BRIGHTSTAR

ASX ANNOUNCEMENT

20 May 2025

Spectacular Drilling Intercept 16m @ 8g/t Au at Yunndaga Affirms Underground Upside at Menzies

Drilling to continue targeting MRE upgrade and Underground Reserves late CY25

HIGHLIGHTS

- Brightstar has received final results from a ~6,100m reverse circulation drilling program targeting infill and extensional resource drilling at the Yunndaga deposit, located within the 0.6Moz @ 1.4g/t Au Menzies Gold Project
- Final assay results from the **Yunndaga deposit** include:
 - YNRC25022:
 - **16m @ 8.03g/t Au from 220m**, including 1m @ 33.6 g/t Au from 222m, and 4m @ 13.5 g/t Au from 228m
 - YNRC25026:
 - 13m @ 4.70g/t Au from 167m, including 2m @ 22.6 g/t Au from 176m
 - YNRC25023:
 - 11m @ 3.32g/t Au from 215m
 - YNRC25027:
 - 12m @ 2.34g/t Au from 156m, including 1m @ 11.4 g/t Au from 163m
 - YNRC25017:
 - 8m @ 3.45g/t Au from 147m, including 1m @ 20.6 g/t Au from 152m
 - YNRC25019:
 - 7m @ 2.65g/t Au from 192m
- This Phase 1 drilling program aimed to infill areas of the resource that fall **within or adjacent to optimised stope shapes**, and test for down-dip extensions to known mineralisation
- Results confirm the presence of high-grade mineralisation in typical Menzies-style lodes, with nuggetty high-grades and classic pinch-and-swell morphology
- Second phase of drilling set to commence in June, targeting resource extensions at depth and further infill of likely near-term underground mining areas

Brightstar Resources Limited (ASX: BTR) (**Brightstar**) is pleased to announce results from a ~6,100m of Reverse Circulation (**RC**) drilling programs completed at the Yunndaga Deposit.

The deposit is located 6km south of the town of Menzies, and forms part of Brightstar's Menzies Hub, which hosts a current Mineral Resource Estimate (**MRE**) of **0.6Moz @ 1.4g/t Au**.

The Yunndaga Deposit hosts a current resource of **3.4Mt at 1.4g/t Au for 156koz.** Previous mining studies have highlighted the potential to mine high-grade portions of the deposit via underground mining methods, with the September 2023 Scoping Study¹ illustrating 650kt @ 2.91g/t Au (diluted mined grade) for ~61koz Au of production potential.

The ~6,100m Phase 1 RC drilling aimed to infill these initial stope-optimised areas to confirm the continuity of high-grade mineralisation.

A ~5,000m second phase of drilling is planned to commence in June, incorporating both RC and diamond drilling, aiming to step out and target mining inventory growth and ultimately declaration of Ore Reserves late in CY25. Phase 2 will also target untested depth extensions to the mineralisation.

Phase 1 results have clearly confirmed the presence of high grade gold mineralisation beneath the existing Yunndaga open pit. Intercepts such as **16m @ 8.03g/t Au from 220m (YNRC25022)** highlight the potential of the deposit to host a substantial, high-grade underground mining operation.

Brightstar's Managing Director, Alex Rovira, commented "Phase 1 assay results from Yunndaga drilling have surpassed our expectations. Intersecting wide zones of consistent high-grade mineralisation is hugely exciting and affirms our focus on advancing Yunndaga as a near term underground mining opportunity at Menzies in parallel with our Lady Shenton open pit project in Menzies.

We strongly believe we are only scratching the surface at Yunndaga. The historic mine workings to the south of the Yunndaga deposit extend to over 600m vertical depth, and with over 270koz mined at a grade of +16g/t Au historically, it clearly has high-grade tenor. Brightstar's current optimised underground mine designs, based on the 2023 Scoping Study, are constrained to the top 200m from surface, and given the ore body is still open down plunge, the depth potential of the proposed mining is entirely limited by drilling to date.

This initial phase of confirmatory drilling was largely within and adjacent to the optimised stope shapes. Phase 2 will see Brightstar follow up with both diamond and RC rigs mobilising in the coming weeks, which will further test infill and extensional targets seeking to grow the extents of the mineralisation and improve the quality of the Resource to underpin future mine planning purposes.

Brightstar continues to actively add value to our portfolio through systematic exploration across our projects, with the exploration teams focused on infill drilling to derisk future mining as well as continued Mineral Resource growth and targeting new potential discoveries."

Figure 1 – Plan view map of the Yunndaga Phase 1 RC drill locations

TECHNICAL DISCUSSION

The Yunndaga mine was a prolific producing operation for Menzies Consolidated Gold Mines (1896-1943) extracting **over 270koz of gold at an average grade of +16g/t Au**², predominantly from the Princess Eva and Princess May workings, the latter of which extends to over 600m vertical depth. More recent (1995-1998) open pit mining by Paddington Gold produced approximately 64koz of gold at a grade of 2.5g/t Au.

