

ASX ANNOUNCEMENT

RESOURCES LIMITED

10 April 2025

NEAR-SURFACE, HIGH-GRADE GOLD DRILLING RESULTS FROM SANDSTONE'S VANGUARD CAMP

HIGHLIGHTS

- Brightstar has received the final results from a ~8,500m Reverse Circulation (RC) drilling program at the Vanguard camp, targeting extensional and infill resource drilling at the Vanguard and Vanguard North deposits, located within the 1.5Moz @ 1.5g/t Au Sandstone Hub
- Final assay results from the Vanguard North deposit include:
 - o VNRC25014:
 - 3m @ 26.3 g/t Au from 26m, including 1m @ 76.5 g/t Au from 27m
 - o VNRC25039:
 - 2m @ 28.8 g/t Au from 89m, including 1m @ 55.2 g/t Au from 89m
 - O VNRC25025:
 - 3m @ 10.0 g/t Au from 66m, including 1m @ 21.0 g/t Au from 89m
 - o VNRC25033:
 - 1m @ 29.5 g/t Au from 113m
 - o VNRC25018:
 - 1m @ 29.3 g/t Au from 95m
 - o VNRC25035:
 - 4m @ 7.09 g/t Au from 19m, including 1m @ 24.0 g/t Au from 21m
- Final assay results from the Vanguard deposit include:
 - o VNRC25057:
 - 5m @ 12.5 g/t Au from 154m, including 1m @ 51.2 g/t Au from 156m
 - 5m @ 3.89 g/t Au from 119m
 - 2m @ 5.83 g/t Au from 112m
 - o VNRC25089:
 - 16m @ 3.65 g/t Au from 128m, including 4m @ 10.1 g/t Au from 136m
 - o VNRC25083:
 - 7m @ 6.75 g/t Au from 34m, including 2m @ 14.4 g/t Au from 34m
 - o VNRC25048:
 - 6m @ 4.62 g/t Au from 54m, including 2m @ 11.8 g/t Au from 54m
 - 3m @ 6.38 g/t Au from 65m, including 1m @ 15.2 g/t Au from 66m
 - o VNRC25061:
 - 11m @ 2.38 g/t Au from 24m
 - 2m @ 6.32 g/t Au from 65m
 - o VNRC25090:
 - 2m @ 10.1 g/t Au from 234m

- Results confirm the shallow, high-grade nature of the mineralisation in the Vanguard Camp, highlighting strong potential for open pit mining options
- Vanguard and Vanguard North are both open at depth, with strong mineralisation intercepted below the current A\$2,500/oz optimised pit shells
- The program was designed to improve the drill spacing to enable Mineral Resource upgrades to Measured & Indicated status to underpin economic studies underway
- Brightstar's projects fully funded +100,000m CY25 drilling program continues with RC rig currently drilling at the Indomitable Camp in the Sandstone Hub
- A second RC rig is currently drilling at the Menzies Gold Project completing a ~6,000m program at the Yunndaga deposit, following on from the completion of a ~4,000m program at Cork Tree Well (Laverton Hub)

Brightstar Resources Limited (ASX: BTR) (**Brightstar**) is pleased to announce final results from Reverse Circulation (RC) drilling programs completed at the Vanguard and Vanguard North Deposits. The deposits are located approximately 25km southeast of the town of Sandstone and form part of Brightstar's Sandstone Hub, which hosts a current Mineral Resource Estimate (**MRE**) of **1.5Moz @ 1.5g/t Au**.

The Vanguard Camp hosts a total resource of **3.8Mt at 1.5g/t Au for 217koz Au** and comprises the Vanguard and Vanguard North deposits. The 8,500m RC drilling program aimed to infill the drilling inside pit shells (optimised at a gold price of \$2,500 AUD/oz), in order to upgrade the MRE classification to Indicated status.

The drilling also aimed to test for adjacent mineralisation in key areas targeting resource growth, including down-dip extensions at depth, and untested gold-in-soil anomalies along strike.

Brightstar's Managing Director, Alex Rovira, commented "These results from the Vanguard Camp demonstrate the presence of high-grade mineralisation within our Sandstone Gold Project. This is most notable at Vanguard North where gold is hosted in narrow quartz veins, at gold grades regularly exceeding 20g/t Au. The more complex Vanguard deposit has also produced significant high-grade material, both in the shallow domain as well as at depth, which is hugely exciting for potential future extensions to the deposit.

Brightstar's geology team are currently interpreting these new results, which will feed into planned resource updates and further drillholes targeting resource growth.

With approximately **80,000m of drilling planned and fully funded to be completed in CY25 at Sandstone**, we expect to see material increases to both the size and quality of the Mineral Resources base in Sandstone.

Despite having a Mineral Resource of +1.5Moz @ 1.5g/t Au already, which is enough critical mass to support early feasibility workstreams and to underpin a standalone development, Brightstar is excited with the scale potential of our Sandstone Hub. The Sandstone district presents as an extremely compelling development area within the Western Australia gold sector, with substantial mineral endowment despite limited, systematic exploration historically completed to unlock the scale potential of the belt.

Drilling continues across Brightstar's portfolio in the Murchison and Goldfields regions, and with assay results soon to follow from Bull Oak, Havilah, Lord Nelson and Indomitable within the Sandstone Hub, along with Cork Tree Well at Laverton and Yunndaga at Menzies, this is a time of exciting news flow from Brightstar's ongoing drilling campaign."

