

TEM | Yalgoo Update - Excellent First Remorse Metallurgy Result

Key Points

- First Remorse metallurgical sample shows excellent results
- Davis Tube results up to 68% Fe in concentrate
- Testwork notes high recoveries and low impurities
- Further results expected in coming weeks

Summary

Tempest Minerals Ltd (**TEM**) is pleased to update the market on the first metallurgical results received from the Remorse Iron discovery in Western Australia. Davis Tube Recovery (DTR) testing shows results up to 68.8% Iron in concentrate (25µm). The testwork additionally highlights the low impurity levels noted in geochemistry from drill results.

TEM expects to continue to receive further results from the remaining composite samples in coming weeks.

Remorse Deposit

Background

Remorse is part of TEM's flagship Yalgoo Project in Western Australia. It totals more than 1,000 km² and is located near high-profile neighbours across multiple commodities, including Base Metals (29 Metals Ltd-ASX:29M; Tungsten Mining NL -ASX:TGN), Gold (Spartan Resources Ltd-ASX:SPR; Vault Minerals

Ltd-ASX:VAU; Capricorn Metals
Ltd-ASX:CMM), and Iron (Fenix
Resources Ltd-ASX:FEX; Karara
Mining Ltd and Sinosteel
Midwest Group).

The Remorse Deposit, located on the eastern side of the Yalgoo Project, is a large magnetite iron deposit discovered in 2024 1 through drilling of a VMS-style base metal target ². While copper intercepted and was considerable base metal potential remains within the 21-hole project, the initial 4,005m reverse circulation drilling program also intersected significant magnetite yielding high-grade iron (up to 39%) ³.

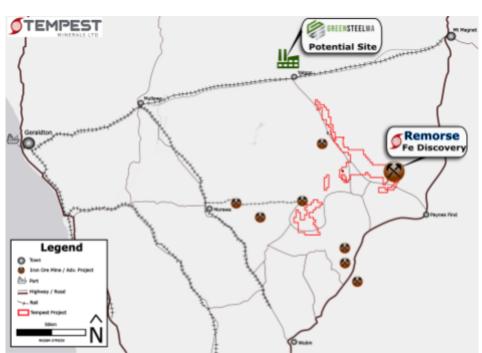


Figure 01: Map of Remorse Deposit and regional infrastructure

ASX : TEM

TEM has released a number of announcements for the Remorse Deposit including an exploration target ⁴ followed by an inaugural inferred resource estimate ⁵ and commenced other activities such as the sig ning of a memorandum of understanding with burgeoning mid-west steel developer GreenSteel and Iron Pty Ltd ⁶ to commence work to assess potential processing synergies between the two companies.

TEM also previously announced the commencement of metallurgical testing ⁷ on material remaining from the previous drilling program, which comprised greater than 5 tonnes of material. IMO consultants have generated 9 composite samples to date that are undergoing a number of metallurgical tests and will provide a wide spread of metallurgical samples across much of the known mineralisation as displayed in Figure 02.

Composite 01 was the first to be completed and shows highly promising results.

While these tests are preliminary and based on a limited amount of RC reject samples and represent a relatively small number of consecutive mineralised intervals from the first hole drilled, the results are very encouraging and will lead to further metallurgical testing and petrological work with the aim of optimising the concentrate quality.

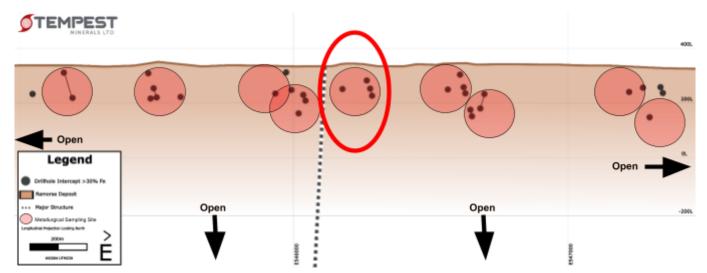


Figure 02: Remorse Deposit with drill intercepts and metallurgical sampling locations

Composite#1 Results

Composite#1 comprises 9 x 1m intervals (93 - 102m dowhole) of mineralised magnetite sample taken from RC drillhole WARDH00160 (details of composited intervals are given in Appendix D).

Key points for this specific composite:

- Average calculated head assay grade returned was 32.29% Fe
- DTR results at variable grind sizes, with best results as expected at 25 μm
- Low impurity levels including 3.82% SiO₂, 0.12% Al₂O₃, 0.036% Mn and 0.031% P
- Detailed DTR testwork results are given in Appendix E.

Next Steps

- Remaining composite sample results due in coming weeks
- Integration of data into deposit assessment
- Planning for further project development work

The Board of the Company has authorised the release of this announcement to the market.

About TEM

Tempest Minerals Ltd is an Australian based mineral exploration company with a diversified portfolio of projects in Western Australia considered highly prospective for precious, base and energy metals. The Company has an experienced board and management team with a history of exploration, operational and corporate success.

Tempest leverages the team's energy, technical and commercial acumen to execute the Company's mission - to maximise shareholder value through focused, data-driven, risk-weighted exploration and development of our assets.

Investor Information

TEM welcomes direct engagement and encourages shareholders and interested parties to visit the TEM Investor hub which provides additional background information, videos and a forum for stakeholders to communicate with each other and with the company.

Contact

For more information, please contact: Don Smith **Managing Director**

Level 2, Suite 9 389 Oxford Street Mt Hawthorn. Western Australia 6016

+61 892000435

Forward-looking statements

This document may contain certain forward-looking statements. Such statements are only predictions, based on certain assumptions and involve known and unknown risks, uncertainties and other factors, many of which are beyond the company's control. Actual events or results may differ materially from the events or results expected or implied in any forward-looking statement. The inclusion of such statements should not be regarded as a representation, warranty or prediction with respect to the accuracy of the underlying assumptions or that any forward-looking statements will be or are likely to be fulfilled. Tempest undertakes no obligation to update any forward-looking statement to reflect events or circumstances after the date of this document (subject to securities exchange disclosure requirements). The information in this document does not take into account the objectives, financial situation or particular needs of any person or organisation. Nothing contained in this document constitutes investment, legal, tax or other advice.

Competent Person Statement

The information in this announcement that relates to Exploration Results and general project comments is based on information compiled by Jirka Just who is the Geology Manager at Tempest Minerals Ltd. Jirka is a Member of AIG and has sufficient experience relevant to the style of mineralisation under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Jirka consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendix A: References

- TEM ASX Announcement dated 24 October 2024 "Yalgoo Update High-Grade Iron Intercepted In Early Drilling At Remorse" ➤
- 2. TEM ASX Announcement dated 21 November 2024 "Yalgoo Update Further Excellent Iron Results" ➤
- 3. TEM ASX Announcement dated 19 August 2024 "Remorse Sampling Indicates Further Prospectivity" ➤
- 4. TEM ASX Announcement dated 03 December 2024 "High-Grade Magnetite Deposit Emerging at Remorse" <Amended 16 January 2025 > ➤
- 5. TEM ASX Announcement dated 08 May 2025 "Yalgoo Remorse Positioned For Rapid Development With Inaugural Resource Amended" ➤
- 6. TEM ASX Announcement dated 07 February 2025 "MOU signed with WA Developer Green Steel and Iron" ➤
- 7. TEM ASX Announcement dated 13 February 2025 "Remorse Metallurgical Testing Commences" >