The current mineral resource estimate at Yunndaga extends to approximately 240m vertical depth with very little drill testing below this. The phase 1 RC drilling program aimed to infill the resource in areas optimised for underground mining, with a second phase to follow, stepping out from the initial intercepts and testing for extensions at depth. Results from phase 1 have confirmed the presence of significant gold mineralisation. The drilling intersected zones of strongly silica-sericite altered sediments on the contact of a mafic amphibolite unit. The altered zone was associated with significant quartz veining and sulphide mineralisation.

Assay results produced several zones of wide, high grades including:

- 16m @ 8.03g/t Au from 220m in YNRC25022, including 1m @ 33.6g/t Au from 222m, and 4m @ 13.5g/t Au from 228m (Figure 3)
- 13m @ 4.70g/t Au from 167m in YNRC25026, including 2m @ 22.6g/t Au from 176m

Grade and thickness variability is typical for the Menzies deposits with veins frequently pinching and swelling, and a nuggety grade distribution commonly observed.

Further drilling is required, and is planned for in stage 2, at depth to fully assess the extent of the mineralised lodes.

Additional significant results from the current drilling program included:

- **11m @ 3.32g/t Au** from 215m in YNRC25023
- 12m @ 2.34g/t Au from 156m in YNRC25027, including 1m @ 11.4g/t Au from 163m
- 8m @ 3.45g/t Au from 147m in YNRC25017, including 1m @ 20.6g/t Au from 152m
- 7m @ 2.65g/t Au from 192m in YNRC25019
- 5m @ 3.19g/t Au from 192m in YNRC25010, including 1m @ 12.9g/t Au from 193m

Figure 2: Long section of the Yunndaga Deposit (looking North-East).

Figure 3 – Yunndaga Cross-section A-A'.

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram- metres
YNRC25001		119	123	4	1.98	4m @ 1.98g/t from 119m	7.92
YNRC25002		148	153	5	2.29	5m @ 2.29g/t from 148m	11.5
YNRC25003		147	152	5	1.44	5m @ 1.44g/t from 147m	7.20
YNRC25003		158	159	1	2.38	1m @ 2.38g/t from 158m	2.38
YNRC25004		210	211	1	2.30	1m @ 2.3g/t from 210m	2.30
YNRC25005		210	213	3	2.44	3m @ 2.44g/t from 210m	7.32
YNRC25006		0	4	4	1.03	4m @ 1.03g/t from 0m	4.12
YNRC25006		172	173	1	3.73	1m @ 3.73g/t from 172m	3.73
YNRC25006		210	212	2	1.18	2m @ 1.18g/t from 210m	2.36
YNRC25007		191	192	1	13.2	1m @ 13.2g/t from 191m	13.2
YNRC25007		199	200	1	1.26	1m @ 1.26g/t from 199m	1.26
YNRC25008		28	32	4	1.85	4m @ 1.85g/t from 28m	7.40
YNRC25008		195	199	4	3.11	4m @ 3.11g/t from 195m	12.4
YNRC25008	including	196	197	1	8.64	1m @ 8.64g/t from 196m	8.64
YNRC25009		178	179	1	1.54	1m @ 1.54g/t from 178m	1.54
YNRC25009		191	192	1	1.18	1m @ 1.18g/t from 191m	1.18
YNRC25009		196	197	1	1.35	1m @ 1.35g/t from 196m	1.35
YNRC25010		185	186	1	1.17	1m @ 1.17g/t from 185m	1.17
YNRC25010		192	197	5	3.19	5m @ 3.19g/t from 192m	16.0
YNRC25010	including	193	194	1	12.9	1m @ 12.9g/t from 193m	12.9
YNRC25011		167	168	1	1.43	1m @ 1.43g/t from 167m	1.43
YNRC25012		192	193	1	1.57	1m @ 1.57g/t from 192m	1.57
YNRC25012		235	236	1	7.06	1m @ 7.06g/t from 235m	7.06
YNRC25013						NSI	
YNRC25014		0	8	8	1.26	8m @ 1.26g/t from 0m	10.1
YNRC25014		190	191	1	5.81	1m @ 5.81g/t from 190m	5.81
YNRC25014		195	198	3	1.01	3m @ 1.01g/t from 195m	3.03
YNRC25015		200	201	1	1.19	1m @ 1.19g/t from 200m	1.19
YNRC25015		210	214	4	1.73	4m @ 1.73g/t from 210m	6.92
YNRC25016		139	142	3	1.04	3m @ 1.04g/t from 139m	3.12
YNRC25016		147	148	1	2.95	1m @ 2.95g/t from 147m	2.95
YNRC25017		147	155	8	3.45	8m @ 3.45g/t from 147m	27.6
YNRC25017	including	152	153	1	20.6	1m @ 20.6g/t from 152m	20.6
YNRC25018		147	149	2	4.48	2m @ 4.48g/t from 147m	8.96
YNRC25018		162	163	1	3.02	1m @ 3.02g/t from 162m	3.02

Table 1 - Significant Intercepts (>1.0g/t Au) for the Yunndaga RC drilling, +10 gram-metre intercepts highlighted.