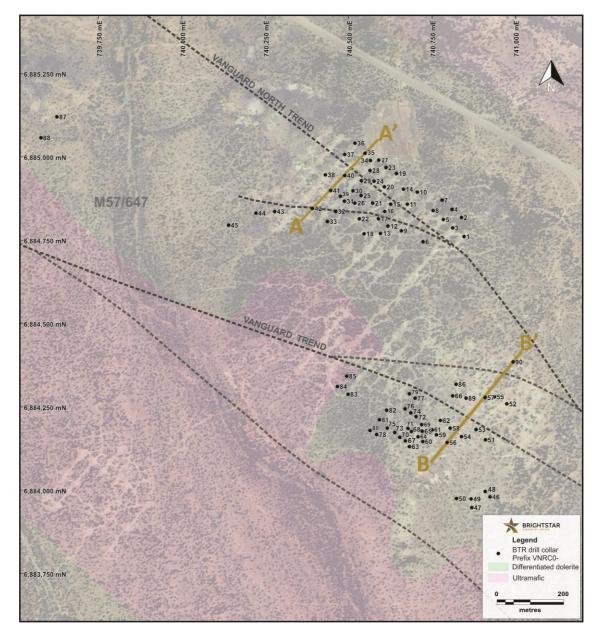


Figure 1 – Plan view collar location map of the 2025 Brightstar Vanguard and Vanguard North RC drilling

TECHNICAL DISCUSSION

Gold mineralisation at the Vanguard camp is located along NW-SE trending structures within a differentiated dolerite unit. At Vanguard North, the lode geometry is relatively simple, hosted within a single quartz vein dipping shallowly to the southwest. The vein is consistently present featuring variable, nuggety gold mineralisation, which is considered typical for this type of narrow vein-hosted deposit. Significant grade variations are observed over short distances, with the current RC program producing individual vein sample grades up to 76.5g/t Au as evidenced in hole VNRC25014. The drilling mostly intersected the vein in the weathered zone, with deeper fresh mineralisation typically associated with silicification of the surrounding dolerite, along with disseminated pyrite.

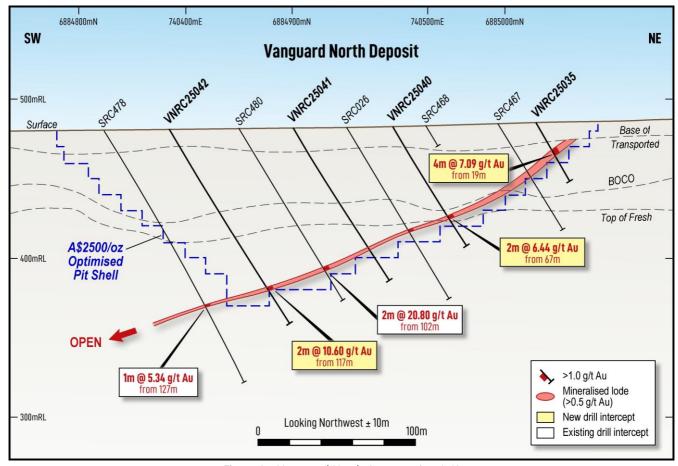


Figure 2 – Vanguard North Cross-section A-A'.

For drillhole details of SRC prefixed holes, refer to Alto Metals' ASX announcements dated 23/08/17 and 4/11/21

The larger Vanguard deposit consists of multiple mineralised lodes, predominantly dipping moderately to the NE, although flat-lying supergene lodes are also present. High-grade mineralisation intersected in the drilling is typically associated with quartz veining and abundant pyrite. Of particular note is the deep mineralisation intersected in VNRC25090 (2m @ 10.1g/t Au from 234m), one of the deepest holes at the deposit. This highlights the continuation of high-grade gold mineralisation at depth, the delineation of which will be a key focus for future exploration efforts at the deposit.

Two holes were drilled to the northwest Vanguard deposits to test a gold-in-soil anomaly along strike. The results identified thin zones of low-grade gold (1m @ 1.91g/t Au from 105m in VNRC25088) confirming the presence of mineralised structures.

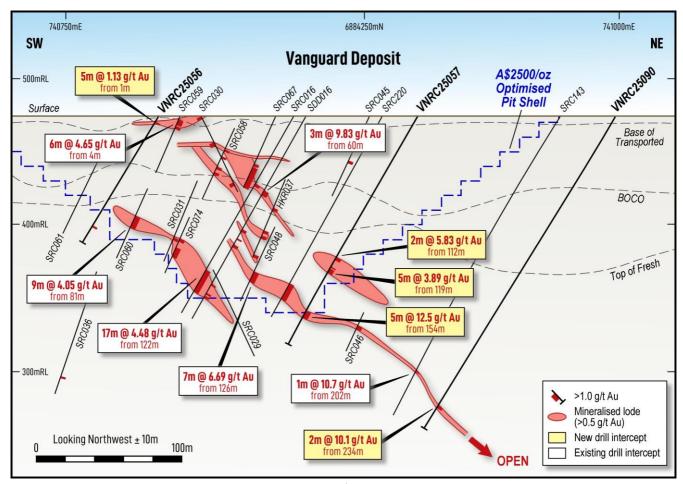


Figure 3 - Vanguard Cross-section B-B'.

For drillholes details for SRC and SDD prefixed holes refer to Alto Metals ASX announcements dated 23/08/17, 9/11/17, 15/12/17, 20/02/18, 12/09/19, 1/7/21, and 4/11/21, for HKR prefixed holes refer to Appendix 2.

Table 1 - Significant Intercepts (>1.0g/t Au) for the Vanguard North RC drilling,

+10 gram-metre intercepts highlighted.