Appendix B: JORC Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Metallurgical Sampling Techniques The complete, intact, 'green bag' 1m bulk-reject RC samples were collected from the drill-site to be used for the metallurgical test work, i.e. all available sample was collected. Sample Preparation of Master Composite 1 Dry material from nine (9) continuous 1m RC drill hole intervals were each homogenised and representatively split to produce nine 5.56 kg sub-samples, which were combined to generate Composite 1 weighing 50.0 kg. Composite 1 was stage crushed to P100 3.35 mm using a crusher, then mixed (x3) using a rotary sample divider and split into 1 kg charges for further testwork. Grind Establishment Analysis A 1 kg sub-sample of the Master Composite 1 was wet ground using 19 stainless steel (SS) rods in a laboratory SS rod mill 250 mm diameter at 50% solids w/w in Perth tap water for different time intervals. The mill products were sieved at 25, 38, 53, 75, 106, 250, 300 and 425 micron using mesh sieve screens and the results were plotted to interpolate the grind time necessary to achieve 80% passing at the target grind size. Davis Tube Wash (DTW) A 20 g sub-sample at the target grind size was subjected to a Davis Tube test under the conditions presented in the Table below. The standard DTW procedure is as follows: 1. The composite sample was stage ground to the required P80 size and a representative 20 g samples split out; 2. Davis tube stroke frequency, stroke length, magnetic field strength, tube angle and water flow rate adjusted; 3. After setup complete a 20 g sample is added to the glass tube and timer set for 15 minutes; 4. The non-magnetic sample is collected in a bucket and once the timer has expired the mag sample is collected continuously in a separate bucket; 5. Both magnetic and non-magnetic samples dried at 70°C.

Criteria	JORC Code explanation	Commentary
----------	-----------------------	------------

•

Davis Tube Operating Conditions		
Test Condition	Setpoint	Units
Stroke Frequency	60	/min
Stroke Length	38	mm
Magnetic Field Strength	3 000	Gauss
Tube Angle	45	Degrees
Water Flow	540	mL/min
Washing Duration	10	min
Feed Weight	20	g
Drying Temperature	70	°C

RC Drilling Sampling Techniques:

- No drilling is reported in this announcement.
- Industry standard sample preparation and analysis methods were used.
- Each 1 m sample was split directly off the cyclone using a rig-mounted, conical, dual shoot splitter to
 deliver a 2-3 kg primary split sample into a numbered calico bag with the bulk reject passed into a
 green plastic RC bag and stored at the drill site.
- Sieved fines (unwashed) of each metre drilled were collected separately for first-pass geochemical analysis on BoxscanTM (Geotek Limited) which includes a mounted portable X-ray Fluorescence (XRF) spectroscopy which acquires elemental abundance from the surface of the material analysed.
- To ensure the quality of the RC samples collected, every effort was made to drill all samples dry.
- Water incursion is noted in the drill logs. The sampling system, rods and cyclone were cleaned at least after every rod (6 m).
- Drilling was completed dry using dust suppression without any water injection.

Criteria	JORC Code explanation	Commentary
		 Metre delineation was controlled by means of visual marks on the mast chain on rig. The metre marks were checked for accuracy at the start of the drilling deposit. Sample intervals which returned iron grade (>10%) from the BoxscanTM were submitted for laboratory analysis. The sampling methodology is industry standard and considered both representative and appropriate. Independent certified assay laboratories were used for analysis. Samples were analysed at Intertek Genalysis Laboratory in Perth where samples were dried, crushed and pulverised (90% passing 75 microns). A 100 g sample was retained from the pulverised sample for a four-acid (complete) digest and analysed by Induced Couple Plasma Mass Spectroscopy (ICP-MS) for 48 elements including iron (Fe), alumina (Al2O3), titanium dioxide (TiO2), sulphur (S) and phosphorus (P).
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 No drilling is reported in this announcement. RC drilling was conducted using a track-mounted Hydco 1000H rig with an onboard 1150CFM/351psi air compressor and a similarly rated external compressor /booster combined delivered 2400CFM/900psi to the bit face through 6 m rods (41/2 inch diameter) and a face sampling percussion hammer (5 to 53/4 inch diameter).
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Recoveries from each metre of drilling were not measured, but visual inspection and monitoring of samples in the field indicated that recoveries were high, visually consistent, and any variations were recorded. The drill string was monitored to minimise dust, and metre delineation was kept in check by monitoring marks on the chain. No material bias is expected in grade or recovery between the preferential loss/gain of fine/coarse media.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 No new logging is reported in this announcement. All drill hole data including geological logging was captured in GRID data acquisition software in real time on logging laptop or field phones and sent to the company SQL database. Data collected included: metadata, location data, downhole surveys, lithology, mineralogy, structures, groundwater information and photography. The logging process enables a thorough understanding of the geological features present in the drill holes This information is critical for making informed decisions regarding exploration, resource estimation, mining and metallurgical studies.

Criteria	JORC Code explanation	Commentary
		 100% logging coverage ensures a thorough dataset, supporting accurate and reliable assessments in subsequent studies. Reverse circulation chip samples were sieved and placed into chip trays and are logged to a degree that facilitates robust resource estimation and comprehensive study. Drill holes were logged to a level of detail to support this Mineral Resource Estimation. Any inconsistencies in logging or log availability is reflected in the Mineral Resource classification.
Sub-samplin g techniques and sample	 It non-core whether rittled tube sampled rotary split 	 The IMO Senior Metallurgist selected all the relevant RC 1m bulk-reject samples to be compiled to create representative composite samples for the purpose of orebody characterisation. The IMO Senior Metallurgist assessed the RC 1m bulk-reject samples for suitability for metallurgical test work.
preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Assays related to Metallurgical testwork Analytes: Al203, As, Ba, CaO, Cl, Co, Cr203, Cu, Fe, K2O, MgO, Mn, Na2O, Ni, P, Pb, S, SiO2, Sn, Sr, TiO2, V, Zn, Zr, LOI (LOI determined by Thermo Gravimetric Analyzer (TGA) at 1000oC) Method: Determination of Elements in Iron Ore by Borate Fusion with XRF instrument finish - extended suite. The sample is fused in a platinum crucible using lithium metaborate / tetraborate flux and the resultant glass bead is irradiated with X Rays and the elements of interest quantified. Assays related to RC Drilling No new drilling or new drill results are reported in this announcement. A rig-mounted, conical splitter was used for all drill samples delivered from the rig. Composited-samples for analysis were collected where chosen, by means of a sampling spear from metre-interval plastic bags At the laboratory, the samples are dried, crushed and pulverised (90% passing 75 microns). A 100g sample was retained from the pulverised sample for a four acid (complete) digest and 48 elements were read on ICPMS. Gold was assayed by 25g fire assay. Quality control included inserting CRM samples into the sampling chain at a rate of approximately 1 CRM sample for every 50 original samples. Both blank and duplicate samples were each inserted at a rate of 1 in 50 samples. The total population of control samples for soils and drilling was 5%. None of the CRM types contain enough data points to carry out a statistically significant analysis. A basic graphical assessment of the CRM assay results did not show significant bias. The laboratory blanks show no contamination. The drilling sample size (2 - 3kg) and the soil sample size (<1kg) is regarded as appropriate for the nature and type of material sampled.

