

27 March 2025

Aurum hits 83m at 4.87 g/t gold from 106m at 1.59Moz Boundiali Project

Aurum Resources (ASX: AUE) reports further shallow, high-grade gold intercepts at **BDT1**, part of its 1.59Moz Boundiali Gold Project in Côte d'Ivoire, including a **tenement and project best result** to date in DSDD0148.

Highlights

- Exploration diamond drilling at BDT1 deposit (five holes for 1,503.45m) and BDT3 prospect (four holes for 713.80m) on Boundiali's BD tenement returns shallow, high-grade gold hits¹, with intercepts including:
 - o DSDD0148
 - > 83m @ 4.87 g/t Au from 106m inc. 6.29m @ 34.94 g/t Au & 8m @ 14.81 g/t Au
 - o DSDD0141
 - > 0.83m @ 172.40 g/t Au from 14.82m
 - > 53.77m @ 0.81 g/t Au from 55.13m inc. 5m @ 3.40 g/t Au
 - o DSDD0143
 - > 20.83m @ 2.63 g/t Au from 116.70m inc. 5m @ 3.25 g/t Au & 9m @ 3.88 g/t Au
 - > 29.44m @ 1.30 g/t Au from 142.56m inc. 5m @ 1.45 g/t Au & 7m @ 2.13 g/t Au
 - o DSDD0142
 - 43.50m @ 1.38 g/t Au from 52.50m inc. 7m @ 4.71 g/t Au & 7m @ 1.99 g/t Au
 - > 13m @ 1.14 g/t Au from 202m inc. 4m @ 2.99 g/t Au.
- These results demonstrate the **emerging potential** and **continued upside** of the Boundiali project, where mineralisation **remains open along strike and at depth**.
- All eight of Aurum's self-owned diamond rigs continue to drill at Boundiali with **100,000m** targeted in CY2025; assay results pending.
- Two MRE updates planned in CY2025 to grow the maiden 1.59Moz Boundiali Mineral Resource Estimate².
- Aurum has commenced work on a Boundiali Pre-Feasibility Study, due for completion by end of CY2025.
- Aurum is well-funded³ for continued exploration success at its Boundiali and Napié projects, which host a combined 2.5Moz gold.

Aurum's Managing Director Dr. Caigen Wang said: *"Our diamond drilling at Boundiali continues to deliver high impact results, with DSDD0148 hitting* **83m** *@* **4.87 g/t Au** (equalling **404.1** gold gram metres) from 106m at **BDT1**. This is a project and tenement best result and comes from drilling designed to deliver Indicated Mineral Resources at **BDT1**. We knew there were high grades in among the thick zones of gold mineralisation at **BDT1**, with a previous result of **12.22m** *@* **14.56 g/t Au** from 275m in DSDD0051, and latest results further validate this and will help us better understand and target these plunging high-grade shoots with drilling; remembering that gold mineralisation is still open at **BDT1**.

Aurum has commenced 100,000m of planned diamond drilling at Boundiali in 2025. These and other drill results will be incorporated into two MRE updates. The first update, expected late in the first half of 2025, will include these recent high-grade intercepts and build upon the current **1.59Moz** Boundiali MRE. A second update, planned for late in CY25, will incorporate results from planned drilling at the BD, BM, and BST deposits, as well as numerous untested gold-in-soil anomalies. Aurum's use of its own drill rigs provides for cost-effective and accelerated exploration, underpinning our

 $^{^{1}}$ Refer to Table 1 for collar information and Table 2 for assay results for the **BM** drilling

² "Aurum delivers 1.6Moz Maiden JORC Resource at Boundiali Gold Project" released to the Australian Securities Exchange on 30 December 2024 and amended on 31 December 2024 and available to view on www.asx.com.au

³ ASX Announcement dated 31 Jan 2025, Quarterly Report for the period ending 31 December 2024

objective of significant resource growth at Boundiali in 2025 and beyond, ultimately contributing to a Pre-Feasibility Study expected by year-end.