Hole ID	From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram- metres
VNRC25001					NSI	
VNRC25002					NSI	
VNRC25003	40	41	1	1.41	1m @ 1.41g/t from 40m	1.41
VNRC25004					NSI	
VNRC25005					NSI	
VNRC25006	64	66	2	1.25	2m @ 1.25g/t from 64m	2.5
VNRC25007	20	21	1	15.10	1m @ 15.1g/t from 20m	15.1
VNRC25008					NSI	
VNRC25009	53	54	1	1.36	1m @ 1.36g/t from 53m	1.36
VNRC25009	75	76	1	1.23	1m @ 1.23g/t from 75m	1.23

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram- metres
VNRC25010		26	27	1	1.74	1m @ 1.74g/t from 26m	1.74
VNRC25011		45	46	1	4.70	1m @ 4.7g/t from 45m	4.7
VNRC25012		77	80	3	4.92	3m @ 4.92g/t from 77m	14.8
VNRC25012	including	78	79	1	10.2	1m @ 10.2g/t from 78m	10.2
VNRC25012		83	84	1	1.48	1m @ 1.48g/t from 83m	1.48
VNRC25013		64	65	1	9.59	1m @ 9.59g/t from 64m	9.59
VNRC25013		87	88	1	12.30	1m @ 12.3g/t from 87m	12.3
VNRC25013		98	99	1	1.82	1m @ 1.82g/t from 98m	1.82
VNRC25014		26	29	3	26.3	3m @ 26.3g/t from 26m	78.9
VNRC25014	including	27	28	1	76.5	1m @ 76.5g/t from 27m	76.5
VNRC25015		47	51	4	4.01	4m @ 4.01g/t from 47m	16.0
VNRC25015	including	49	50	1	13.2	1m @ 13.2g/t from 49m	13.2
VNRC25016						NSI	
VNRC25017		76	77	1	2.99	1m @ 2.99g/t from 76m	2.99
VNRC25018		95	96	1	29.3	1m @ 29.3g/t from 95m	29.3
VNRC25019						NSI	
VNRC25020		40	42	2	5.33	2m @ 5.33g/t from 40m	10.7
VNRC25021		51	52	1	1.69	1m @ 1.69g/t from 51m	1.69
VNRC25022						NSI	
VNRC25023						NSI	
VNRC25024						NSI	
VNRC25025		66	69	3	10.0	3m @ 10g/t from 66m	30
VNRC25025	including	67	68	1	21.0	1m @ 21g/t from 67m	21
VNRC25026						NSI	
VNRC25027						NSI	
VNRC25028		36	37	1	18.2	1m @ 18.2g/t from 36m	18.2
VNRC25029		52	55	3	6.28	3m @ 6.28g/t from 52m	18.8
VNRC25029	including	53	54	1	16.8	1m @ 16.8g/t from 53m	16.8
VNRC25030		70	72	2	6.72	2m @ 6.72g/t from 70m	13.4
VNRC25031		94	96	2	4.02	2m @ 4.02g/t from 94m	8.04
VNRC25032		100	102	2	11.4	2m @ 11.4g/t from 100m	22.8
VNRC25032	including	100	101	1	19.2	1m @ 19.2g/t from 100m	19.2
VNRC25033		113	114	1	29.5	1m @ 29.5g/t from 113m	29.5
VNRC25034		25	26	1	4.11	1m @ 4.11g/t from 25m	4.11
VNRC25035		19	23	4	7.09	4m @ 7.09g/t from 19m	28.4
VNRC25035	including	21	22	1	24.0	1m @ 24.0g/t from 21m	24.0
VNRC25036						NSI	
VNRC25037						NSI	
VNRC25038						NSI	

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram- metres
VNRC25039		89	91	2	28.8	2m @ 28.8g/t from 89m	57.6
VNRC25039	including	89	90	1	55.2	1m @ 55.2g/t from 89m	55.2
VNRC25040		67	69	2	6.44	2m @ 6.44g/t from 67m	12.9
VNRC25041						NSI	
VNRC25042		117	119	2	10.6	2m @ 10.6g/t from 117m	21.2
VNRC25042	including	117	118	1	17.9	1m @ 17.9g/t from 117m	17.9
VNRC25043		134	135	1	2.57	1m @ 2.57g/t from 134m	2.57
VNRC25044		148	149	1	1.39	1m @ 1.39g/t from 148m	1.39
VNRC25045						NSI	

Table 2 – Significant Intercepts (>1.0g/t Au) for the Vanguard RC drilling,

+10 gram-metre intercepts highlighted.

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram-metres
VNRC25046						NSI	
VNRC25047		25	26	1	6.30	1m @ 6.30g/t from 25m	6.30
VNRC25048		54	60	6	4.62	6m @ 4.62g/t from 54m	27.7
VNRC25048	including	54	56	2	11.8	2m @ 11.8g/t from 54m	23.6
VNRC25048		65	68	3	6.38	3m @ 6.38g/t from 65m	19.1
VNRC25048	including	66	67	1	15.2	1m @ 15.2g/t from 66m	15.2
VNRC25049		29	38	9	2.56	9m @ 2.56g/t from 29m	23.0
VNRC25049		41	42	1	4.47	1m @ 4.47g/t from 41m	4.47
VNRC25050		25	26	1	2.43	1m @ 2.43g/t from 25m	2.43
VNRC25051		36	45	9	1.80	9m @ 1.8g/t from 36m	16.2
VNRC25052		141	143	2	3.98	2m @ 3.98g/t from 141m	7.96
VNRC25053		24	28	4	1.14	4m @ 1.14g/t from 24m	4.56
VNRC25053		61	68	7	1.14	7m @ 1.14g/t from 61m	7.98
VNRC25054		22	26	4	1.08	4m @ 1.08g/t from 22m	4.32
VNRC25054		98	99	1	7.68	1m @ 7.68g/t from 98m	7.68
VNRC25055		40	44	4	1.51	4m @ 1.51g/t from 40m	6.04
VNRC25055		145	146	1	1.46	1m @ 1.46g/t from 145m	1.46
VNRC25055		149	155	6	2.03	6m @ 2.03g/t from 149m	12.2
VNRC25055		160	161	1	3.31	1m @ 3.31g/t from 160m	3.31
VNRC25056		1	6	5	1.13	5m @ 1.13g/t from 1m	5.65
VNRC25056		88	89	1	1.00	1m @ 1.00g/t from 88m	1.00
VNRC25057		112	114	2	5.83 2m @ 5.83g/t from 112m		11.7
VNRC25057		119	124	5	3.89	5m @ 3.89g/t from 119m	19.5
VNRC25057		154	159	5	12.5	5m @ 12.5g/t from 154m	62.5