Criteria	JORC Code explanation	Commentary
		 No studies have been undertaken to determine whether sample size was appropriate of the material sampled.
Quality o assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Assay methods are considered appropriate for mineral resource estimation of the style and type of mineralisation. Quality Assurance and Quality Control (QA/QC) procedures included insertion of field duplicates collected as a second split (field duplicate) direct from the drill rig at a rate of 1 in 75 samples. Samples were analysed following four acid digest by Inductively Coupled Plasma Mass Spectrometry. No check samples were submitted to independent laboratories. Fe certified reference materials or blanks were not utilised. Assessment of the field duplicate assay results did not show significant bias.
Verification of sampling and assaying	 The use of twinned holes 	 All drill hole data including geological logging was captured in GRID data acquisition software in real time on logging laptop or field phones and sent to the company SQL database. Leapfrog Geo Version 2024.1.2 upon importing the assays into the software, employs algorithms to detect and highlight any errors, overlaps, or duplications in intervals, ensuring an accurate dataset. Assay files are received electronically from the laboratory and securely filed on the company's server. These files are then provided to the database manager who loads the data into the company's database. Rigorous validation checks are performed at this stage, ensuring that the integrity and accuracy of the assay data are maintained throughout the entire process.
Location o data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill hole collar locations were determined by conventional GPS and/or accuracy improvements from hybrid techniques native to the Android operating system. The grid system applied is WGS84 zone 50. Down-hole survey data was collected on all angled and vertical drillholes at the time of drilling using a gyro. Topographic surface control data is a UAV-collected DEM.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Initial selection and collection of 1m bulk-reject samples (from the Tempest Minerals 2024 RC drilling program) for potential metallurgical testing was conducted by the Tempest Minerals Geology Manager. Samples were taken from all of the four mineralised intercepts from the Main Magnetite Layer. A representative selection of mineralised samples was taken from the lesser, parallel, magnetite layers. The IMO Senior Metallurgist then selected all relevant 1m bulk-reject samples to be compiled to create representative composite samples for the purpose of orebody characterisation. Seven composite samples were selected from the Main Magnetite Layer and two from the lesser, parallel, magnetite layers. Each composite sample was taken from single drill holes (not a composite of a number of drill holes).
Orientation of data ii relation to geological structure	this is known, considering the deposit type	 The units and lenses have a near-vertical dip and so drill holes were orientated to ensure drill intersections were approximately perpendicular to the strike of the ore lenses and overall geological sequence. Due to the capabilities of the RC drilling rig, holes were drilled at 60° giving typical dip intersections to the plane of mineralisation of 33°. The objective of drilling was directly to intercept mineralised lenses and structures. Drill spacing is considered regular. No potential sampling bias is expected. The drilling pattern and orientation is deemed to have appropriately intercepted the ore lenses and stratigraphy.
Sample security	The measures taken to ensure sample security.	 Samples for metallurgical testing were collected, stored and personally delivered to the laboratory by Tempest Minerals staff. Chain of custody was maintained throughout the sample collection, storage and delivery process, although not strictly documented. RC Drilling: Samples were acquired on-site by competent geologists, each labelled with a unique sample ID, with five (5) samples grouped into a labelled polyweave bag and transported securely to Intertek Genalysis Laboratory in Perth establishing a rigorous chain of custody in accordance with industry standards.
Audits o reviews	The results of any audits or reviews of sampling techniques and data.	 Data is reviewed and validated before loading to the database. Sampling techniques and data processes of Tempest Minerals Limited have been reviewed by Measured Group in 2025.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement an land tenur status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 E59/2486 for a total of 224.9 km². The tenements are in good standing and no known impediments exist. These leases are held in their entirety 100% by Tempest Minerals Limited (Warrigal Mining Pty Ltd). The Remorse Resource is located at the juncture of the three licences. There are no restricted areas within the licence holding.
Exploration done by othe parties	 Acknowledgment and appraisal of exploration by other parties. 	The is a greenfields project which has not been the subject of previous work.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Regional Geology The Murchison region is the westernmost of the three major granite-greenstone terranes that form the Archaean-aged, Yilgarn Craton of Western Australia. The Remorse Iron Deposit is located in the Warriedar Fold Belt within the Yalgoo-Singleton Greenstone Belt. The Yalgoo-Singleton Greenstone Belt comprises supracrustal sediments, felsic volcaniclastics, mafics/ultramafics and basal granitoids and is bounded by granitic batholiths (Myers and Watkins, 1985). The north-south trending Warriedar Fold Belt is a tectonic unit of supracrustal rocks bound by large-scale intrusive granitoid batholiths: namely the Big Belle Suite to the east and the Yalgoo Dome to the west (Myers & Watkins, 1985). The Warriedar Fold Belt broadens in the south into the

Criteria	JORC Code explanation	Commentary
		regional-scale Mt Mulgine Anticline. The core of the Warriedar Fold Belt is a high-level, multi-phase quartz-rich late-stage Archaean-aged monzogranite informally known as the Eastern Granite which covers approximately 240 km2. • Regional aeromagnetics highlights the distinctive magnetic banded iron formation units trending NNW- SSE and N-S within the elongate greenstone belts of the province which are typically separated by granitic intrusions (Yalgoo SH50-02 geological sheet). Watkins and Hickman (1990) divided these greenstones into two groups: the Luke Creek Group and the unconformably overlying Mount Farmer Group, which together form the Murchison Supergroup. The Murchison Supergroup comprises approximately 70% mafic volcanic and 20% felsic volcanic and volcaniclastic rocks. The fold belt is characterized by heterogeneous deformation, with narrow zones of high strain separating more weakly deformed zones (Baxter et. al., 1983). The metallogenetically well-endowed Yalgoo-Singleton Greenstone Belt hosts a tungsten deposit, numerous gold deposits, BIF-hosted iron, and base metal deposits. Local Geology
		The geology of the area was initially interpreted as a discontinuous sequence within the Yalgoo regional geology. Recent work indicates the strongly magnetic banded stratigraphy and numerous large-scale cross-cutting structures which may have been feeder structures to mineralisation.
Drill ho Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: a easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 Raw interval length is 1 m. Drill intersections from 6 RC drill holes were selected for metallurgical test work and all were drilled in 2024 by Tempest Minerals Limited. Tables with drill hole collar and survey are presented in Appendix D, below. Tables with the drillholes and intervals selected for metallurgical test work are presented in Appendix E, below.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 The IMO Senior Metallurgist selected all relevant 1m bulk-reject samples to be compiled to create representative composite samples for the purpose of orebody characterisation. Seven composite samples were selected from the Main Magnetite Layer and two from the lesser, parallel, magnetite layers. Each composite sample was taken from single drill holes (not a composite of a number of drill holes). IMO composite intervals are presented in Appendix E, below. No other aggregation has been used to the Company's knowledge, all results are percussion quoted in metres where simple averaging is utilised. No metal equivalents have been used
Relationship between mineralisation widths an intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The stratiform mineralisation is interpreted to be dipping at approximately 83° towards a bearing of 210°. Due to the near-vertical dip of the iron units two (2) drill holes were drilled towards 210°. Due to the near vertical nature of the banded iron formations drill holes intercept the strike of mineralisation perpendicularly and the plane of mineralisation at angles of 33°. Iron ore mineralisation true widths vary from 0.4 to 29.4 m. Sample lengths are most commonly 1 m of downhole length.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Diagrams are presented to provide as much relevant context as possible to the location and nature of the work completed.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	The IMO Senior Metallurgist selected intervals to composite for metallurgical testing based on information provided by Tempest Minerals Limited. The selected samples provide a representative range of grades intersected in the relevant drill holes.
Other substantive exploration dat	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and	No other meaningful and material exploration to be reported.