At our recently acquired Napié project, a 30,000m diamond drilling program is planned for 2025, targeting expansion of the current **0.87Moz MRE⁴**. This program will begin pending renewal of the Napié exploration licence, with an updated MRE anticipated by year-end.

With a combined **2.5Moz of gold** across Boundiali and Napié, and substantial drilling programs planned for both projects, Aurum is well-positioned for significant resource growth and further value creation in 2025."

BD - Latest Drill Results

Aurum is reporting new assay results from drilling at **BDT1** deposit (five holes for 1,503.45m) and **BDT3** prospect (four holes for 713.80m) on Boundiali's **BD** tenement, where Aurum holds an 80% project interest⁵. Best assay results for the new drilling includes⁶:

BD Target 1 (BDT1)

- 15m @ 0.60 g/t Au from 66 m inc. 1m @ 1.74 g/t Au & 35m @ 1.13 g/t Au from 234 m inc. 1.92m @ 2.93 g/t
 Au (DSDD0140)
- 0.83m @ 172.40 g/t Au from 14.82m & 53.77m @ 0.81 g/t Au from 55.13m inc. 5m @ 3.40 g/t Au (DSDD0141)
- 43.50m @ 1.38 g/t Au from 52.50m inc. 7m @ 4.71 g/t Au & 7m @ 1.99 g/t Au & 13m @ 1.14 g/t Au from 202m inc. 4m @ 2.99 g/t Au (DSDD0142)
- 20.83m @ 2.63 g/t Au from 116.70m inc. 5m @ 3.25 g/t Au & 9 m @ 3.88 g/t Au & 29.44m @ 1.30 g/t Au from 142.56m inc. 5m @ 1.45 g/t Au & 7m @ 2.13 g/t Au (DSDD0143)
- 83m @ 4.87 g/t Au from 106m inc. 6.29m @ 34.94 g/t Au & 8m @ 14.81 g/t Au (DSDD0148)

BD Target 3 (BDT2)

- 10m @ 0.36 g/t Au from 96m inc. 0.62m @ 1.23 g/t Au (DSDD0137A)
- 22m @ 0.59 g/t Au from 78m inc. 1m @ 3.77 g/t Au & 9m @ 1.42 g/t Au from 127m inc. 2m @ 3.33 g/t Au (DSDD0138)
- 5.70m @ 0.52 g/t Au from 103.30m inc. 1m @ 2.07 g/t Au (DSDD0139)
- 13m @ 1.74 g/t Au from 83m inc. 10m @ 2.16 g/t Au (DSDD0146)

DSDD0148 (drilled at BDT1) represents a **tenement and project best** to date, as measured on a gold gram x metres basis (eg: $83m \times 4.87g/t$ Au = 404 gold gram metres). This new result is in addition to diamond holes drilled and reported⁷ by Aurum at **BD**, which include:

- 12m @ 22.02 g/t Au from 145m inc. 2m @ 35.59 g/t Au & 7m @ 27.50 g/t Au (DSDD0136 BDT3)
- 73m @ 2.15g/t Au from 172m inc. 4m @ 18.63g/t Au (DSDD0012)
- 90m @ 1.16 g/t Au from 143m inc. 51m @ 1.04 g/t Au and 35m @ 1.47 g/t Au (DSDD0050)
- 59m @ 1.42 g/t Au from 68m inc. 13m @ 3.92 g/t Au (DSDD0010)
- 36m @ 2.53 g/t Au from 104m inc. 16m @ 5.03 g/t Au (DSDD0011)
- 4m @ 22.35 g/t Au from 226m (173m below surface) (DSDD0004)

⁴ "Napie Project Listing Rule 5.6 Disclosure (Amended)" released to the Australian Securities Exchange on 4 February 2025 and available to view on www.asx.com.au.