VNRC25057	including	156	157	1	51.2	1m @ 51.2g/t from 156m	51.2
VNRC25058		25	32	7	1.07	7m @ 1.07g/t from 25m	7.49
VNRC25059		6	9	3	2.00	3m @ 2.00g/t from 6m	6.00
VNRC25059		20	24	4	1.53	4m @ 1.53g/t from 20m	6.12
VNRC25060		33	34	1	1.28	1m @ 1.28g/t from 33m	1.28
VNRC25060		66	67	1	1.94	1m @ 1.94g/t from 66m	1.94
VNRC25061		16	17	1	5.07	1m @ 5.07g/t from 16m	5.07
VNRC25061		24	35	11	2.38	11m @ 2.38g/t from 24m	26.2
VNRC25061		65	67	2	6.32	2m @ 6.32g/t from 65m	12.6
VNRC25062		42	52	10	2.32	10m @ 2.32g/t from 42m	23.2
VNRC25062		60	61	1	2.51	1m @ 2.51g/t from 60m	2.51
VNRC25062		77	78	1	1.50	1m @ 1.50g/t from 77m	1.50
VNRC25063		0	1	1	1.21	1m @ 1.21g/t from 0m	1.21
VNRC25063		7	9	2	1.40	2m @ 1.40g/t from 7m	2.80
VNRC25063		13	14	1	1.76	1m @ 1.76g/t from 13m	1.76
VNRC25064		61	62	1	1.15	1m @ 1.15g/t from 61m	1.15
VNRC25065		42	43	1	1.76	1m @ 1.76g/t from 42m	1.76
VNRC25065		87	88	1	1.00	1m @ 1.00g/t from 87m	1.00
VNRC25066		127	130	3	2.06	3m @ 2.06g/t from 127m	6.18
VNRC25066		136	137	1	1.10	1m @ 1.10g/t from 136m	1.10
VNRC25067		36	37	1	4.91	1m @ 4.91g/t from 36m	4.91
VNRC25067		43	44	1	1.68	1m @ 1.68g/t from 43m	1.68
VNRC25068		47	48	1	1.93	1m @ 1.93g/t from 47m	1.93
VNRC25069		59	63	3	1.81	3m @ 1.81g/t from 59m	5.43
VNRC25070		43	47	4	2.26	4m @ 2.26g/t from 43m	9.04
VNRC25071						NSI	
VNRC25072		4	8	4	1.40	4m @ 1.40g/t from 4m	5.60
VNRC25073						NSI	
VNRC25074						NSI	
VNRC25075		0	4	4	1.41	4m @ 1.41g/t from 0m	5.64
VNRC25075		65	66	1	1.55	1m @ 1.55g/t from 65m	1.55
VNRC25076		8	12	4	1.32	4m @ 1.32g/t from 8m	5.28
VNRC25077		53	57	3	2.29	3m @ 2.29g/t from 53m	6.87
VNRC25077		64	66	2	1.61	2m @ 1.61g/t from 64m	3.22
VNRC25077		72	73	1	1.67	1m @ 1.67g/t from 72m	1.67
VNRC25077		114	115	1	1.75	1m @ 1.75g/t from 114m	1.75
VNRC25078						NSI	
VNRC25079		76	82	6	1.29	6m @ 1.29g/t from 76m	7.74
VNRC25080						NSI	
VNRC25081		4	8	4	1.15	4m @ 1.15g/t from 4m	4.60
VNRC25081		50	53	3	3.82	3m @ 3.82g/t from 50m	11.5
VNRC25081		73	74	1	1.21	1m @ 1.21g/t from 73m	1.21

VNRC25082		41	43	2	3.22	2m @ 3.22g/t from 41m	6.44
VNRC25082		70	71	1	1.10	1m @ 1.10g/t from 70m	1.10
VNRC25082		82	83	1	2.55	1m @ 2.55g/t from 82m	2.55
VNRC25083		34	41	7	6.75	7m @ 6.75g/t from 34m	47.3
VNRC25083	including	34	36	2	14.4	2m @ 14.4g/t from 34m	28.8
VNRC25084						NSI	
VNRC25085						NSI	
VNRC25086		172	176	4	2.11	4m @ 2.11g/t from 172m	8.44
VNRC25087						NSI	
VNRC25088		105	106	1	1.91	1m @ 1.91g/t from 105m	1.91
VNRC25089		128	144	16	3.65	16m @ 3.65g/t from 128m	58.4
VNRC25089	including	136	140	4	10.1	4m @ 10.1g/t from 136m	40.4
VNRC25090		234	236	2	10.1	2m @ 10.1g/t from 234m	20.2

Table 3 – Vanguard and Vanguard North 2025 Reverse Circulation collar information. Holes located on tenements M57/647 Grid coordinates shown in MGA94 Zone 50.