Criteria	JORC Code explanation	Commentary
	method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Fieldwork to improve the geological understanding of surface structures, stratigraphy, and lithological boundaries, which will help refine future drilling targets. Drilling to improve data density and enhance understanding of mineralisation across the fault blocks. Utilising geophysical surveys, such as magnetics and gravity, to further define subsurface structures

Appendix C: Drillhole Data

Summary

Method	Collars	Metres
RC	21	4,005

Coordinates & Geometry

SITE_ID	EAST	NORTH	LEVEL	DEPTH	AZI	DIP	HOLE_TYPE		
WARDH00160	546253.2	6791640.6	339.2	187	30	-60	RC		
WARDH00161	546209.7	6791567.1	333.7	180	30	-60	RC		
WARDH00162	546161.1	6791481.4	321.2	198	30	-60	RC		
WARDH00163	546603.0	6791313.6	332.1	204	30	-60	RC		
WARDH00164	546602.5	6791237.9	324.6	176	30	-60	RC		
WARDH00165	546546.8	6791143.5	319.3	168	30	-60	RC		
WARDH00166	547318.2	6791180.7	312.0	198	30	-60	RC		
WARDH00167	547260.0	6791082.6	310.7	210	30	-60	RC		
WARDH00168	547206.1	6790994.9	301.3	198	30	-60	RC		
WARDH00169	546721.0	6791454.6	338.5	198	210	-60	RC		
WARDH00170	546729.5	6791468.1	341.1	150	30	-60	RC		
WARDH00171	546004.4	6791813.7	327.5	198	30	-60	RC		
WARDH00172	545965.7	6792146.7	335.9	204	30	-60	RC		
WARDH00173	545904.9	6792036.9	331.9	204	30	-60	RC		
WARDH00174	545560.1	6792448.8	331.0	198	30	-60	RC		
WARDH00175	545552.3	6792338.9	307.1	198	30	-60	RC		
WARDH00176	545453.2	6792254.4	313.5	198	30	-60	RC		
WARDH00177	545153.6	6792732.9	317.7	180	30	-60	RC		
WARDH00178	545076.6	6792631.5	335.3	192	210	-60	RC		
WARDH00179	545088.3	6792642.1	311.6	198	30	-60	RC		
WARDH00180	545458.8	6792551.5	323.4	168	30	-60	RC		

Further drill hole data is quoted in more detail in previous announcements:

- TEM ASX Announcement dated 24 October 2024 "Yalgoo Update High-Grade Iron Intercepted In Early Drilling At Remorse" ➤
- TEM ASX Announcement dated 21 November 2024 "Yalgoo Update Further Excellent Iron Results" ➤
- TEM ASX Announcement dated 03 December 2024 "High-Grade Magnetite Deposit Emerging at Remorse" <Amended 16 January 2025 >
- TEM ASX Announcement dated 08 May 2025 "Yalgoo Remorse Positioned For Rapid Development With Inaugural Resource - amended" ➤

Appendix D: Metallurgical Composites

	Main Magnetite	Layer		
	Secondary Mag	netite Layers		
Hole ID	m from	m to	Sample ID	Metallurgy Composites
WARDH00160	93	94	WARS19097	1
WARDH00160	94	95	WARS19098	•
WARDH00160	95	96	WARS19099	(this is the composite
WARDH00160	96	97	WARS19101	reported in this
WARDH00160	97	98	WARS19102	ASX Announcement)
WARDH00160	98	99	WARS19103	
WARDH00160	99	100	WARS19104	
WARDH00160	100	101	WARS19105	
WARDH00160	101	102	WARS19106	
WARDH00160	102	103	WARS19107	2
WARDH00160	103	104	WARS19108	
WARDH00160	104	105	WARS19109	
WARDH00160	105	106	WARS19110	
WARDH00160	106	107	WARS19111	
WARDH00160	107	108	WARS19112	
WARDH00160	108	109	WARS19113	
WARDH00160	109	110	WARS19114	
WARDH00160	110	111	WARS19115	
WARDH00160	111	112	WARS19116	
WARDH00160	112	113	WARS19117	
WARDH00160	113	114	WARS19118	
WARDH00160	114	115	WARS19119	2
WARDH00160	115	116	WARS19120	3
WARDH00160	116	117	WARS19121	
WARDH00160	117	118	WARS19122	
WARDH00160	118	119	WARS19123	
WARDH00160	119	120	WARS19124	
WARDH00160	120	121	WARS19126	
WARDH00160	121	122	WARS19127	
WARDH00160	122	123	WARS19128	
WARDH00160	123	124	WARS19129	

WARDH00160	124	125	WARS19130	
WARDH00166	96	97	WARS20262	1
WARDH00166	97	98	WARS20263	-
WARDH00166	98	99	WARS20264	
WARDH00166	99	100	WARS20265	
WARDH00166	100	101	WARS20266	
WARDH00166	101	102	WARS20267	
WARDH00166	102	103	WARS20268	
WARDH00169	120	121	WARS20918	5
WARDH00169	121	122	WARS20919	ာ
WARDH00169	122	123	WARS20920	
WARDH00169	123	124	WARS20921	
WARDH00169	124	125	WARS20922	
WARDH00169	125	126	WARS20923	
WARDH00169	126	127	WARS20924	
WARDH00169	127	128	WARS20926	
WARDH00169	128	129	WARS20927	
WARDH00169	129	130	WARS20928	
WARDH00169	130	131	WARS20929	
WARDH00169	131	132	WARS20930	
WARDH00169	132	133	WARS20931	
WARDH00169	133	134	WARS20932	
WARDH00169	134	135	WARS20933	
WARDH00169	135	136	WARS20934	
WARDH00169	136	137	WARS20935	
WARDH00169	137	138	WARS20936	
WARDH00169	138	139	WARS20937	
WARDH00169	139	140	WARS20938	
WARDH00169	140	141	WARS20939	
WARDH00169	183	184	WARS20984	
WARDH00169	184	185	WARS20985	6
WARDH00169	185	186	WARS20986	
WARDH00169	186	187	WARS20987	
WARDH00169	187	188	WARS20988	
WARDH00169	188	189	WARS20989	
WARDH00169	189	190	WARS20990	
	l .	·		

WARDH00169	190	191	WARS20991	
WARDH00169	191	192	WARS20992	
WARDH00169	192	193	WARS20993	
WARDH00171	130	131	WARS21291	0
WARDH00171	131	132	WARS21292	8
WARDH00171	132	133	WARS21293	
WARDH00171	133	134	WARS21294	
WARDH00171	134	135	WARS21295	
WARDH00171	135	136	WARS21296	
WARDH00171	136	137	WARS21297	
WARDH00171	137	138	WARS21298	
WARDH00178	117	118	WARS23715	0
WARDH00178	118	119	WARS23716	9
WARDH00178	119	120	WARS23717	
WARDH00178	120	121	WARS23718	
WARDH00178	121	122	WARS23719	
WARDH00178	122	123	WARS23720	
WARDH00180	134	135	WARS24139	7
WARDH00180	135	136	WARS24140	1
WARDH00180	136	137	WARS24141	
WARDH00180	137	138	WARS24142	
WARDH00180	138	139	WARS24143	
WARDH00180	139	140	WARS24144	
WARDH00180	140	141	WARS24145	
WARDH00180	141	142	WARS24146	
WARDH00180	142	143	WARS24147	
WARDH00180	143	144	WARS24148	
WARDH00180	144	145	WARS24149	
WARDH00180	145	146	WARS24151	
WARDH00180	146	147	WARS24152	
WARDH00180	147	148	WARS24153	
WARDH00180	148	149	WARS24154	
WARDH00180	149	150	WARS24155	
				