⁵ Refer to About Aurum's Boundiali Gold Project

 $^{^{\}rm 6}$ Refer to Table 1 for collar information and Table 2 for assay results for the new drilling

⁷ Refer to Compliance Statement for details on previous reporting on ASX

- 12.22m @ 14.56 g/t Au from 275m inc. 1m @ 163.42 g/t Au (DSDD0051)
- 69m @ 1.05 g/t Au from 195m inc. 12m @ 2.28 g/t Au (DSDD0060A)
- 40m @ 1.03 g/t Au from 136m inc. 5m @ 1.70 g/t Au (DSDD0076).

BDT1 gold deposit and **BDT3** gold prospect are located within a 13km by 3km gold mineralised corridor which remains underexplored, and more drilling is required (and planned) to systematically test this prospective corridor. Drilling is ongoing at both **BDT1** and **BDT3** with more assays pending. True widths for these shallow wide and high-grade gold intercepts are estimated at about 70% - 80% of reported downhole lengths.

Details of drill collar location and assay results for the new drilling being reported at **BDT1** and **BDT3** can be found in **Table 1** and **Table 2** respectively. Plans showing location of the Boundiali Gold Project and the assay results are presented in figures below (general locations in **Figure 1** and **Figure 2** and a detailed plan in

Figure 3). A cross section showing the latest drill results is presented in Figure 4.

Gold mineralisation remains open along strike and at depth on all deposits and prospects. Aurum intends to drill 100,000m drilling at Boundiali in CY2025 and is planning further work to follow up these results.

Boundiali – 100,000m drill program

Aurum has commenced an extensive 100,000m diamond drilling program at its 1.59Moz Boundiali Gold Project in northern Côte d'Ivoire to be completed in 2025⁸. The program has multiple aims:

- Increase the size and confidence of current resources at BST, BD, and BM (40,000m),
- Advance known prospects (30,000m) for incorporation into two planned MRE updates in 2025.
- Target new prospects identified through soil anomalies and geological mapping to drive resource growth into 2026 (30,000m).

Next Steps:

- Aggressive cost-effective exploration at Boundiali: Aurum is committed to a large-scale exploration program at Boundiali. This includes:
 - 100,000m diamond drilling: Up to eight diamond drill rigs will complete 100,000m of drilling at Boundiali in CY2025.
 - **Resource expansion:** Drilling aims to expand the known resources at the BST, BD, and BM deposits.
 - **New discoveries:** Exploration and scout drilling is planned on BD, BM and BST tenements to test new targets and create a pipeline of new discoveries to flow into resource growth.
- Resource updates: Aurum plans to deliver two MRE updates for Boundiali in CY2025.
- **Napié project development:** A 30,000m diamond drilling program is planned for the Napié project in CY2025 to expand the existing 0.87Moz resource. An updated MRE for Napié is expected by year-end.
- **Pre-Feasibility Study:** Aurum is working towards completing a PFS for the Boundiali Gold Project by the end of CY2025. This will provide an evaluation of the project's economics and technical feasibility.

⁸ This program is indicative only and subject to change based on operational requirements and exploration results. Meterage allocations may be adjusted as new information becomes available. Investors should refer to company announcements for updates on the drilling program and be aware of the inherent risks associated with mineral exploration.

 Continued growth: With a strong financial position, Aurum is well-funded to execute these exploration and development plans. The company remains focused on delivering value for shareholders through resource growth and project advancement.

This update has been authorised by the Board of Aurum Resources Limited.

ENDS

FORWARD-LOOKING STATEMENTS

This ASX release contains forward-looking statements about Aurum Resources Limited's exploration activities, drilling programs, and potential Mineral Resource Estimate at the Boundiali and Napié Gold Projects. These statements are based on current expectations and are subject to risks and uncertainties inherent in mineral exploration and mining. Factors that could cause actual results to differ materially include exploration risks, drilling results, resource estimation, gold prices, operational risks, regulatory changes, and broader economic conditions. Investors should not place undue reliance on these forward-looking statements.