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram- metres
YNRC25019		192	199	7	2.65	7m @ 2.65g/t from 192m	18.6
YNRC25020		179	180	1	1.56	1m @ 1.56g/t from 179m	1.56
YNRC25020		185	192	7	1.64	7m @ 1.64g/t from 185m	11.5
YNRC25021		197	198	1	1.03	1m @ 1.03g/t from 197m	1.03
YNRC25021		203	209	6	1.68	6m @ 1.68g/t from 203m	10.1
YNRC25022		220	236	16	8.03	16m @ 8.03g/t from 220m	128
YNRC25022	including	222	223	1	33.6	1m @ 33.6g/t from 222m	33.6
YNRC25022	and	228	232	4	13.5	4m @ 13.5g/t from 228m	54.0
YNRC25022		239	240	1	1.19	1m @ 1.19g/t from 239m	1.19
YNRC25023		215	226	11	3.32	11m @ 3.32g/t from 215m	36.5
YNRC25023		234	235	1	1.25	1m @ 1.25g/t from 234m	1.25
YNRC25024		204	212	8	1.72	8m @ 1.72g/t from 204m	13.8
YNRC25025		192	194	2	3.65	2m @ 3.65g/t from 192m	7.30
YNRC25025		201	202	1	1.09	1m @ 1.09g/t from 201m	1.09
YNRC25026		167	180	13	4.70	13m @ 4.70g/t from 167m	61.1
YNRC25026	including	176	178	2	22.6	2m @ 22.6g/t from 176m	45.2
YNRC25027		156	168	12	2.34	12m @ 2.34g/t from 156m	28.1
YNRC25027	including	163	164	1	11.4	1m @ 11.4g/t from 163m	11.4
YNRC25028		146	147	1	1.70	1m @ 1.70g/t from 146m	1.70
YNRC25028		154	156	2	2.73	2m @ 2.73g/t from 154m	5.46
YNRC25029		147	151	4	0.92	4m @ 0.92g/t from 147m	3.68
YNRC25030		161	162	1	6.31	1m @ 6.31g/t from 161m	6.31

Table 2: Yunndaga 2025 Phase 1 Reverse Circulation collar information. Holes located on tenements M29/184 and M29/88. Gridcoordinates shown in MGA94 Zone 51.

Hole ID	Hole Type	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)	Status						
VNRC25001	RC	311270	6707745	/18	-60	51	138	This ASX						
11111025001	ne	511270	0/0//45	410	00	00	51	150	announcement					
	PC	211250	6707711	119	62	51	174	This ASX						
TINKC25002	nc.	511255	0/0//11	410	-02	-02	-02	02	51	1/4	announcement			
	РC	211272	6707604	110	EA	48	174	This ASX						
TINC25005	RC.	511275	0707094	410	-54		174	announcement						
VNDC2E004	РC	211270	6707500	420		11	220	This ASX						
TINKC25004	RC.	511278	0/0/599	420	-55	41	220	announcement						
	DC	211270	6707602	420	E 4	F4 F2	220	This ASX						
TINKC25005	ĸĊ	311278	6707602	420	-54	-54	55	228	announcement					
VNRC2E006	РC	211/05	6707256	420	E 2	E1	1 220	This ASX						
TINKC25000	ĸĊ	311485	0/0/350	420	-33	-33	-55	-53	-53	-53	-53	51	228	announcement
	DC	211504	6707251	419	52	40	210	This ASX						
TINKC25007	ĸĊ	311504	0/0/351	418	-53	49	210	announcement						

Hole ID	Hole Type	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)	Status		
YNRC25008	RC	311525	6707334	418	-53	45	210	This ASX		
YNRC25009	RC	311544	6707320	417	-56	46	204	I NIS ASX		
								This ASX		
YNRC25010	RC	311550	6707306	417	-51	43	204	announcement		
	DC	211609	6707151	41 F	67	45	102	This ASX		
YNRC25011	ĸĊ	311098	6707151	415	-07	45	192	announcement		
YNRC25012	RC	311641	6707119	416	-66	42	246	This ASX		
		511011	0,0,110	110			210	announcement		
YNRC25013	RC	311676	6707097	415	-62	33	222	This ASX		
									announcement	
YNRC25014	RC	311708	6707096	415	-62	31	204	I NIS ASX		
								This ASX		
YNRC25015	RC	311696	6707085	415	-62	43	216	announcement		
	DC	211575	(707257	41.4	62	40	100	This ASX		
YNRC25016	ĸĊ	311575	6707357	414	-63	48	168	announcement		
YNRC25017	RC	311558	6707377	414	-56	46	174	This ASX		
	ne	511550	0/0/3//	717	50	40	40	1/4	announcement	
YNRC25018	RC	311538	6707378	414	-52	49	49 192	This ASX		
									announcement	
YNRC25019	RC	311491	6707402	414	-62	39	216	I NIS ASX		
								This ASX		
YNRC25020	RC	311479	6707405	414	-52	47	216	announcement		
VNDC25024	DC	211451	6707415	41.4	ГА	47	220	This ASX		
YNRC25021	RC	311451	6707415	414	-54	-54	-54	47	228	announcement
YNRC25022	RC	311422	6707428	417	-57	48	246	This ASX		
		511122	0/0/120	117			210	announcement		
YNRC25023	RC	311404	6707449	417	-52 52	-52 52	240	This ASX		
YNRC25024	RC	311381	6707485	417	-52	-52 50	-52 50	50 228	228	announcement
								This ASX		
YNRC25025	RC	311354	6707541	417	-52	48	216	announcement		
VNDC2E02C	DC	211224	6707604	417	50	50	102	This ASX		
YNRC25026	RC	311334	6707604	417	-52	50	192	announcement		
YNRC25027	RC	311324	6707630	418	-61	55	186	This ASX		
		511524	0/0/030	410	01		100	announcement		
YNRC25028	RC	311322	6707647	417	-61	50	174	This ASX		
								announcement		
YNRC25029	RC	311319	6707665	418	-61	45	174	I IIIS ASX		
								This ASX		
YNRC25030	RC	311306	6707685	418	-56	47	162	announcement		