Appendix E: Metallurgical Test Data

							_				-								-											
Comp 1 P80 425µm	Mass	Mass	Al2O3	Dist.	As	Dist.	Ba	Dist.	CaO	Dist.	Cl	Dist.	Co	Dist.	Cr2O3	Dist.	Cu	Dist.	Fe	Dist.	K2O	Dist.	MgO	Dist.	Mn	Dist.	Na2O	Dist.	Ni	Dist.
01.105	8	%	%	%	96	%	%	%	%	%	%	%	96	%	%	96	%	%	96	%	%	96	%	%	%	%	%	96	%	96
Comp 1 425µm mags	16.2	58.7%	0.61	20.9%	0.0005	58.7%	0.0005	58.7%	2.44	35.1%	0.012	81.0%	0.014	97.5%	0.003	68.1%	0.007	39.9%	47.93	82.8%	0.012	25.8%	1.08	37.5%	0.039	33.9%	0.035	34.1%	0.0005	58.7%
Comp 1 425µm non-mags	11.4	41.3%	3.29	79.1%		41.3%		41.3%	6.42	64.9%	0.004	19.0%	0.000	2.5%	0.002	31.9%	0.015	60.1%	14.19	17.2%	0.049	74.2%	2.56	62.5%	0.108	66.1%	0.096	65.9%		41.3%
Calculated grade Comp 1 head assay		100.0%	1.72	100.0%	0.0005	100.0%	0.001 0.00045	100.0%	4.08	100.0%	0.009	100.0%	0.008	100.0%	0.003	100.0%	0.010	100.0%	33.99 30.96	100.0%	0.027	100.0%	1.69 1.79	100.0%	0.068	100.0%	0.060 0.065	100.0%	0.001	100.0%
Comp Thead assay			1.02		0.001		0.00045		4.06		0.009		0.0005		0.014		0.011		30.96		0.041		1./9		0.008		0.065		0.002	
	Mass	Mass	Р	5:	D).	D:	0:00	D:	0	5:		D:	0	51.4	7:00	D:		D: 1	.	5:	7.	5:	1.014.0000	5:	1.010500	5:	1.010745	D:		
Comp 1 P80 425µm	Mass	0/	04	Dist.	Pb	Dist.	SiO2	Dist.	Sn o4	Dist.	S	Dist.	Sr o/	Dist.	TiO2	Dist.	V	Dist.	Zn	Dist.	Zr %	Dist.	LOI1000D	Dist.	LOI650D	Dist.	LOI371D	Dist.		
Comp 1 405 cm mars	16.0	%0 E0.70/	0 100	70 FO 40/	0.0005	58.7%	27.00	37.5%	0.0005	50.70/	90	90	0.001	22.1%	70	15.1%	90	70 EO 70/	0.003	34.8%		58.7%	1.00		70	70 N/A	90	70 N/A		
Comp 1 425µm mags Comp 1 425µm non-mags	16.2	58.7% 41.3%	0.102	59.4% 40.6%	0.0005	41.3%	27.88 66.07	62.5%	0.0005	58.7% 41.3%	0.40 1.24	31.5% 68.5%	0.001	77.9%	0.005	84.9%	0.005	58.7% 41.3%	0.003	65.2%	0.0005	41.3%	-1.93 0.78	N/A N/A	-1.47 0.53	N/A N/A	-0.34 0.16	N/A N/A		
	11.4	100.0%		100.0%		100.0%	43.65	100.0%	0.0005	100.0%		100.0%	0.003	100.0%	_	100.0%		100.0%	0.008	100.0%		100.0%	-0.81	N/A	-0.64	N/A	-0.13			
Calculated grade Comp 1 head assay		100.0%	0.101	100.0%	0.0005	100.0%	43.65	100.0%	0.0005	100.0%	0.75	100.0%	0.003	100.0%	0.02	100.0%	0.005	100.0%	0.01	100.0%	0.0005	100.0%	-0.81	N/A	-0.64	N/A	-0.13	N/A		
Collip I flead assay			0.100		0.0005		40.34		0.0005		0.74		0.005		0.01		0.0056		0.01		0.0005		-0.45		-0.26		-0.05			
	Mass	Mass	Al203	Dist.	As	Dist.	Ba	Dist.	CaO	Dist.	Cl	Dist.	Co	Dist.	Cr203	Dist.	Cu	Dist.	Fe	Dist.	K20	Dist.	MgO	Dist.	Mn	Dist.	Na2O	Dist.	Ni	Dist.
Comp 1 P80 250µm	riass g	%	%	%	%	%	% %	Months of the second of the se	%	%	%	Maria Maria	%	%	%	%	%	%	96	%	% %	w	1º1gO	w	96	w	%	w	96	%
Comp 1 250µm mags	13.7	47.4%	0.53	15.1%	0.0005	47.4%	0.0005	47.4%	1.89	22.1%	0.010	69.3%	0.002	78.3%	0.004	11.8%	0.006	26.5%	52.58	78.7%	0.010	16.7%	0.84	22.6%	0.031	23.7%	0.023	16.8%	0.0005	47.4%
Comp 1 250µm non-mags	15.2	52.6%	2.68	84.9%	0.0005	52.6%	0.0005	52.6%	6.01	77.9%	0.010	30.7%	0.002	21.7%	0.004	88.2%	0.006	73.5%	12.80	21.3%	0.010	83.3%	2.59	77.4%	0.031	76.3%	0.023	83.2%	0.0005	52.6%
Calculated grade	20.2	100.0%	1.66	100.0%	0.0005	100.0%	0.0005	100.0%	4.06	100.0%	0.007	100.0%	0.001	100.0%	0.016	100.0%	0.011	100.0%	31.66	100.0%	0.028	100.0%	1.76	100.0%	0.062	100.0%	0.065	100.0%	0.001	100.0%
Comp 1 head assay		100.070	1.62	100.070	0.0010	100.0%	0.00045	100.070	4.08	100.070	0.007	100.070	0.0005	100.070	0.014	100.070	0.011	100.070	30.96	100.0%	0.041	100.0%	1.79	100.070	0.068	100.0%	0.065	100.070	0.002	100.070
Comp Thead assay			1.02		0.0010		0.00040		4.00		0.003		0.0000		0.014		0.011		00.50		0.041		1.75		0.000		0.000		0.002	
	Mass	Mass	Р	Dist.	Pb	Dist.	SiO2	Dist.	Sn	Dist.	S	Dist.	Sr	Dist.	TiO2	Dist.	V	Dist.	Zn	Dist.	Zr	Dist.	LOI1000D	Dist.	LOI650D	Dist.	LOI371D	Dist.		
Comp 1 P80 250µm	ศ	0%	0.6	%	%	%	06	% %	%	%	04	96	%	% %	%	%	06	% %	06	%	%	%	06	%	%	04	06	%		
Comp 1 250µm mags	13.7	47.4%	0.074	37.5%	0.0005	47.4%	22.93	23.2%	0.0005	47.4%	0.23	15.6%	0.003	47.4%	0.005	10.1%	0.005	47.4%	0.002	16.7%	0.0005	47.4%	-2.21	N/A	-1.74	N/A	-0.33	N/A		