Hole ID	Hole Type / EOH drill method	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)	Status
VNRC25001	RC	740846	6884761	481	40	-59	54	This ASX announcement
VNRC25002	RC	740838	6884818	483	42	-61	42	This ASX announcement
VNRC25003	RC	740812	6884787	482	38	-60	60	This ASX announcement
VNRC25004	RC	740810	6884842	483	38	-59	42	This ASX announcement
VNRC25005	RC	740784	6884812	482	41	-60	60	This ASX announcement
VNRC25006	RC	740723	6884745	482	42	-61	84	This ASX announcement
VNRC25007	RC	740780	6884870	483	40	-61	42	This ASX announcement
VNRC25008	RC	740753	6884839	483	39	-60	60	This ASX announcement
VNRC25009	RC	740658	6884778	484	43	-61	90	This ASX announcement
VNRC25010	RC	740706	6884894	485	40	-60	54	This ASX announcement
VNRC25011	RC	740676	6884858	485	40	-60	60	This ASX announcement
VNRC25012	RC	740618	6884792	484	40	-61	90	This ASX announcement
VNRC25013	RC	740595	6884770	484	41	-61	108	This ASX announcement
VNRC25014	RC	740664	6884903	486	41	-60	54	This ASX announcement
VNRC25015	RC	740626	6884858	486	41	-60	72	This ASX announcement
VNRC25016	RC	740608	6884836	485	40	-60	84	This ASX announcement
VNRC25017	RC	740589	6884814	485	40	-60	90	This ASX announcement
VNRC25018	RC	740546	6884769	484	42	-60	114	This ASX announcement
VNRC25019	RC	740643	6884950	487	39	-60	42	This ASX announcement
VNRC25020	RC	740607	6884910	486	41	-60	60	This ASX announcement
VNRC25021	RC	740572	6884861	485	41	-60	90	This ASX announcement
VNRC25022	RC	740532	6884814	484	42	-61	120	This ASX announcement
VNRC25023	RC	740612	6884968	485	42	-60	42	This ASX announcement
VNRC25024	RC	740576	6884927	485	43	-60	60	This ASX announcement

VNRC25025	RC	740537	6884884	483	40	-60	90	This ACV announcement
								This ASX announcement
VNRC25026	RC	740518	6884861	483	41	-59	108	This ASX announcement
VNRC25027	RC	740590	6884990	482	41	-60	42	This ASX announcement
VNRC25028	RC	740564	6884959	482	42	-60	54	This ASX announcement
VNRC25029	RC	740538	6884928	482	42	-61	72	This ASX announcement
VNRC25030	RC	740513	6884898	482	40	-61	90	This ASX announcement
VNRC25031	RC	740487	6884867	482	39	-61	114	This ASX announcement
VNRC25032	RC	740461	6884836	482	40	-60	120	This ASX announcement
VNRC25033	RC	740436	6884806	482	40	-60	132	This ASX announcement
VNRC25034	RC	740565	6884989	484	40	-60	42	This ASX announcement
VNRC25035	RC	740549	6885011	484	39	-60	42	This ASX announcement
VNRC25036	RC	740519	6885041	484	40	-61	42	This ASX announcement
VNRC25037	RC	740488	6885007	484	39	-60	60	This ASX announcement
VNRC25038	RC	740430	6884946	482	38	-60	102	This ASX announcement
VNRC25039	RC	740475	6884882	482	40	-60	114	This ASX announcement
VNRC25040	RC	740488	6884944	483	42	-60	90	This ASX announcement
VNRC25041	RC	740446	6884899	482	41	-60	114	This ASX announcement
VNRC25042	RC	740391	6884845	481	41	-61	144	This ASX announcement
VNRC25043	RC	740278	6884836	480	39	-60	180	This ASX announcement
VNRC25044	RC	740222	6884831	480	40	-60	180	This ASX announcement
VNRC25045	RC	740140	6884795	478	41	-60	210	This ASX announcement
VNRC25046	RC	740924	6883980	476	220	-60	78	This ASX announcement
VNRC25047	RC	740869	6883948	473	221	-60	54	This ASX announcement
VNRC25048	RC	740909	6883996	474	219	-61	84	This ASX announcement
VNRC25049	RC	740867	6883974	474	221	-60	72	This ASX announcement
VNRC25050	RC	740823	6883975	474	221	-60	48	This ASX announcement
VNRC25051	RC	740910	6884151	474	220	-60	78	This ASX announcement
VNRC25052	RC	740974	6884259	475	220	-61	180	This ASX announcement
VNRC25053	RC	740882	6884182	474	221	-60	144	This ASX announcement
VNRC25054	RC	740838	6884161	474	220	-60	102	This ASX announcement
VNRC25055	RC	740937	6884280	475	221	-61	180	This ASX announcement
VNRC25056	RC	740795	6884143	475	221	-60	102	This ASX announcement
VNRC25057	RC	740909	6884278	475	221	-61	180	This ASX announcement
VNRC25058	RC	740804	6884186	475	222	-60	132	This ASX announcement
VNRC25059	RC	740763	6884166	474	220	-60	108	This ASX announcement
VNRC25060	RC	740722	6884146	475	220	-60	84	This ASX announcement
VNRC25061	RC	740750	6884181	475	220	-61	90	This ASX announcement
VNRC25062	RC	740775	6884209	475	221	-61	102	This ASX announcement
VNRC25063	RC	740682	6884131	475	220	-60	60	This ASX announcement
VNRC25064	RC	740708	6884160	475	220	-60	78	This ASX announcement
VNRC25065	RC	740720	6884177	475	221	-60	90	This ASX announcement
VNRC25066	RC	740812	6884283	476	221	-60	156	This ASX announcement
VNRC25067	RC	740670	6884148	475	222	-61	60	This ASX announcement
VIVINCZJUU/	NC	740070	0004140	4/3	222	-01	00	THIS ASA GITTOUTICETTIETIL