COMPETENT PERSONS STATEMENT

The information in this release that relates to Exploration Targets and Exploration Results is based on information compiled by Mr Mark Strizek, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Strizek has been a non-executive Director of the Company since 1 February 2024 and joined as an executive Director on 1 June 2024. Mr Strizek has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Strizek consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears. Additionally, Mr Strizek confirms that the entity is not aware of any new information or data that materially affects the information contained in the ASX releases referred to in this presentation.

COMPLIANCE STATEMENT

The information in this report that relates to Boundiali Mineral Resources is extracted from the announcement "Aurum delivers 1.59Moz Maiden JORC Resource at Boundiali Gold Project" released to the Australian Securities Exchange on 30 December 2024 and amended on 31 December 2024 and available to view on www.asx.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

The information in this report that relates to Napié Mineral Resources is extracted from the announcement "Napié Project Listing Rule 5.6 disclosure" released to the Australian Securities Exchange on 4 February 2025 and available to view on www.asx.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

This report contains information extracted from ASX market announcements reported in accordance with the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" ("2012 JORC Code") and available for viewing at www.asx.com.au and includes results reported previously and published on ASX platform:

19 Mar 2025, Hits 4m at 54.64 g/t Au outside 1.59Moz Boundiali MRE area (ASX:AUE) 14 Mar 2025, Half Yearly Report and Accounts (ASX:AUE) 07 Mar 25, Investor Presentation March 2025 (ASX:AUE) 06 Mar 25, AUE Completes Acquisition of Mako Gold Limited (ASX:AUE) 27 Feb 25, 12m at 22.02g/t from 145m outside 1.59Moz Boundiali MRE area (ASX:AUE) 21 Feb 2025, 8m at 8.23a/t from 65m outside 1.59Moz Boundiali MRE area (ASX:AUE) 4 Feb 2025, Napie Project Listing Rule 5.6 Disclosure (Amended) (ASX:AUE) 3 Feb 2025, Mako Takeover Offer Closes (ASX:AUE) 31 Jan 2025, Drill Collar Table Addendum (ASX:AUE) 31 Jan 2025, Change in substantial holding for MKG (ASX:AUE) 31 Jan 2025, Quarterly Activities/Appendix 5B Cash Flow Report (ASX:AUE) 30 Jan 2025, Aurum hits 150 g/t gold at Boundiali, Cote d'Ivoire (ASX:AUE) 29 Jan 2025, MKG - Suspension of Trading and Delisting from ASX (ASX:AUE) 24 Jan 2025, Compulsory Acquisition Notice Mako Takeover (ASX:AUE) 24 Jan 2025, Non-Binding MoU with SANY Heavy Equipment Co (ASX:AUE) 23 Jan 2025, Change in substantial holding for MKG (ASX:AUE) 9 Jan 2025, Best and Final offer for Mako Gold Limited (ASX:AUE) 31 Dec 2024, Boundiali Project Maiden Resource delivers 1.6 Moz (amended) (ASX:AUE) 30 Dec 2024, Boundiali Gold Project Maiden Resource delivers 1.6 Moz (ASX:AU) 24 Dec 2024, Change in substantial holding for MKG (ASX:AUE) 23 Dec 2024, AUE achieves in excess of 95% gold recoveries from Boundiali (ASX:AUE) 18 Dec 2024, Aurum hits 277 g/t gold at Boundiali BM Target 3 13 Dec 2024, Change of Directors and Addition of Joint Company Secretary (ASX:AUE & ASX:MKG)