Next Steps

Drilling is ongoing at Brightstar's Sandstone Hub, with further rigs set to arrive over the coming weeks to drill across the portfolio. Diamond and RC drill rigs will be mobilised to Menzies to complete a second phase of

drilling at Yunndaga, as well as further surface drilling at the Fish Deposit (Laverton Hub). An underground diamond rig will also be mobilised to Fish. Brightstar will provide updates from this drilling as they occur.

This ASX announcement has been approved by the Managing Director on behalf of the Board of Brightstar.

FOR FURTHER INFORMATION, PLEASE CONTACT:

Alex Rovira Managing Director Email: alex@brightstarresources.com.au

Investor Relations Lucas Robinson Phone: +61 408 228 889 Email: <u>lucas@corporatestorytime.com</u>

References

- 1. Refer Brightstar ASX announcement dated 6 September 2023 "Laverton and Menzies Mine Restart Study"
- 2. Refer Kingwest Resources ASX announcement dated 9 July 2019 "Menzies Gold Project Acquisition"

ABOUT BRIGHTSTAR RESOURCES

Brightstar Resources Limited is a Perthbased gold producer and development company listed on the Australian Securities Exchange **(ASX: BTR).**

The Company hosts a portfolio of highquality assets hosted in the prolific Goldfields and Murchison regions of Western Australia, which are ideally located proximal to significant regional infrastructure and suppliers.

The Company currently operates two underground mines at its Laverton operations - Second Fortune and Fish with ore from these mines currently being processed at Mt Morgans under an Ore

Purchase Agreement with Genesis Minerals Limited, under which Brightstar can deliver and sell up to 500,000 tonnes of ore from its Laverton operations over the course of CY25 and Q1 CY26. Brightstar is set to deliver a DFS on a wider development scenario at its Laverton and Menzies hubs in 1H CY25.

In August 2024, Brightstar announced the consolidation of the Sandstone district with the integration of the Sandstone and Montague East Gold Project into Brightstar resulting in a total Group JORC (2012) Mineral Resource of **3.0Moz Au at 1.5g/t Au.** Brightstar is now advancing a systematic exploration and study program on Sandstone targeting the delivery of a PFS in 1H CY26.

