	-90	0	30

Hole ID	ID	Easting	Northing	Elevation	Dip	Azimuth	Dept [m]
RC29	110	454519.8	6748360	387.719	-90	0	30
RC30	112	454594.9	6748366	381.48	-90	0	30
RC31	118	454480.2	6748300	399.446	-90	0	30
RC32	120	454559	6748300	393.385	-90	0	30
RC33	128	454360.8	6748221	402.563	-90	0	30
RC34	130	454441.1	6748218	404.845	-90	0	30
RC35	132	454520.8	6748219	403.489	-90	0	30
RC36	134	454603.8	6748219	392.959	-90	0	30
RC37	140	454319.8	6748141	415.43	-90	0	30
RC38	142	454361.3	6748141	409.32	-90	0	30
RC39	144	454477.6	6748147	405.594	-90	0	30
RC40	146	454550.4	6748148	403.394	-90	0	30
RC41	153	454319.3	6748060	432.328	-90	0	30
RC42	155	454398.6	6748064	411.684	-90	0	30
RC43	157	454469.1	6748045	414.762	-90	0	30
RC44	159	454567.1	6748061	419.26	-90	0	30
RC45	160	454602.8	6748072	417.915	-90	0	30
RC46	166	454321.5	6748027	431.361	-90	0	30
RC47	168	454400.2	6748014	419.803	-90	0	30
RC48	170	454484.4	6748023	419.784	-90	0	30

Hole ID	ID	Easting	Northing	Elevation	Dip	Azimuth	Depth [m]
RC49	172	454558.3	6748021	428.948	-90	0	30
DX-01	DX-01	454197.9	6748261	384.266	-90	0	384.177
DX-02	DX-02	454958.9	6748309	404.201	-90	0	404.273

Hole ID	Easting	Northing	Elevation	Dip	Azimuth	Total Depth
DDH 001-13	452860	6748480	16	-90	-90	51.5
DDH 003-13	452939	6748484	23	-90	-90	52
DDH 009-13	452728	6748249	38	-90	-90	64
DDH 011-13	452789	6748314	41	-90	-90	62
DDH 012-13	452900	6748400	36	-90	-90	80
DDH 015A-13	453013	6748370	<i>7</i> 8	-90	-90	72
DDH 015A-13	452976	6748418	46	-90	-90	52
DDH 016-13	452840	6748225	64	-90	-90	68
DDH 306-13	453314	6747861	360	-90	-90	328

Percussion Drill Holes89_91Fjord MRE

Hole ID	Easting	Northing	Elevation	Dip	Azimuth	Total depth	Z2
89-01	454176.9	6748127	419.4	-70	193	14.65	419.5
89-02	454217.7	6748138	415.4	-69	197	19	416
89-03	454265.8	6748099	421.4	-65	163	15.4	421.3
89-04	454161.6	6748194	395.3	-68	183	17.2	396
89-05	454224.1	6748176	403.8	-70	181	17.3	404.8
89-06	454234	6748227	390.2	-70	156	9.8	391.8
89-07	454122.6	6748198	388.3	-70	183	10.75	389.1
89-08	454065.5	6748219	378.3	-70	187	10.3	379
89-09	454011.9	6748247	372.3	-70	180	18	372.3
89-10	453957.3	6748247	365.3	-72	161	17	366
89-11	454130	6748148	407	-70	180	9.9	407.3
89-12	454226.3	6748291	375.1	-80	184	4.15	<i>37</i> 5.8
89-13	454362.4	6748293	392.3	-75	158	8.9	392.5
89-14	454071.5	6748265	371.45	-70	186	22.1	371.4
89-15	454117.3	6748247	374.86	-70	171	17	374.5
89-16	453969.1	6748348	341.9	-70	178	10.1	342.5
89-17	453824.2	6748097	388	-70	162	13.35	386
89-18	456142.4	6748969	429.6	-78	223	22.35	
89-19	457664.7	6751016	193.9	-80	183	55.9	