VNRC25068	RC	740688	6884176	475	220	-61	78	This ASX announcement
VNRC25069	RC	740719	6884197	475	220	-60	96	This ASX announcement
VNRC25070	RC	740653	6884159	475	221	-61	60	This ASX announcement
VNRC25071	RC	740678	6884185	475	222	-61	78	This ASX announcement
VNRC25072	RC	740702	6884221	475	221	-60	96	This ASX announcement
VNRC25073	RC	740638	6884173	476	219	-61	60	This ASX announcement
VNRC25074	RC	740686	6884232	476	220	-60	102	This ASX announcement
VNRC25075	RC	740616	6884186	476	222	-59	78	This ASX announcement
VNRC25076	RC	740669	6884244	476	221	-61	114	This ASX announcement
VNRC25077	RC	740699	6884276	476	222	-61	132	This ASX announcement
VNRC25078	RC	740584	6884167	481	221	-61	60	This ASX announcement
VNRC25079	RC	740682	6884289	477	220	-60	156	This ASX announcement
VNRC25080	RC	740564	6884179	475	222	-60	60	This ASX announcement
VNRC25081	RC	740592	6884211	476	221	-61	84	This ASX announcement
VNRC25082	RC	740614	6884240	477	221	-61	107	This ASX announcement
VNRC25083	RC	740498	6884288	476	222	-61	60	This ASX announcement
VNRC25084	RC	740466	6884311	476	222	-61	66	This ASX announcement
VNRC25085	RC	740494	6884342	476	222	-59	81	This ASX announcement
VNRC25086	RC	740822	6884318	475	203	-71	198	This ASX announcement
VNRC25087	RC	739625	6885120	479	39	-60	132	This ASX announcement
VNRC25088	RC	739577	6885057	479	39	-60	144	This ASX announcement
VNRC25089	RC	740852	6884276	476	219	-65	192	This ASX announcement
VNRC25090	RC	740993	6884385	476	219	-60	252	This ASX announcement

This ASX announcement has been approved by the Managing Director on behalf of the board of Brightstar.

FOR FURTHER INFORMATION, PLEASE CONTACT:

Alex Rovira

Managing Director

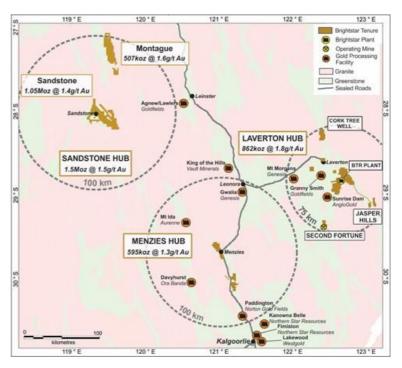
Email: alex@brightstarresources.com.au

Investor Relations

Lucas Robinson

Phone: +61 408 228 889

Email: <u>lucas@corporatestorytime.com</u>



ABOUT BRIGHTSTAR RESOURCES

Brightstar Resources Limited is a Perthbased gold development company listed on the Australian Securities Exchange (ASX: BTR).

The Company hosts a portfolio of high quality assets hosted in the prolific Goldfields and Murchison regions of Western Australia, which are ideally located proximal to significant regional infrastructure and suppliers.

The company currently operates the underground Second Fortune Gold Mine south of Laverton and recently completed the Selkirk Mining JV at Menzies pouring first gold in March 2024.

In August 2024, Brightstar announced the consolidation of the Sandstone district with the integration of the Sandstone and Montague East Gold Project into Brightstar resulting in a total combined JORC Mineral Resource of **3.0Moz Au at 1.5g/t Au.** The resource is spread across three geographically separate hubs, providing excellent optionality for a staged development of all assets to build to a meaningful ASX-listed gold producer.