Brightstar Consolidated JORC Mineral Resources

Location	Cut-off	M	easured		Ind	licated		In	ferred			Total	
	g/t Au	kt	g/t Au	koz	kt	g/t Au	koz	kt	g/t Au	koz	kt	g/t Au	koz
Alpha	0.5	623	1.6	33	374	2.1	25	455	3.3	48	1,452	2.3	106
Beta	0.5	345	1.7	19	576	1.6	29	961	1.7	54	1,882	1.7	102
Cork Tree Well	0.5	-	-	-	3,264	1.6	166	3,198	1.2	126	6,462	1.4	292
Lord Byron	0.5	311	1.7	17	1,975	1.5	96	2,937	1.5	138	5,223	1.5	251
Fish	1.6	25	5.4	4	199	4.5	29	153	3.2	16	376	4.0	49
Gilt Key	0.5	-	-	-	15	2.2	1	153	1.3	6	168	1.3	8
Second Fortune (UG)	2.5	24	15.3	12	34	13.7	15	34	11. 7	13	92	13.4	40
Total – Laverton		1,328	2.0	85	6,437	1.7	361	7,891	1.6	401	15,655	1.7	848
Lady Shenton System (Pericles, Lady Shenton, Stirling)	0.5	-	-	-	2,590	1.5	123	2,990	1.6	150	5,580	1.5	273
Yunndaga	0.5	-	-	-	1,270	1.3	53	2,050	1.4	90	3,320	1.3	144
Yunndaga (UG)	2	-	-	-	-	-	-	110	3.3	12	110	3.3	12
Aspacia	0.5	-	-	-	137	1.7	7	1,238	1.6	62	1,375	1.6	70
Lady Harriet System (Warrior, Lady Harriet, Bellenger)	0.5	-	-	-	520	1.3	22	590	1.1	21	1,110	1.2	43
Link Zone	0.5	-	-	-	160	1.3	7	740	1.0	23	890	1.0	29
Selkirk	0.5	-	-	-	30	6.3	6	140	1.2	5	170	2.1	12
Lady Irene	0.5	-	-	-	-	-	-	100	1.7	6	100	1.7	6
Total – Menzies		-	-	-	4,707	1.4	218	7,958	1.4	369	12,655	1.4	589
Montague-Boulder	0.6	-	-	-	522	4.0	67	2,556	1.2	96	3,078	1.7	163
Whistler (OP) /	0.5/							1 700	2.2	120	1 700		120
Whistler (UG)	2.0	-	_	-	-	_	-	1,700	2.2	120	1,700	2.2	120
Evermore	0.6	-	-	-	-	-	-	1,319	1.6	67	1,319	1.6	67
Achilles Nth / Airport	0.6	-	-	-	221	2.0	14	1,847	1.4	85	2,068	1.5	99
Julias ¹	0.6	_	_	-	1 405	14	61	503	10	16	1 908	13	77
(Resource)	0.0				1,405	1.4	01	505	1.0	10	1,500	1.5	
Julias ² (Attributable)	0.6	-	-	-							1,431	1.3	58
Total – Montague (Global)		-	-	-	2,148	2.1	142	7,925	1.5	384	10,073	1.6	526
Total – Montague (BTR) ^{1,2}					2,148	2.1	142	7,925	1.5	384	9,596	1.6	507
Lord Nelson	0.5	-	-	-	1,500	2.1	100	4,100	1.4	191	5,600	1.6	291
Lord Henry	0.5	-	-	-	1,600	1.5	78	600	1.1	20	2,200	1.4	98
Vanguard Camp	0.5	-	-	-	400	2.0	26	3,400	1.4	191	3,800	4.5	217
Havilan Camp	0.5	-	-	-	-	-	-	1,200	1.3	54	1,200	1.3	54
	0.5	-	-	-	800	0.9	23	7,300	0.9	265	8,100	0.9	288
	0.5	-	-	-	-	-	-	2,500	1.1	90	2,500	1.1	90
	0.5				-	1.0	-	10.200	1.9	810	100	1.9	8
		-	-	-	4,300	1.0	227	19,200	1.3	1 072	23,500	1.4	1,046
		1,328	2.0	65	17,592	1.7	948	42,974	1.4	1,973	01,400	1.5	2,990

Refer MRE Note below. Note some rounding discrepancies may occur.

Pericles, Lady Shenton & Stirling consolidated into Lady Shenton System.

Warrior, Lady Harriet & Bellenger consolidated into Lady Harriet System.

Note 1: Julias is located on M57/427, which is owned 75% by Brightstar and 25% by Estuary Resources Pty Ltd

Note 2: Attributable gold ounces to Brightstar include 75% of resources of Julias as referenced in Note 1.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Brightstar Resources Limited's planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Brightstar believes that its expectations reflected in these forward- looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that further exploration will result in the estimation of a Mineral Resource.

Competent Person Statement – Exploration

The information presented here relating to exploration of the Menzies, Laverton and Sandstone Gold Project areas are based on information compiled by Mr Michael Kammermann, MAIG. Mr Kammermann is a Member of the Australasian Institute of Geoscientists (AIG) and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a "Competent Person" as that term is defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)". Mr Kammermann is a fulltime employee of the Company in the position of Exploration Manager and has provided written consent approving the inclusion of the Exploration Results in the form and context in which they appear.

Competent Person Statement – Mineral Resource Estimates

This Announcement contains references to Brightstar's JORC Mineral Resource estimates, extracted from the ASX announcements titled "Cork Tree Well Resource Upgrade Delivers 1Moz Group MRE" dated 23 June 2023, "Maiden Link Zone Mineral Resource" dated 15 November 2023, "Aspacia deposit records maiden Mineral Resource at the Menzies Gold Project" dated 17 April 2024, "Brightstar Makes Recommended Bid for Linden Gold", dated 25 March 2024, "Brightstar to drive consolidation of Sandstone Gold District" dated 1 August 2024, "Scheme Booklet Registered by ASIC" dated 14 October 2024 and "Robust Mineral Resource Upgrades at Laverton and Menzies Underpins Future Mining Operations" dated 19 May 2025.

Brightstar confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the Mineral Resource estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Compliance Statement

With reference to previously reported Exploration Results and Mineral Resources, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

APPENDIX 1: JORC CODE, 2012 EDITION – TABLE 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Brightstar Resources Ltd Industry standard RC drilling and sampling protocols for lode and supergene gold deposits have been utilised throughout the BTR campaign. BTR RC holes were sampled using 4m composite spear samples or 1 metre spear samples. Brightstar's samples were submitted to Bureau Veritas Laboratories in Kalgoorlie where the entire sample was pulverised, split and assayed by fire assay using a 50-gram charge. Kingwest Resources Ltd (KW prefix) RC holes were submitted to SGS laboratories in Kalgoorlie where the entire samples with individual 1m samples submitted for assays Samples were submitted to SGS laboratories in Kalgoorlie where the entire sample was pulverised, split and assayed by fire assay using a 50 gram charge. DD holes sample intervals ranged from 0.4m - 1.5m (averaging 0.5m within mineralised zones and 1m outside) and were based on geological logging. Magnetic Susceptibility readings were taken of DD core at 5m intervals, using a Fugro RT-1 Mag Sus instrument. Goldfields Exploration Ltd (YD prefix) RC samples were collected via the cyclone at 1m intervals and