6 Dec 2024, AUE receives firm commitments for A\$10 million placement (ASX:AUE) 29 Nov 2024, Aurum earns 80% interest in Boundiali BM tenement (ASX:AUE) 28 Nov 2024. AUE appoints Mr. Steve Zaninovich as Non-Executive Director (ASX:AUE) 22 Nov 2024, AUE Declares Takeover Offer for all MKG Shares Unconditional (ASX:AUE) 15 Nov 2024, Supplementary Bidders Statement (ASX:AUE) 11 Nov 2024, Aurum hits 36 g/t gold at BM T1 of 2.5km strike (ASX:AUE) 30 Oct 2024, Bidders Statement (ASX:AUE) 16 Oct 2024, Recommended Takeover of Mako Gold By Aurum Resources (ASX:AUE) 09 Sep 2024, Aurum earns 51% interest in Boundiali BM tenement (ASX:AUE) 05 Sep 2024, AUE hits 40m at 1.03 g/t gold at Boundiali BD Target 1 (ASX:AUE) 03 Sep 2024, Boundiali South Exploration Licence Renewed (ASX:AUE) 07 Aug 2024, Aurum to advance met studies for Boundiali Gold Project (ASX:AUE) 22 July 2024, Prelim metallurgical tests deliver up to 99% gold recovery (ASX:AUE) 17 June 2024, Aurum hits 69m at 1.05 g/t gold at Boundiali BD Target 1 (ASX:AUE) 28 May 2024, AUE hits 163 g/t gold in 12m @ 14.56 g/t gold at BD Target 1 (ASX:AUE) 24 May 2024, Aurum hits 74m @ 1.0 g/t gold at Boundiali BD Target 2 (ASX:AUE) 15 May 2024, Aurum expands Boundiali Gold Project footprint (ASX:AUE) 10 May 2024, AUE hits 90m @ 1.16 g/t gold at Boundiali BD Target 1 (ASX:AUE) 01 May 2024, Aurum Appoints Country Manager in Côte d'Ivoire (ASX:AUE) 23 April 2024, AUE drilling hits up to 45 g/t gold at Boundiali BD Target 2 (ASX:AUE) 19 March 2024, AUE signs binding term sheet for 100% of Boundiali South (ASX:AUE) 12 March 2024, AUE hits 73m at 2.15g/t incl 1m at 72g/t gold at Boundiali (ASX:AUE) 01 March 2024, Aurum hits 4m at 22 g/t gold in Boundiali diamond drilling (ASX:AUE) 22 January 2024, Aurum hits shallow, wide gold intercepts at Boundiali, Côte d'Ivoire (ASX: AUE) 21 December 2023, Rapid Drilling at Boundiali Gold Project (ASX.AUE) 21 November 2023, AUE Acquisition Presentation (ASX.AUE) 21 June 2021, Notice of General Meeting/Proxy Form (MSR.ASX) 21 May 2021, PlusOr to Acquire 6194 sq kms Ground Position in Côte d'Ivoire (MSR.ASX) 22 August 2019, Boundiali RC Drill Results Continue to Impress (PDI.ASX) 15 July 2019, RC, Trench Results Grow Boundiali Potential In Côte D'Ivoire (PDI.ASX) 27 May 2019, New Drill Results Strengthen Boundiali Project Côte D'Ivoire (PDI.ASX 16 January 2019, PDI-Toro JV Sharpens Focus with Major Drilling Program (PDI.ASX)

26 November 2018, Boundiali North - Large Coherent Gold Anomalies in 14km Zone (PDI.ASX)

The Company confirms that it is not aware of any new information or data that materially affects the information included in the previous announcements.