Comp 1 250µm non-mags	15.2	52.6%	0.074	62.5%	0.0005	52.6%	68.39	76.8%	0.0005	52.6%	1.11	84.4%	0.003	52.6%	0.003	89.9%	0.005	52.6%	0.002	83.3%	0.0005	52.6%	0.84	N/A	0.54	N/A	0.22	N/A		
Calculated grade	10.2	100.0%	0.093	100.0%	0.0005	100.0%	46.84	100.0%	0.0005	100.0%	0.69	100.0%	0.003	100.0%	0.02	100.0%	0.005	100.0%	0.003	100.0%	0.001	100.0%	-0.61	N/A	-0.54	N/A	-0.04	N/A		
Comp 1 head assay		100.0%	0.100	100.0%	0.0005	100.0%	46.34	100.0%	0.0005	100.0%	0.09	100.0%	0.005	100.0%	0.02	100.0%	0.0056	100.0%	0.01	100.0%	0.001	100.0%	-0.61	IVA	-0.34	IN/A	-0.05	IN/A		
Comp Thead assay			0.100	TRUE	0.0000	TRUE	40.04	TRUE	0.0000	TRUE	0.74	TRUE	0.000	TRUE	0.01	TRUE	0.0000	TRUE	0.01	TRUE	0.0000	TRUE	-0.40	EALSE	-0.20	EALSE	-0.00	EALSE		
	Mass	Mass	Al2O3	Dist.	As	Dist.	Ba	Dist.	CaO	Dist.	Cl	Dist.	Co	Dist.	Cr203	Dist.	Cu	Dist.	Fe	Dist.	K2O	Dist.	MgO	Dist.	Mn	Dist.	Na2O	Dist.	Ni	Dist.
Comp 1 P80 106µm	g	%	%	%	%	%	%	%	%	%	%	%	%	%	%	% %	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Comp 1 106µm mags	12.1	41.9%	0.38	9.4%	0.0005	2.9%	0.0005	41.9%	1.26	13.0%	0.005	47.4%	0.043	98,4%	0.02	36.6%	0.006	24.9%	58.27	76.3%	0.005	8.1%	0.52	12.6%	0.021	14.1%	0.01	7.5%	0.003	81.2%
Comp 1 106µm non-mags	16.8	58.1%	2.64	90.6%	0.012	97.1%	0.0005	58.1%	6.08	87.0%	0.004	52.6%	0.0005	1.6%	0.025	63.4%	0.013	75.1%	13.00	23.7%	0.041	91.9%	2.6	87.4%	0.092	85.9%	0.089	92.5%	0.0005	18.8%
Calculated grade	20.0	100.0%	1.69	100.0%	0.007	100.0%	0.0005	100.0%	4.06	100.0%	0.004	100.0%	0.02	100.0%	0.023	100.0%	0.010	100.0%	31.95	100.0%	0.026	100.0%	1.73	100.0%	0.062	100.0%	0.056	100.0%	0.002	100.0%
Comp 1 head assay		100,070	1.62	200.070	0.001	200.070	0.0004	2001070	4.08	200,070	0.009	200.070	0.0005	2001070	0.014	200,070	0.011	2001070	30.96	200.070	0.041	2001070	1.79	200.070	0.068	200.070	0.065	200.070	0.002	200.070
	Mass	Mass	Р	Dist.	Pb	Dist.	SiO2	Dist.	Sn	Dist.	S	Dist.	Sr	Dist.	TiO2	Dist.	V	Dist.	Zn	Dist.	Zr	Dist.	LOI1000D	Dist.	LOI650D	Dist.	LOI371D	Dist.		
Comp 1 P80 106μm	g	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	96	%	%	%	%	%	%	%	%	%		
Comp 1 106µm mags	12.1	41.9%	0.068	30.2%	0.0005	41.9%	16.27	14.7%	0.0005	41.9%	0.23	13.6%	0.0005	15.3%	0.005	10.7%	0.005	41.9%	0.0005	4.3%	0.0005	41.9%	-2.62	N/A	-2.07	N/A	-0.41	N/A		
Comp 1 106µm non-mags	16.8	58.1%	0.113	69.8%	0.0005	58.1%	68.03	85,3%	0.0005	58.1%	1.06	86.4%	0.002	84.7%	0.03	89.3%	0.005	58.1%	0.008	95.7%	0.0005	58.1%	0,79	N/A	0.47	N/A	0.24	N/A		
Calculated grade		100.0%	0.094	100.0%	0.0005	100.0%	46.36	100.0%	0.0005	100.0%	0.71	100.0%	0.001	100.0%	0.02	100.0%	0.01	100.0%	0.00	100.0%	0.0005	100.0%	-0.64	N/A	-0.59	N/A	-0.03	N/A		
Comp 1 head assay			0.100		0.0005		46.34		0.0005	200.000	0.74		0.005		0.01		0.0056		0.01		0.0005		-0.45		-0.26		-0.05			
,				TRUE		TRUE		TRUE		TRUE		TRUE		TRUE		TRUE		TRUE		TRUE		TRUE		FALSE		FALSE		FALSE		
0	Mass	Mass	Al203	Dist.	As	Dist.	Ba	Dist.	CaO	Dist.	Cl	Dist.	Co	Dist.	Cr203	Dist.	Cu	Dist.	Fe	Dist.	K20	Dist.	MgO	Dist.	Mn	Dist.	Na2O	Dist.	Ni	Dist.
Comp 1 P80 75μm	g	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Comp 1 75µm mags	12.9	39.8%	0.25	6.0%	0.0005	24.9%	0.0005	7.6%	0.8	7.9%	0.008	51.4%	0.0005	24.9%	0.046	88.4%	0.006	20.9%	62.53	75.4%	0.003	4.5%	0.32	7.4%	0.013	8.2%	0.016	10.1%	0.01	93.0%
Comp 1 75µm non-mags	19.5	60.2%	2.58	94.0%	0.001	75.1%	0.004	92.4%	6.17	92.1%	0.005	48.6%	0.001	75.1%	0.004	11.6%	0.015	79.1%	13.48	24.6%	0.042	95.5%	2.66	92.6%	0.096	91.8%	0.094	89.9%	0.0005	7.0%
Calculated grade		100.0%	1.65	100.0%	0.0008	100.0%	0.003	100.0%	4.03	100.0%	0.006	100.0%	0.001	100.0%	0.021	100.0%	0.011	100.0%	33.01	100.0%	0.026	100.0%	1.73	100.0%	0.063	100.0%	0.063	100.0%	0.004	100.0%
Comp 1 head assay			1.62	223.070	0.0010		0.0004		4.08		0.009		0.0005		0.014		0.011		30.96		0.041	222070	1.79	223.070	0.068	223.070	0.065		0.002	