		•	split with collection of a 2-3kg sample in calico bag for sample analysis. Retained drill samples were collected in green bags and placed on the ground adjacent to the drill hole collar. Alternate samples were initially submitted to ALS, Kalgoorlie for analysis. The non- submitted samples were left at the drill site and were later collected and submitted as anomalous results warranted. Diamond core sampling on NQ core at mostly 1m intervals. Closer spaced sampling around specific mineralized zones or structures.
		•	One metre RC samples were collected through a cyclone then either riffle split (75:25) or composited using scoop or spear at 6- 10m intervals. Selected diamond core zones were marked at 1 metre or geological intervals and cut in half for sampling. Any additional core for sampling was quartered.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	•	BTR drill holes are all RC holes utilising a 4.5 inch face sampling hammer and surveyed using a Reflex gyroscope. KWR drillholes were RC holes using a 5.5 inch face sampling hammer and diamond core (DD) with Reverse Circulation (RC) pre collars. DD core is a mix of HQ and NQ diameter. RC precollars used a 4 ¾ inch diameter face sampling hammer. All KWR core was systematically oriented during drilling using a Reflex ACT Mk.3TM core orientation tool. Hole depths range from 140 to 480m Goldfields diamond holes were drilled by Ausdrill Ltd Boulder with an RC pre-collar by Ausdrill using a Schramm 685 drill rig. Wiluna Mines RC was drilled by McKay Drilling using an RC rig with 950 cgm-350 psi onboard compressor and auxiliary compressor.

		•	Wiluna Mines diamond drilling was conducted by Colby Drilling
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	•	RC sample recovery was qualitatively assessed by comparing drill chip volumes (sample bags) for individual meters. Sample depths were crossed checked every rod (6m). The cyclone was regularly cleaned to ensure no material build up and sample material was checked for any potential downhole contamination. The majority of the samples were dry. Little water is recorded around the area. In the CP's opinion the drilling sample recoveries/quality are acceptable and are appropriately representative for the style of mineralisation. No grade versus sample recovery biases, or biases relating the loss or gain of fines have been identified in BTR's or Kingwest's drilling. Kingwest DD core was measured for recovery, RQD and fracture intensity. Recovery was excellent at almost 100%. Recovery for Goldfields drillholes was not recorded Wiluna Mines Ltd recorded sample recovery percentages on the drill hole logging sheets for every metre interval
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	•	BTR RC holes were logged on one metre intervals at the rig by the geologist from drill chips. Logging was recorded directly into LogChief computer software. Kingwest drill core was logged geologically and geotechnically in detail sufficient to support Mineral Resource estimates, mining and metallurgical studies. Logging included lithology, texture, veining, grain size, structure, alteration, hardness, fracture density, RQD, alteration, mineralisation and magnetic response. Logging is qualitative in nature. Kingwest core was photographed. 100% of BTR and KWR metres are geologically logged. Wiluna Mines RC and Diamond holes were geologically logged in

		 detail sufficient to support Mineral Resource Estimates, mining and metallurgical studies. Logging included lithology, oxidation, alteration, veining, mineralisation, colour, grain size, texture, and magnetic response. Goldfields Exploration diamond holes were geologically logged in sufficient detail to support Mineral Resource estimates, mining and metallurgical studies. Logging included colour, hardness, texture, lithology, veining and oxidation
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Brightstar and Kingwest RC drilling RC drilling single 1 metre splits were automatically taken at the time of drilling by a cone splitter attached to the cyclone. For interpreted non-mineralised areas, 4 metre composite samples were collected from the drill rig by spearing each 1m collection bag. The 4 metre composites were submitted for assay. For interpreted mineralised areas, the 1 metre splits were bagged on the static cyclone splitter on the RC rig. Duplicate samples were taken over selected interpreted mineralised intervals to determine if sampling is representative. Sample preparation comprised industry standard oven drying, crushing, and pulverisation to less than 75 microns. Homogenised pulp material was used for assaying. Samples volumes were typically 1.0-4.0 kg and are considered to be of suitable size for the style of mineralisation. Due to the coarse gold nature of mineralisation at Menzies field duplicates are taken over interpreted mineralised intervals. Kingwest diamond drilling All core was appropriately orientated and marked up for sampling by company geologists prior to core cutting. Sample widths ranged from 0.4m to 1.5m. Half core samples were submitted to the commercial laboratories in Kalgoorlie laboratory