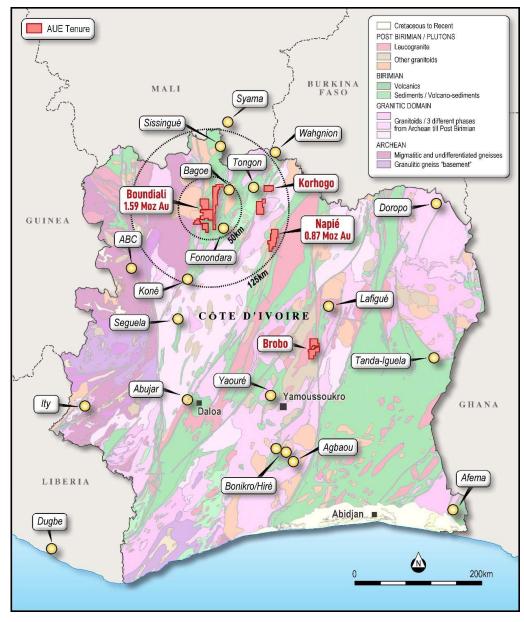


Figure 1: Location of Aurum's projects in Côte d'Ivoire

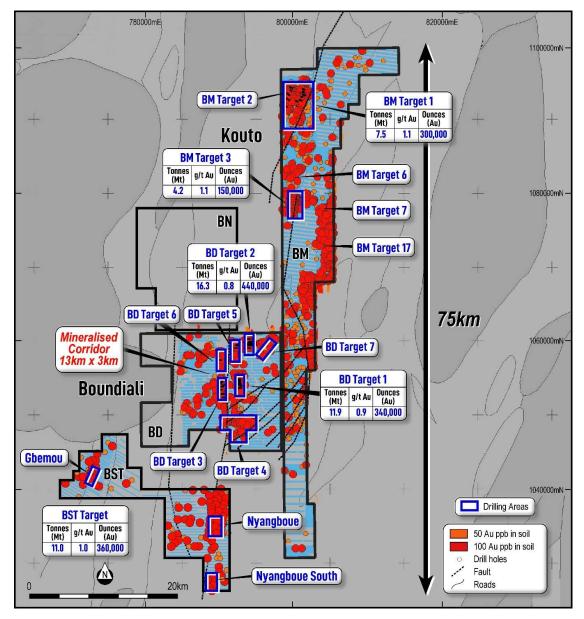


Figure 2: Aurum's Boundiali Gold Project

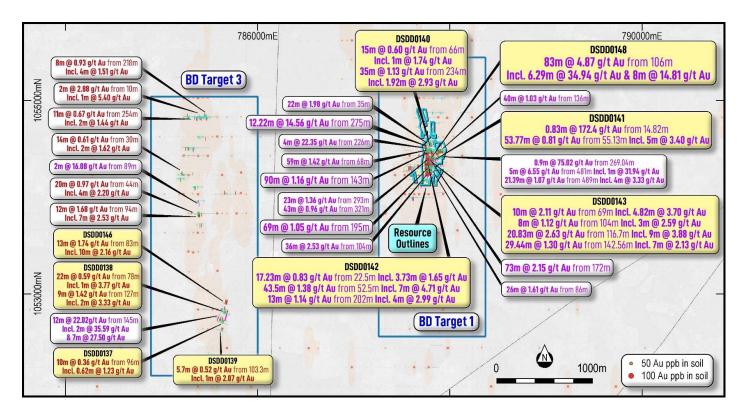


Figure 3: BD tenement plan view showing new significant drilling results (yellow) at BD Target 1 and 3

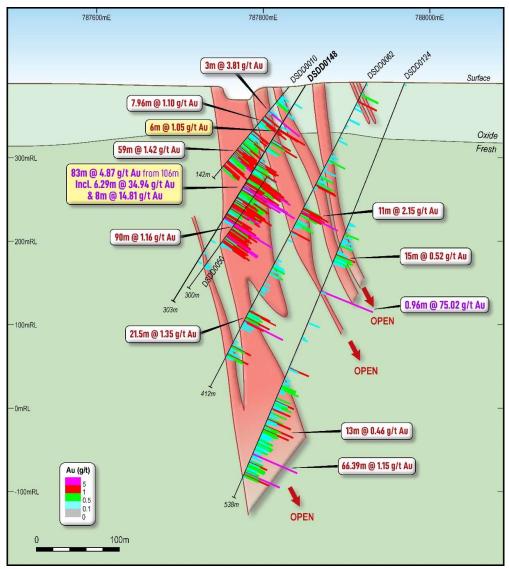


Figure 4: Oblique Cross Section looking northeast (+/-25m) showing new drill results DSDD0148 - BD Target 1