Comp 1	1 P80 75µm	Mass	Mass	Р	Dist.	Pb	Dist.	SiO2	Dist.	Sn	Dist.	S	Dist.	Sr	Dist.	TiO2	Dist.	V	Dist.	Zn	Dist.	Zr	Dist.	LOI1000D	Dist.	LOI650D	Dist.	LOI371D			
		g	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%		
	1 75µm mags	12.9	39.8%	0.055	21.9%	0.0005	39.8%	11.43	10.0%	0.0005	39.8%	0.16	8.9%	0.0005	5.2%	0.005	9.9%	0.005	39.8%	0.0005	3.5%	0.0005	24.9%	-2.85	N/A	-2.13	N/A	-0.36	N/A		
Comp 1 75µm	um non-mags	19.5	60.2%	0.13	78.1%	0.0005	60.2%	68.06	90.0%	0.0005	60.2%	1.06	91.1%	0.006	94.8%	0.03	90.1%	0.005	60.2%	0.009	96.5%	0.001	75.1%	0.7	N/A	0.54	N/A	0.2	N/A		
Calcul	culated grade		100.0%	0.100	100.0%	0.0005	100.0%	45.51	100.0%	0.0005	100.0%	0.70	100.0%	0.004	100.0%	0.02	100.0%	0.005	100.0%	0.01	100.0%	0.0008	100.0%	-0.71	N/A	-0.52	N/A	-0.02	N/A		
Comp 1	1 head assay			0.100		0.0005		46.34		0.0005		0.74		0.005		0.01		0.0056		0.01		0.0005		-0.45		-0.26		-0.05			
		Mass	Mass	Al203	Dist.	As	Dist.	Ba	Dist.	CaO	Dist.	Cl	Dist.	Co	Dist.	Cr2O3	Dist.	Cu	Dist.	Fe	Dist.	K20	Dist.	MgO	Dist.	Mn	Dist.	Na2O	Dist.	Ni E	Dist.
Comp 1	1 P80 53µm	g	%	%	%	%	%	%	%	%	%	%	%	96	%	%	%	%	%	%	96	%	%	%	96	%	%	%	%		%
Comp 15	1 53µm mags	10.6	35.6%	0.2	4.1%	0.0005	2.4%	0.0005	8.4%	0.55	4.7%	0.007	43.6%	0.004	68.8%	0.121	76.1%	0.007	20.5%	65.27	73.3%	0.001	1.3%	0.22	4.4%	0.013	7.1%	0.012	6.8%	0.032 97	97.2%
Comp 1 53µm		19.2	64.4%	2.56	95.9%	0.011	97.6%	0.003	91.6%	6.14	95.3%	0.005	56.4%	0.001	31.2%	0.021	23.9%	0.015	79.5%	13.14	26.7%	0.043	98.7%	2.66	95.6%	0.013	92.9%	0.012	93.2%		2.8%
		15.2	_	_			_	_			-	_	_				_			_		-				_				_	$\overline{}$
	culated grade		100.0%	1.72	100.0%	0.0073	100.0%	0.002	100.0%	4.15	100.0%	0.006	100.0%	0.002	100.0%	0.057	100.0%	0.012	100.0%	31.68	100.0%	0.028	100.0%	1.79	100.0%	0.065	100.0%	0.063	100.0%		00.0%
Comp 1	1 head assay			1.62		0.001		0.0004		4.08		0.009		0.0005		0.014		0.011		30.96		0.041		1.79		0.068		0.065		0.002	
Comp 1	1 P80 53µm	Mass	Mass	P	Dist.	Pb	Dist.	SiO2	Dist.	Sn	Dist.	S	Dist.	Sr	Dist.	TiO2	Dist.	V	Dist.	Zn	Dist.	Zr	Dist.	LOI1000D	Dist.	LOI650D	Dist.	LOI371D	Dist.		
30p 1	71 ос сор	g	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%		
Comp 15	1 53µm mags	10.6	35.6%	0.046	16.4%	0.0005	35.6%	8.13	6.1%	0.0005	35.6%	0.13	6.3%	0.0005	4.4%	0.005	6.5%	0.005	35.6%	0.0005	3.0%	0.0005	21.6%	-3.07	N/A	-2.13	N/A	-0.3	N/A		
Comp 1 53µm	um non-mags	19.2	64.4%	0.129	83.6%	0.0005	64.4%	68.69	93.9%	0.0005	64.4%	1.09	93.7%	0.006	95.6%	0.04	93.5%	0.005	64.4%	0.009	97.0%	0.001	78.4%	0.81	N/A	0.55	N/A	0.21	N/A		
Calcul	culated grade		100.0%	0.099	100.0%	0.0005	100.0%	47.15	100.0%	0.0005	100.0%	0.75	100.0%	0.00404	100.0%	0.03	100.0%	0.005	100.0%	0.01	100.0%	0.0008	100.0%	-0.57	N/A	-0.40	N/A	0.03	N/A		
Comp 1	1 head assay			0.100		0.0005		46.34		0.0005		0.74		0.005		0.01		0.0056		0.01		0.0005		-0.45		-0.26		-0.05			
					TRUE		TRUE		TRUE		TRUE		TRUE		TRUE		TRUE		TRUE		TRUE		TRUE		FALSE		FAISE		EALSE		
														-				-		_											
Comp 1	1 P80 38µm	Mass	Mass	Al203	Dist.	As	Dist.	Ba	Dist.	CaO	Dist.	Cl	Dist.	Co	Dist.	Cr2O3	Dist.	Cu	Dist.	Fe	Dist.	K20	Dist.	MgO	Dist.	Mn	Dist.	Na2O	Dist.	Ni C	Dist.
		g	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	1 38µm mags	10.2	34.6%	0.15	3.1%	0.0005	34.6%	0.003	61.3%	0.42	3.5%	0.008	45.8%	0.004	67.9%	0.284	94.9%	0.011	29.3%	67.35	73.3%	0.0005	0.6%	0.16	3.1%	0.022	11.0%	0.015	8.1%		98.9%
Comp 1 38µm	um non-mags	19.3	65.4%	2.49	96.9%	0.0005	65.4%	0.001	38.7%	6.1	96.5%	0.005	54.2%	0.001	32.1%	0.008	5.1%	0.014	70.7%	12.97	26.7%	0.042	99.4%	2.63	96.9%	0.094	89.0%	0.09	91.9%	0.0005 1	1.1%
Calcul	culated grade		100.0%	1.68	100.0%	0.0005	100.0%	0.002	100.0%	4.14	100.0%	0.006	100.0%	0.002	100.0%	0.103	100.0%	0.013	100.0%	31.77	100.0%	0.028	100.0%	1.78	100.0%	0.069	100.0%	0.064	100.0%	0.029 10	00.0%
Comp 1	1 head assay			1.62		0.001		0.0004		4.08		0.009		0.0005		0.014		0.011		30.96		0.041		1.79		0.068		0.065		0.002	
		Mass	Mass	Р	Dist.	Pb	Dist.	SiO2	Dist.	Sn	Dist.	S	Dist.	Sr	Dist.	TiO2	Dist.	V	Dist.	Zn	Dist.	Zr	Dist.	LOI1000D	Dist.	LOI650D	Dist.	LOI371D	Dist.		
Comp 1	1 P80 38µm	g	%	%	%	%	%	%	%	%	%	%	%	96	%	%	%	%	%	%	96	%	%	%	%	%	%	%	%		
Comp 11	1 38µm mags	10.2	34.6%	0.038	13.1%	0.0005	34.6%	5.63	4.2%	0.003	76.0%	0.09	4.3%	0.002	17.5%	0.005	8.1%	0.005	34.6%	0.0005	3.2%	0.0005	34.6%	-3.43	N/A	-2.35	N/A	-0.35	N/A		
Comp 1 38µm		19.3	65.4%	0.133	86.9%	0.0005	65.4%	68.36	95.8%	0.0005	24.0%	1.05	95.7%	0.002	82.5%	0.003	91.9%	0.005	65.4%	0.008	96.8%	0.0005	65.4%	0.74	N/A	0.6	N/A	0.2	N/A		
	$\overline{}$	19.3						_								_				_	-		-								
	culated grade		100.0%	0.100	100.0%	0.0005	100.0%	46.67	100.0%	0.001	100.0%	0.72	100.0%	0.00396	100.0%	0.02	100.0%	0.005	100.0%	0.01	100.0%	0.0005	100.0%	-0.70	N/A	-0.42	N/A	0.01	N/A		
Comp 1	1 head assay			0.100		0.0005		46.34		0.0005		0.74		0.005		0.01		0.0056		0.01		0.0005		-0.45		-0.26		-0.05			