	 for analysis. Sample preparation comprised industry standard oven drying.
	crushing and pulverisation to less than 75 microns. Homogenised pulp material was used for assaying
	• Sample volumes were typically 2.0-4.0 kg and were considered to be of suitable size for the style of mineralisation.
	 Blank samples were routinely dispatched to the laboratory to monitor sample preparation. These generally performed within acceptable tolerances
	 Duplicate coarse reject samples have been submitted for assay to cross check assay repeatability. Results show variation typically of coarse grain "nuggety" gold deposits.
	Goldfields Exploration Ltd RC and diamond drilling
	 RC samples were collected via the cyclone at 1m intervals and split with collection of a 2-3kg sample in calico bag for sample analysis.
	 Retained drill samples were collected in green bags and placed on the ground adjacent to the drill hole collar. Alternate samples were initially submitted to ALS, Kalgoorlie for analysis. The non- submitted samples were left at the drill site and were later collected and submitted as anomalous results warranted. Half core samples were taken at 1m intervals
	Wiluna Mines Ltd RC and diamond drilling
	 One metre RC samples were collected through a cyclone then either riffle split (75:25) or composited using scoop or spear at 6-10m intervals. Diamond half core was sampled selectively in mineralised zones mostly at 1m intervals and closer spaced to reflect structural/geological contacts.

Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Brightstar Resources Ltd 1m and 4m composite samples were assayed by Fire Assay (FA50) by Bureau Veritas Laboratories for gold. Laboratory QC involves the use of internal lab standards, certified reference material, blanks, splits and replicates. QC results (blanks, coarse reject duplicates, bulk pulverised, standards) are monitored and were within acceptable limits. ~5% standards were inserted to check on precision of laboratory results. Kingwest Resources Ltd:
		 The RC1 m split and 4m composite samples were assayed by Fire Assay (FAA50) by SGS Laboratory in Kalgoorlie for gold. KWR used industry standard data collection and QC protocols. Laboratory QC (Quality control) involves the use of internal lab standards, certified reference material, blanks, splits and replicates. QC results (blanks, coarse reject duplicates, standards) are monitored and were within acceptable limits. Approximately 10% of samples submitted were QC samples. QC assays reported within acceptable tolerances. Of note is that coarse reject or bulk pulverised reject duplicate assays show variation from the original primary assays typically from the original primary assays typically of the "nuggety" style of gold mineralisation found at the project. Samples were submitted to an umpire laboratory for verification of the reliability of assay results received from the primary laboratory
		 Goldfields Exploration Ltd All samples were analysed by ALS Kalgoorlie for gold by 50g charge Fire Assay (PM209) to 0.01ppm with arsenic by XRF (XRF1) to 5ppm. A system of quality control with standards and blanks

		 were incorporated in all sample dispatches to monitor assay reliability. Wiluna Mines Ltd Analyses were conducted at Amdel Laboratories, Perth branch. RC drill composite samples were pulverised and a 50g sample digest by aqua regia followed by Atomic absorption with a detection limit of 0.02ppm One metre samples within ore material in RC drilling was fire assayed with a 50-gram charge and digested in aqua regia and determined by AAS with a detection limit of 0.01ppm.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Brightstar Resources Ltd: Significant intersections have been reviewed by several company personnel. Data storage was captured onsite using a laptop uploading to a cloud-based server then exported to MS Access. No data was adjusted. Kingwest Resources Ltd Significant intersections were cross checked against drill logs after drilling. Several twin holes were planned to verify historic drilling intersections Data storage was as PDF/XLS files which were then migrated to a Datashed Database KWR validated and cross-checked historical project data which was then migrated into the Datashed Database No data was adjusted Wiluna Mines Ltd Data verification procedures and protocols were not detailed in

		 historical reports Goldfields Exploration Ltd Data verification procedures and protocols were not detailed in
		historical reports
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Brightstar Resources Ltd All drill collar locations were initially surveyed using a hand-held GPS, accurate to within 3-5m. Post drilling, a qualified contract surveyor picked up the hole collars with a RTK DGPS accurate to cm scale. The grid system used is MGA94 Zone 51. All reported coordinates are referenced to this grid. The site topography utilised a DTM from 2019 with accuracy <1m. Kingwest Resources Ltd All drill collar locations were initially surveyed using a hand-held Garmin GPS, accurate to within 3-5m. Most holes were drilled on grid lines, with some holes completed off-grid to test lodes interpreted to have unusual orientations The grid system used was MGA94 Zone 51. All reported coordinates were referenced to this grid. The topography is almost flat. Topography is almost flat, small differences in elevation between drillholes will have little effect on mineralisation widths on initial interpretation. A high resolution (~1m) digital topography later was created from Landgate imagery to enable precise 3D modelling.
		Wiluna Mines Ltd

		 Survey methods for drill collar locations were not documented in historical reports. Drill collar locations were calculated from drillhole location plans. A local grid system was used, as well as AMG84 Zone 51 Goldfields Exploration Ltd Drill hole locations were surveyed in-house by DGPS to an accuracy of 0.01 metres The grid system used was AMG84 Zone 51
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Brightstar Resources Ltd Holes are variably spaced with the intent of infilling hole spacings to a nominal 20m x 20m pattern across the deposits. No sample compositing of field samples has been applied. Kingwest Resources Ltd Holes were variably spaced ranging from 5 metres to 50 metres spacing depending on the location of previous MRE holes. The data spacing and distribution was sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource estimation procedures and classifications applied, which led to the stated estimates. Sample compositing was not utilised Wiluna Mines Ltd Section spacing was 20m with hole spacing at 25m. The data spacing and distribution was sufficient to establish the degree of geological and grade continuity appropriate for Mineral Resource estimation was sufficient to establish the degree of geological and grade continuity appropriate for Mineral Resource and distribution was sufficient to establish the degree of geological and grade continuity appropriate for Mineral Resource estimation