Hole ID	Easting	Northing	Elevation	Dip	Azimuth	Total depth	Z2
89-20	457636.9	6751243	123.2	-81	3	64.9	
89-21	457551.7	6751339	193.4	-82	199	135	
89-22	457380.6	6751350	210.8	-84	188	12.2	
89-23	457443.3	6751203	210.7	-83	198	140.4	
89-24	457308.2	6751085	159.9	-82	180	97.6	
89-25	456680.1	6751410	87.7	-75	188	103.2	
89-26	455747.5	6750792	45.9	-62	163	68.5	
89-27	454778.1	6750289	86.4	-44	133	108.6	
89-28	454871.8	6750336	73.3	-60	129	62.25	
89-29	454944.1	6750400	69.1	-61	143	80.1	
89-30	454705.9	6750200	86.6	-60	131	88.4	
89-31	454574.2	6750082	100.1	-60	146	98.6	
89-32	454499.2	6749992	82.5	-59	141	73.65	
89-33	454626.2	6750155	100	-60	134	13.3	
89-34	454635.6	6750145	97.5	-60	133	7.9	
89-35	454627.4	6750115	92.9	-60	133	103.5	
89-36	454537	6750132	159	-61	127	159	
89-37	454650	6750254	100.4	-61	135	152.4	
91-38	454219	6748160	409	-70	170	20.7	409.7
91-39	454217.1	6748179	402	-70	170	16.6	403

Hole ID	Easting	Northing	Elevation	Dip	Azimuth	Total depth	Z2
91-40	454287.5	6748056	431	-70	165	12.2	431.2
91-41	454233.7	6748093	426	-76	158	10	425.5
91-42	454255.5	6748162	409	-71	154	11	409.3
91-43	454243.3	6748189	402	-70	165	12.1	402.5
91-44	454205.1	6748234	384	-70	166	13.7	384.1
91-45	454153.8	6748256	3 <i>7</i> 5	<i>-7</i> 5	170	14.4	<i>37</i> 5.5
91-46	454096.5	6748298	367	-70	148	14	367.2
91-47	454046.3	6748289	368	-70	169	27.8	367.5
91-48	454006.3	6748282	366	-70	157	28.1	366.5
91-49	453906.4	6748223	356	-70	130	11.3	355.5
91-50	454285.3	6748243	393	-70	147	4.6	394.5
91-51	454308	6748264	391	-70	154	7	392
91-52	455.481.1	6747878	530	-50	165	58.7	
91-53	455481.1	6747878	530	<i>-7</i> 5	345	66.2	
91-54	455018.8	6749836	90	-71	242	127	
91-55	452666.1	6748265	15	-46	243	100.2	
CN-1	454193.6	6748091	429	-70	170	8.9	
CN-2	454231.2	6748151	412	-68	182	11.6	

RC Percussion 2007 for MRE Fjord

DrillHole	Easting	Northing	Elevation	Dip	Azimuth	Total Depth
ECP069	452617	6748270	11.87	-90	0	14
ECP070	452619.4	6748255	12.78	-90	0	14
ECP071	452623.8	6748244	12.74	-90	0	21.2
ECP072	452615.4	6748281	10.03	-90	0	12
ECP073	452622.6	6748274	11.16	-90	0	21.2
ECP073A	452622.3	6748274	11.15	-90	0	16.6
ECP074	452628.7	6748266	11.67	-90	0	21.2
ECP075	452635.6	6748258	13.1	-90	0	17.6
ECP076	452644.3	6748251	15.37	-90	0	21.2
ECP076A	452644.4	6748251	15.41	-90	0	10.4
ECP077	452661.4	6748222	17.11	-90	0	14
ECP078	452618.1	6748296	8.51	-90	0	21.2
ECP079	452626.1	6748287	10.36	-90	0	6.8
ECP080	452632.7	6748279	12.21	-90	0	17.6
ECP081	452639.1	6748271	13.06	-90	0	21.2
ECP081A	452638.8	6748271	13.1	-90	0	17.6
ECP082	452645.5	6748262	14.26	-90	0	21.2
ECP083	452651.3	6748254	15.84	-90	0	12
ECP084	452658	6748246	16.53	-90	0	21.2
ECP085	452663.6	6748238	16.88	-90	0	6.8