Brightstar Consolidated JORC Mineral Resources

Location		Me	easured		In	dicated			Inferred			Total	
	Au Cut-off (g/t)	Kt	g/t Au	Ko z	Kt	g/t Au	Koz	Kt	g/t Au	Koz	Kt	g/t Au	Koz
Alpha	0.5	623	1.6	33	374	2.1	25	455	3.3	48	1,452	2.3	106
Beta	0.5	345	1.7	19	576	1.6	29	961	1.7	54	1,882	1.7	102
Cork Tree Well	0.5	-	_	-	3,036	1.6	157	3,501	1.3	146	6,537	1.4	303
Lord Byron	0.5	453	1.8	26	1,141	1.6	58	2,929	1.7	160	4,523	1.7	244
Fish	0.6	26	7.7	6	149	5.8	28	51	4.3	7	226	5.7	41
Gilt Key	0.5	-	-	-	15	2.2	1	153	1.3	6	168	1.3	8
Second Fortune (UG)	2.5	17	16.9	9	78	8.2	21	71	12.3	28	165	10.9	58
Total – Laverton		1,464	2.0	93	5,369	1.8	319	8,121	1.7	449	14,953	1.8	862
Lady Shenton System	0.5	-	-	-	2,770	1.3	119	4,200	1.3	171	6,970	1.2	287
Yunndaga	0.5	-	-	-	1,270	1.3	53	2,050	1.4	90	3,320	1.3	144
Yunndaga (UG)	2.0	-	-	-	-	-	-	110	3.3	12	110	3.3	12
Aspacia	0.5	-	-	-	137	1.7	7	1,238	1.6	62	1,375	1.6	70
Lady Harriet System	0.5	-	-	-	520	1.3	22	590	1.1	21	1,110	1.2	43
Link Zone	0.5	-	-	-	145	1.2	6	470	1.0	16	615	1.1	21
Selkirk	0.5	-	-	-	30	6.3	6	140	1.2	5	170	2.1	12
Lady Irene	0.5	-	-	-	-	-	-	100	1.7	6	100	1.7	6
Total – Menzies		-	-	-	4,872	1.4	214	8,898	1.3	383	13,770	1.3	595
Montague-Boulder	0.6	-	-	-	522	4.0	67	2,556	1.2	96	3,078	1.7	163
Whistler (OP) / Whistler (UG)	0.5 / 2.0	-	-	-	-	-	-	1,700	2.2	120	1,700	2.2	120
Evermore	0.6	-	-	-	-	-	-	1,319	1.6	67	1,319	1.6	67
Achilles Nth / Airport	0.6	-	-	-	221	2.0	14	1,847	1.4	85	2,068	1.5	99
Julias ¹ (Resource)	0.6	-	-	-	1,405	1.4	61	503	1.0	16	1,908	1.3	77
Julias² (Attributable)	0.6	-	-	-							1,431	1.3	58
Total – Montague	(Global)	-	-	-	2,148	2.1	142	7,925	1.5	384	10,073	1.6	526
Total – Montague	(BTR) ^{1,2}	-	-	-	2,148	2.1	142	7,925	1.5	384	9,596	1.6	502
Lord Nelson	0.5	-	-	-	1,500	2.1	100	4,100	1.4	191	5,600	1.6	291
Lord Henry	0.5	-	-	-	1,600	1.5	78	600	1.1	20	2,200	1.4	98
Vanguard Camp	0.5	-	-	-	400	2.0	26	3,400	1.4	191	3,800	1.5	217
Havilah Camp	0.5	-	-	-	-	-	-	1,200	1.3	54	1,200	1.3	54
Indomitable Camp	0.5	-	-	-	800	0.9	23	7,300	0.9	265	8,100	0.9	288
Bull Oak	0.5	-	-	-	-	-	-	2,500	1.1	90	2,500	1.1	90
Ladybird	0.5	-	-	-	-	-	-	100	1.9	8	100	1.9	8
Total – Sandst	one	-	-	-	4,300	1.6	227	19,200	1.3	819	23,500	1.4	1,046
Total – BTR (Attrib	utable)	1,464	2.0	93	16,689	1.7	902	44,144	1.4	2,035	61,819	1.5	3,005

Note some rounding discrepancies may occur.

Pericles, Lady Shenton & Stirling consolidated into Lady Shenton System; Warrior, Lady Harriet & Bellenger consolidated into Lady Harriet System. Julias is located on M57/427, which is owned 75% by Brightstar and 25% by Estuary Resources Pty Ltd.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Brightstar Resources Limited's planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Brightstar believes that its expectations reflected in these forward- looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that further exploration will result in the estimation of a Mineral Resource.

Competent Person Statement - Exploration

The information presented here relating to exploration of the Menzies, Laverton and Sandstone Gold Project areas are based on information compiled by Mr Michael Kammermann, MAIG. Mr Kammermann is a Member of the Australasian Institute of Geoscientists (AIG) and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a "Competent Person" as that term is defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)". Mr Kammermann is a fulltime employee of the Company in the position of Exploration Manager and has provided written consent approving the inclusion of the Exploration Results in the form and context in which they appear.

Competent Person Statement - Mineral Resource Estimates

This Announcement contains references to Brightstar's JORC Mineral Resource estimates, extracted from the ASX announcements titled "Cork Tree Well Resource Upgrade Delivers 1Moz Group MRE" dated 23 June 2023, "Maiden Link Zone Mineral Resource" dated 15 November 2023, "Aspacia deposit records maiden Mineral Resource at the Menzies Gold Project" dated 17 April 2024, "Brightstar Makes Recommended Bid for Linden Gold", dated 25 March 2024, "Brightstar to drive consolidation of Sandstone Gold District" dated 1 August 2024 and "Scheme Booklet Registered by ASIC" dated 14 October 2024.

Brightstar confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the Mineral Resource estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Compliance Statement

With reference to previously reported Exploration Results and Mineral Resources, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

APPENDIX 1: JORC CODE, 2012 EDITION – TABLE 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Industry standard RC drilling and sampling protocols for lode and supergene gold deposits have been utilised throughout the BTR campaign. BTR RC holes were sampled using 4m composite spear samples or 1 metre cone-split samples. RC drilling techniques are used to obtain samples of the entire downhole length. RC samples were taken using a 10:1 Sandvik static cone splitter mounted under a polyurethane cyclone to obtain 1m samples. Approximately 2kg samples were submitted to the laboratory. Brightstar samples were submitted to Intertek Laboratory in Perth where the samples were analysed by Photon. Sample spoils from selected RC drill holes were placed into green bags for possible future use when required.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 BTR RC holes were drilled utilising a 5.5 inch face sampling hammer and surveyed using a Axis Champ true-North-seeking gyroscopic survey tool. Drilling was conducted by Topdrill using a Schramm C685 drill rig with a booster compressor. An Azi aligner was used on all holes drilled from surface (TN14 Gyro Compass true-North-seeking).

BRIGHTSTAR RESOURCES LIMITED 15

Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 RC holes were logged on one metre intervals at the rig by the geologist from drill chips. Logging was recorded directly into LogChief computer software. Detailed geological logging includes the lithology, alteration, veining and mineralisation of the drill chips or core.

Sub-sampling techniques and sample preparation Quality of assay data and	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/secondhalf sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	For interpreted non-mineralised areas, 4 metre composite samples were collected from the drill rig by spearing each 1m collection bag. The 4 metre composites were submitted for
laboratory tests	procedures used and whether the technique is considered partial or total.	Assay method at Intertek laboratory, Perth.