		 Data spacing and distribution is sufficient with later drilling to establish degree of geological and grade continuity appropriate for mineral resource estimation. No sample compositing of field samples has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The relationship between the drilling orientation and the orientation of mineralised structures is not considered to have introduced a sampling bias. Most holes have been drilled perpendicular to the main orientation of mineralisation. No drilling orientation related sampling bias has been identified at the project.
Sample security	The measures taken to ensure sample security.	 Samples were collected on site under supervision of the geologist. Visitors needed permission to visit site. Once collected samples were bagged, they were transported to Kalgoorlie by company personnel or trusted contractors for assaying with Bureau Veritas transporting samples from Kalgoorlie to Perth. Despatch and consignment notes were delivered and checked for discrepancies. Sample security protocols were not detailed in Wiluna Mines or Goldfields Exploration WAMEX reports.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Sampling techniques and data has been reviewed internally by company personnel and several external consultants. Review of sampling techniques and investigation by re-split sampling has confirmed that samples have been collected effectively and are reliably representative, with assay variations related to mineralisation characteristics.

SECTION 2 REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code Explanation	Commentary				
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 All tenements are owned 100% by BTR. Original vendor retains a 1% NSR and the right to claw back a 70% interest in the event a single JORC compliant resource exceeding 500,000 oz is delineated for a fee three times expenditure for the following tenements: M29/014, M29/088, M29/153, M29/154, M29/184. The tenements are in good standing and no known impediments exist. 				
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous workers in the area include Kingwest Resources, Pancontinental Mining, Rox Resources, Regal Resources, Wiluna Resources, Goldfields Exploration, Heron Resources and Intermin Resources Limited (now Horizon Minerals). Several open cut mines were drilled and mined in the 1980's, 1990's up to early 2000's. Extensive underground mining was undertaken from the 1890's – 1940's across the Menzies leases and it is estimated that historic exploration was often undertaken via blind shafts initially. More recently, Brightstar completed an open pit mining campaign at the Selkirk deposit, NW of Menzies and the Lady Shenton system. 				
Geology	Deposit type, geological setting and style of mineralisation.	 Mineralisation is Archean mesothermal lode gold style. Gold mineralisation is hosted in multiple sub parallel gold mineralised shear/fracture zones either within a sequence of metamorphosed mafic amphibolites or at the contact between mafic amphibolite and ultramafic or metamorphosed sediments. Stratigraphy strikes northwest and dip southwest. Most of the mineralisation is close to sub parallel to the stratigraphy and dip ~40 to 50° southwest, 				

			plunging south. The weathering intensity varies across the area and each deposit from 10 meters vertical depth around Selkirk to around 60 meters at Lady Harriet.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	•	Historical Drill holes have been referenced in this announcement. Relevant information is included in Appendix 2 at the end of this release.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	•	Assay results reported here have been length weighted. No metal equivalent calculations were applied.

Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	•	Mineralisation is generally southwest dipping at about 50 degrees and plunging south. Drillholes are generally perpendicular to the main strike/dip of mineralisation with drillhole intersections close to true width of the mineralised lodes.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	•	Refer to figures in this report.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	•	Results from all drill holes in the program have been reported and their context discussed.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	•	No other exploration data is reported here.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	•	Additional (grade control) drilling will be planned and executed ahead of mining operations. Further resource definition / exploration drilling campaigns will be investigated for deeper mineralisation and if successful, further mineral resource estimates will be calculated.

APPENDIX 2: Historical Hole Details: Yunndaga

	Hole							From	То	Drilled	Au
Hole ID	Туре	Easting	Northing	EOH (m)	RL	Dip	Azi	(m)	(m)	Interval (m)	(g/t)
KWD037	DD	311408	6707446	292.25	416	-65	55	241.5	244.56	3.06	8.99
								283.37	288	4.63	0.83
1/11/2000	PC	311424	6707437	228	417	-50	50	197	200	3	2.04
KWK250	RC.							204	211	7	7.14
MZDH0002	DD	311668	6707136	258.5	422	-65	50	176	177.8	1.8	11.1
MZRC0359	RC	311524	6707489	142	421	-60		107	112	5	1.91
							49	116	117	1	1.37
								120	127	7	1.83
YD10740-1	DD	311502	6707496	130	367	-60	60	82	84	2	2.91
								90	102	12	2.06
YD10740-2	DD	311430	30 6707429	461.4	417	-65		229.7	235	5.3	1.38
							53	263	264	1	1.97
								416	418	2	1.02
								420	421.33	1.33	1.08