DrillHole	Easting	Northing	Elevation	Dip	Azimuth	Total Depth
ECP069	452617	6748270	11.87	-90	0	14
ECP070	452619.4	6748255	12.78	-90	0	14
ECP071	452623.8	6748244	12.74	-90	0	21.2
ECP086	452668.3	6748228	18.38	-90	0	4.4
ECP088	452674.5	6748219	21.21	-90	0	21.2
ECP089	452620.2	6748303	8.57	-90	0	3.2
ECP090	452628.5	6748296	9.86	-90	0	6.8
ECP091	452635.4	6748287	12.46	-90	0	17.6
ECP092	452643.6	6748279	13.48	-90	0	21.2
ECP093	452650.1	6748271	14.06	-90	0	17.6
ECP094	452656.8	6748263	16.11	-90	0	21.2
ECP094A	452656.5	6748264	16.06	-90	0	9.4
ECP095	452663	6748256	17.14	-90	0	21.2
ECP096	452668.6	6748249	17.9	-90	0	17.6
ECP097	452674.3	6748240	19.02	-90	0	21.2
ECP098	452680.5	6748232	20.86	-90	0	14
ECP099	452684.8	6748223	23.15	-90	0	17.6
ECP100	452628.7	6748315	3.3	-90	0	21.2
ECP101	452635.3	6748311	4.45	-90	0	10.4
ECP102	452642.2	6748303	6.67	-90	0	21.2

DrillHole	Easting	Northing	Elevation	Dip	Azimuth	Total Depth
ECP069	452617	6748270	11.87	-90	0	14
ECP070	452619.4	6748255	12.78	-90	0	14
ECP071	452623.8	6748244	12.74	-90	0	21.2
ECP103	452647.3	6748297	8.46	-90	0	17.6
ECP104	452651.7	6748286	9.87	-90	0	6.8
ECP105	452658.8	6748275	11.12	-90	0	21.2
ECP106	452664.3	6748264	12.57	-90	0	14
ECP107	452671	6748258	13.26	-90	0	21.2
ECP108	452674.8	6748248	14.51	-90	0	17.6
ECP109	452681	6748239	15.86	-90	0	6.8
ECP110	452688.2	6748231	18.62	-90	0	21.2
ECP111	452693.4	6748224	20.5	-90	0	12.4
ECP112	452625.6	6748303	3.91	-90	0	21.2
ECP113	452637.2	6748296	6.25	-90	0	3.2
ECP114	452695.6	6748243	20.37	-90	0	14
ECP115	452719.6	6748246	28.04	-90	0	21.2
ECP116	452735.9	6748253	30.55	-90	0	17.6
ECP117	452754.5	6748262	33.98	-90	0	21.2
ECP118	452772	6748273	36.78	-90	0	21.2
ECP119	452780.4	6748290	34.66	-90	0	17.6

DrillHole	Easting	Northing	Elevation	Dip	Azimuth	Total Depth
ECP069	452617	6748270	11.87	-90	0	14
ECP070	452619.4	6748255	12.78	-90	0	14
ECP071	452623.8	6748244	12.74	-90	0	21.2
ECP120	452794.9	6748304	34.29	-90	0	21.2
ECP121	452802.6	6748308	34.63	-90	0	17.6
ECP122	452813.5	6748327	33.15	-90	0	21.2
ECP123	452823.5	6748337	33.16	-90	0	3.2
ECP124	452833.4	6748338	36.36	-90	0	21.2
ECP125	452841.3	6748361	29.88	-90	0	17.6
ECP126	452860.6	6748368	32.68	-90	0	21.2
ECP127	452883.2	6748372	36.6	-90	0	17.6
ECP128	452904.6	6748383	36.41	-90	0	21.2
ECP129	452921.9	6748388	37.22	-90	0	17.6