Marificanting of country	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Laboratory QC involves the use of internal lab standards, certified reference material, blanks, splits and replicates. QC results (blanks, coarse reject duplicates, bulk pulverised, standards) are monitored and were within acceptable limits. ~5-10% standards were inserted to check on precision of laboratory results. No geophysical measurements were collected. 				
Verification of sampling and	The verification of significant intersections by either independent or	Significant intersections have been reviewed by several				
assaying	alternative company personnel.	company personnel.				
	The use of twinned holes.	Data storage was captured electronically onsite using a				
	Documentation of primary data, data entry procedures, data verification, detacts as a constant and a least a risk procedure.	standard set of templates, before uploading to a cloud-based				
	data storage (physical and electronic) protocols.	server and imported into an externally managed Datashed geological database.				
	Discuss any adjustment to assay data.					
		Security is set through both SQL and the DataShed sensitive settings. Printster has an external consultant.				
		configuration software. Brightstar has an external consultant Database Administrator with expertise in programming and				
		SQL database administration. Access to the database by the geoscience staff is controlled through security groups where				
		they can export and import data with the interface providing				
		full audit trails. Assay data is provided in MaxGEO format from				
		the laboratories and imported by the Database Administrator.				
		The database assay management system records all metadata				
		within the MDS, providing full audit trails to meet industry best				
		practice.				
		No data was adjusted. No transformations or alterations are				
		made to assay data stored in the database. The lab's primary				
		Au field is the one used for plotting purposes. No averaging of				
		results for individual samples is employed. No top cuts are				
		applied to the assays when calculating intercepts.				

Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill collar locations were initially surveyed using a handheld GPS, accurate to within 3-5m. All RC and DD holes are routinely surveyed by differential GPS (DGPS) once drilling is complete, although this has not yet occurred for recently completed holes. Some historic drill collars have existing DGPS surveys The grid system used is MGA94 Zone 50. All reported coordinates are referenced to these grids. The site topography utilised DTM from airborne magnetic survey.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Holes are variably spaced. The current Vanguard and Vanguard North RC program has infilled the spacing to approximately 20m x 20m Results will be used to update previously reported Mineral Resources at Vanguard and Vanguard North. No sample compositing of field samples has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The relationship between the drilling orientation and the orientation of mineralised structures is not considered to have introduced a sampling bias. Most holes have been drilled perpendicular to the main orientation of mineralisation. The drill holes were designed to best test the interpreted geology in relation to known mineralisation trends, regional structure and lithological contacts. Drilling was all inclined with orientation based on predicted geological constraints. No drilling orientation related sampling bias has been identified at the project.
Sample security	The measures taken to ensure sample security.	Samples were collected on site under supervision of the geologist. Visitors needed permission to visit site. Once collected samples were bagged, they were transported to

		Perth by company personnel or reputable freight contractors			
		for assaying at Intertek, Perth. Despatch and consignment			
		notes were delivered and checked for discrepancies.			
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and data has been reviewed internally by			
		company personnel.			

SECTION 2 REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code Explanation	Commentary				
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Vanguard and Vanguard North deposits are located within Mining Lease M57/647. All are granted tenements are owned 100% by Sandstone Exploration Pty Ltd, a 100% owned subsidiary of Brightstar Resources Limited and are held in good standing with no known impediments. 				
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Modern exploration for gold in the Sandstone Greenstone Belt began with Western Mining Corporation (WMC) in the late 1970s through to the 1990s. WMC carried out 17 significant regional exploration programs and formed several joint ventures in the main Sandstone mines area and at Oroya, Hacks, and Bull Oak. After spending approximately \$6M, WMC put its Sandstone assets out to tender, with Herald ultimately the successful bidder. Herald carried out extensive exploration throughout the project area and carried out open pit mining at Bull Oak and Oroya. The Sandstone tenements were then sold to Troy Resources NL (Troy). Troy undertook systematic exploration of the project area between 1998 and 2010, resulting in the discovery and 				

		subsequent mining of the Bulchina, Lord Henry and Lord Nelson deposits. Troy ceased mining in August 2010 and the operations were placed on care and maintenance.
Geology	Deposit type, geological setting and style of mineralisation.	The Sandstone Project covers much of the Sandstone Greenstone Belt, a triangular belt interpreted to be a north- plunging antiform situated at the northern end of the Southern Cross Domain. The belt primarily comprises mafic volcanic and intrusive units, with subordinate ultramafic, BIF and siliciclastic sediments. Much of the residual greenstone belt regolith is overlain by depositional material including colluvium, sheet wash alluvium and aeolian deposits. The alluvium thins in the northern and eastern parts of the project area where underlying meta-sediments and granitoids are exposed at the surface. A lateritic horizon is observed across much of the belt. The Vanguard deposits are hosted within a differentiated dolerite unit.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the 	The relevant data for drillholes reported in this announcement is provided in the body of the announcement. Data for historical collars referenced in this announcement is provided in tables within the announcement.

	understanding of the report, the Competent Person should clearly explain
	why this is the case.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. Assay results reported here have been length weighted. Significant intercepts are reported above 1.0 g/t Au with a maximum consecutive interval of internal dilution (<0.5 g/t Au) of 2m. No metal equivalent calculations were applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). True widths are not confirmed at this time although all drilling is planned perpendicular to interpreted strike of the target lodes at the time of drilling.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Refer to figures in this report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. Results from all drill holes in the program have been reported and their context discussed.
Other substantive exploration	
data	including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of

	treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	mineral resource estimates will be calculated.

APPENDIX 2: Historic Hole Details: Vanguard Camp

Hole ID	Hole Type	Easting	Northing	EOH (m)	RL	Dip	Azi	From (m)	To (m)	Drilled Interval (m)	Au (g/t)
HKR037	RC	740842	688242	129	475	-60	-60 180	73	74	1	6.36
								91	92	1	1.18
								95	96	1	1.09
								110	111	1	1.56
								123	124	1	2.74