Comp 1	1 P80 25µm	Mass	Mass	Al203	Dist.	As	Dist.	Ba	Dist.	CaO	Dist.	Cl	Dist.	Co	Dist.	Cr2O3	Dist.	Cu	Dist.	Fe	Dist.	K20	Dist.	MgO	Dist.	Mn	Dist.	Na2O	Dist.	Ni C	Dist.
Comp 1	7 1 00 20µ/II	g	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Comp 12			34.1%	0.12	2.4%	0.0005	6.1%	0.005	83.8%	0.31	2.6%	0.012	55.4%	0.006	86.1%	0.51	92.3%	0.015	34.1%	68.79	73.5%	0.0005	0.6%	0.11	2.1%	0.036	16.7%	0.032	15.1%	0.150 97	97.5%
Comp 1 25µm	1 25µm mags	10.1	34.170																		-							_		-	_
		10.1 19.5		2.52	97.6%	0.004	93.9%	0.0005	16.2%	6.06	97.4%	0.005	44.6%	0.0005	13.9%	0.022	7.7%	0.015	65,9%	12.85	26.5%	0.041	99,4%	2.63	97.9%	0.093	83,3%	0.093	84.9%	0.002 2	2.5%
Calcul	um non-mags		65.9%	2.52	97.6%	_	93.9%	0.0005	16.2%	6.06	97.4%					_								_		_		_	_		2.5%
	um non-mags culated grade			2.52 1.70		0.003		0.0005 0.002		6.06 4.10		0.007	44.6% 100.0%	0.002	13.9%	0.189	7.7% 100.0%	0.015	65.9% 100.0%	31.94	26.5% 100.0%	0.027	99.4% 100.0%	1.77	97.9% 100.0%	0.074	83.3% 100.0%	0.072	84.9% 100.0%	0.053 10	2.5% 00.0%
	um non-mags		65.9%	2.52	97.6%	_	93.9%	0.0005	16.2%	6.06	97.4%					_								_		_		_	_		_
	um non-mags culated grade	19.5	65.9% 100.0%	2.52 1.70 1.62	97.6% 100.0%	0.003 0.001	93.9% 100.0%	0.0005 0.002 0.0004	16.2% 100.0%	6.06 4.10 4.08	97.4% 100.0%	0.007 0.009	100.0%	0.002 0.0005	100.0%	0.189 0.014	100.0%	0.015	100.0%	31.94 30.96	100.0%	0.027 0.041	100.0%	1.77 1.79	100.0%	0.074 0.068	100.0%	0.072 0.065	100.0%	0.053 10	_
Comp 1 h	um non-mags culated grade		65.9%	2.52 1.70	97.6%	0.003	93.9%	0.0005 0.002	16.2%	6.06 4.10	97.4% 100.0% Dist.	0.007		0.002		0.189		0.015		31.94		0.027		1.77		0.074	100.0%	0.072	100.0%	0.053 10	_
Comp 1	um non-mags culated grade 1 head assay	19.5 Mass	65.9% 100.0% Mass %	2.52 1.70 1.62 P	97.6% 100.0% Dist. %	0.003 0.001	93.9% 100.0% Dist. %	0.0005 0.002 0.0004 SiO2 %	16.2% 100.0% Dist.	6.06 4.10 4.08 Sn %	97.4% 100.0% Dist.	0.007 0.009 S %	100.0% Dist. %	0.002 0.0005 Sr %	100.0% Dist. %	0.189 0.014 TiO2 %	100.0% Dist. %	0.015	100.0% Dist. %	31.94 30.96 Zn %	100.0% Dist. %	0.027 0.041 Zr %	100.0% Dist. %	1.77 1.79 LOI1000D %	100.0% Dist. %	0.074 0.068 LOI650D %	100.0% Dist. %	0.072 0.065 LOI371D %	100.0% Dist. %	0.053 10	_
Comp 1	um non-mags culated grade 1 head assay	19.5	65.9% 100.0%	2.52 1.70 1.62	97.6% 100.0%	0.003 0.001	93.9% 100.0%	0.0005 0.002 0.0004	16.2% 100.0%	6.06 4.10 4.08	97.4% 100.0% Dist.	0.007 0.009	100.0%	0.002 0.0005	100.0%	0.189 0.014	100.0%	0.015	100.0%	31.94 30.96	100.0%	0.027 0.041	100.0%	1.77 1.79	100.0%	0.074 0.068	100.0%	0.072 0.065	100.0%	0.053 10	_
Comp 1	um non-mags culated grade 1 head assay 1 P80 25µm 1 25µm mags	19.5 Mass	65.9% 100.0% Mass %	2.52 1.70 1.62 P	97.6% 100.0% Dist. %	0.003 0.001 Pb %	93.9% 100.0% Dist. %	0.0005 0.002 0.0004 SiO2 %	16.2% 100.0% Dist.	6.06 4.10 4.08 Sn %	97.4% 100.0% Dist.	0.007 0.009 S %	100.0% Dist. %	0.002 0.0005 Sr %	100.0% Dist. %	0.189 0.014 TiO2 %	100.0% Dist. %	0.015 0.011 V %	100.0% Dist. %	31.94 30.96 Zn %	100.0% Dist. %	0.027 0.041 Zr %	100.0% Dist. %	1.77 1.79 LOI1000D %	100.0% Dist. %	0.074 0.068 LOI650D %	100.0% Dist. %	0.072 0.065 LOI371D %	100.0% Dist. %	0.053 10	_
Comp 1 Comp 1 Comp 1 Comp 1 2 Comp 1 25µm	um non-mags culated grade 1 head assay 1 P80 25µm 1 25µm mags	19.5 Mass g 10.1	65.9% 100.0% Mass % 34.1%	2.52 1.70 1.62 P % 0.031	97.6% 100.0% Dist. % 10.6%	0.003 0.001 Pb % 0.0005	93.9% 100.0% Dist. % 34.1%	0.0005 0.002 0.0004 SiO2 % 3.82	16.2% 100.0% Dist. % 2.8%	6.06 4.10 4.08 Sn % 0.0005	97.4% 100.0% Dist. % 34.1%	0.007 0.009 S % 0.08	100.0% Dist. % 3.4%	0.002 0.0005 Sr % 0.004	100.0% Dist. % 40.8% 59.2%	0.189 0.014 TiO2 % 0.005	100.0% Dist. % 7.9%	0.015 0.011 V % 0.005	100.0% Dist. % 34.1%	31.94 30.96 Zn % 0.002	100.0% Dist. % 6.9%	0.027 0.041 Zr % 0.0005	100.0% Dist. % 34.1%	1.77 1.79 LOI1000D % -3.82	100.0% Dist. % N/A	0.074 0.068 LOI650D % -2.64	100.0% Dist. % N/A	0.072 0.065 LOI371D % -0.44	100.0% Dist. % N/A	0.053 10	_
Comp 1 Comp 1 Comp 1 Comp 125µm Calcul	um non-mags culated grade 1 head assay 1 P80 25µm 1 25µm mags um non-mags	19.5 Mass g 10.1	65.9% 100.0% Mass % 34.1% 65.9%	2.52 1.70 1.62 P % 0.031 0.136	97.6% 100.0% Dist. % 10.6% 89.4%	0.003 0.001 Pb % 0.0005 0.0005	93.9% 100.0% Dist. % 34.1% 65.9%	0.0005 0.002 0.0004 SiO2 % 3.82 68.31	16.2% 100.0% Dist. % 2.8% 97.2%	6.06 4.10 4.08 Sn % 0.0005 0.0005	97.4% 100.0% Dist. % 34.1% 65.9%	0.007 0.009 S % 0.08 1.10	100.0% Dist. % 3.4% 96.6%	0.002 0.0005 Sr % 0.004 0.003	100.0% Dist. % 40.8% 59.2%	0.189 0.014 TiO2 % 0.005 0.03	100.0% Dist. % 7.9% 92.1%	0.015 0.011 V % 0.005 0.005	Dist. % 34.1% 65.9%	31.94 30.96 Zn % 0.002 0.014	Dist. % 6.9% 93.1%	0.027 0.041 Zr % 0.0005 0.0005	Dist. % 34.1% 65.9%	1.77 1.79 LOI1000D % -3.82 0.8	100.0% Dist. % N/A N/A	0.074 0.068 LOI650D % -2.64 0.53	100.0% Dist. % N/A N/A	0.072 0.065 LOI371D % -0.44 0.2	100.0% Dist. % N/A N/A	0.053 10	_