Hole ID	UTM East	UTM North	Elevation (m)	Depth (m)	Azi deg	Dip deg	Prospect	Туре
DSDD0137A	785,586	1,052,707	381	182.10	105	-55	BD Target 3	DD
DSDD0138	785,599	1,052,809	378	196.70	105	-50	BD Target 3	DD
DSDD0139	785,573	1,052,628	383	156.00	105	-55	BD Target 3	DD
DSDD0140	787,901	1,054,474	392	346.40	270	-58	BD Target 1	DD
DSDD0141	787,814	1,054,374	383	266.20	270	-55	BD Target 1	DD
DSDD0142	787,808	1,054,325	382	278.50	270	-50	BD Target 1	DD
DSDD0143	787,851	1,054,374	385	309.20	270	-60	BD Target 1	DD
DSDD0146^	785,622	1,052,906	376	179.00	105	-50	BD Target 3	DD
DSDD0148	787,850	1,054,425	386	303.15	270	-57	BD Target 1	DD
9 Holes				2,217.25				
^ Partial results								

Table 1: Drill Collar Information

Table 2: Significant assay results for new drilling being reported⁹

Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	0.00	1.00	1.00	0.13			
	57.00	58.00	1.00	0.42	1m @ 0.42 g/t Au	0.4	
	60.00	61.00	1.00	0.25			
	61.00	62.00	1.00	0.05			
	62.00	63.00	1.00	0.38			
	63.00	64.00	1.00	0.07			
	64.00	65.00	1.00	0.04			
	65.00	66.00	1.00	0.25	12m @ 0.25 g/t Au	3.0	
	66.00	67.00	1.00	0.07	12111 @ 0.25 g/t Au	5.0	
	67.00	68.00	1.00	0.24			
	68.00	69.35	1.35	0.85			
DSDD0137A	69.35	70.00	0.65	0.13			
	70.00	71.00	1.00	0.08			
	71.00	72.00	1.00	0.34			
	72.00	73.00	1.00	0.18			
	82.00	83.00	1.00	0.64	1m @ 0.64 g/t Au	0.6	
	93.00	94.00	1.00	0.19			
	94.00	95.00	1.00	0.19			
	95.00	96.00	1.00	0.19			
	96.00	97.00	1.00	0.29			
	97.00	97.62	0.62	1.23	10m @ 0.36 g/t Au	3.6	0.62m @ 1.23 g/t Au
	97.62	99.00	1.38	0.09	1011 @ 0.56 g/t Au	5.0	
	99.00	100.30	1.30	0.29			

 $^{\rm 9}$ 0.2 g/t Au cut off used with 3m internal dilution and no top cut applied

Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	100.30	101.00	0.70	0.99			
	101.00	102.00	1.00	0.13			
	102.00	103.00	1.00	0.44			
	103.00	104.00	1.00	0.14			
	104.00	105.00	1.00	0.07			
	105.00	106.00	1.00	0.53			
	107.20	107.70	0.50	0.16			
	162.00	163.00	1.00	0.12			
	165.00	166.00	1.00	0.11			
	180.00	181.00	1.00	0.11			
	67.85	68.50	0.65	0.69	0.65m @ 0.69 g/t Au	0.4	
	72.00	73.00	1.00	0.19			
	78.00	79.00	1.00	0.49			
	79.00	80.40	1.40	0.50			
	80.40	81.00	0.60	0.70			
	81.00	82.00	1.00	0.32			
	82.00	83.00	1.00	0.48			
	83.00	84.00	1.00	0.56			
	84.00	85.00	1.00	0.13			
	85.00	86.00	1.00	0.67			
	86.00	87.00	1.00	0.86			
	87.00	88.00	1.00	0.19			
	88.00	89.00	1.00	0.29			
	89.00	90.00	1.00	0.07	22m @ 0.59 g/t Au	12.9	
	90.00	91.00	1.00	0.55			
	91.00	92.00	1.00	0.69			
	92.00	93.00	1.00	3.77			1m @ 3.77 g/t Au
	93.00	94.00	1.00	0.15			
	94.00	95.00	1.00	0.21			
	95.00	96.00	1.00	0.54			
SDD0138	96.00	97.00	1.00	0.57			
	97.00	98.00	1.00	0.48			
	98.00	99.00	1.00	0.39			
	99.00	100.00	1.00	0.35			
	103.00	100.00	1.00	0.11			
	103.00	105.00	1.00	0.16			
	109.00	110.00	1.00	0.42			
	110.00	111.00	1.00	1.24		+	1m @ 1.24 g/t Au
	111.00	112.00	1.00	0.01	4m @ 0.47 g/t Au	1.9	
	112.00	113.00	1.00	0.01			
	125.00	126.00	1.00	0.15			
	125.00	127.00	1.00	0.13			
	127.00	127.00	1.00	0.10			
	127.00	129.00	1.00	3.01		+	
	129.00	130.00	1.00	3.65			2m @ 3.33 g/t Au
	129.00	131.00	1.00	0.39		+	
	130.00	132.00	1.00	0.39	9m @ 1.42 g/t Au	12.8	
	131.00	133.00	1.00	0.32			
	132.00	134.00	1.00	0.92			
	133.00	135.00	1.00	0.94			

Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	135.00	136.00	1.00	3.25			1m @ 3.25 g/t Au
	136.00	137.00	1.00	0.15			
	157.00	158.00	1.00	0.13			
	169.00	170.00	1.00	0.56			
	170.00	171.00	1.00	0.04	3m @ 0.31 g/t Au	0.9	
	171.00	172.00	1.00	0.32			
	45.00	45.94	0.94	0.20	0.94m @ 0.20 g/t Au	0.2	
	71.00	72.00	1.00	0.12	<u> </u>		
	82.00	83.00	1.00	0.31	1m @ 0.31 g/t Au	0.3	
	86.00	87.00	1.00	0.36	1m @ 0.36 g/t Au	0.4	
	88.00	89.00	1.00	0.14	C		
	89.00	90.00	1.00	0.18			
	91.00	92.00	1.00	0.23	1m @ 0.23 g/t Au	0.2	
DSDD0139	93.00	94.00	1.00	0.13			
	94.00	95.50	1.50	0.10			
	98.00	99.00	1.00	0.12			
	103.30	104.50	1.20	0.44			
	103.50	106.00	1.50	0.07			
	106.00	107.00	1.00	2.07	5.70m @ 0.52 g/t Au	3.0	1m @ 2.07 g/t Au
	107.00	108.00	1.00	0.07	51, 511 C 0102 B, 77 M		8,000
	108.00	109.00	1.00	0.20			
	2.36	3.26	0.90	0.13			
	5.15	6.00	0.85	0.14			
	6.00	7.08	1.08	0.10			
	15.00	16.50	1.50	0.17			
	19.00	20.50	1.50	0.12			
	22.00	23.37	1.37	0.11			
	24.00	25.00	1.00	0.73	1m @ 0.73 g/t Au	0.7	
	35.00	36.00	1.00	0.11			
	36.00	36.88	0.88	0.85	0.88m @ 0.85 g/t Au	0.7	
	37.50	38.50	1.00	0.18			
	38.50	39.53	1.03	0.17			
	41.89	42.60	0.71	0.51	0.71m @ 0.51 g/t Au	0.4	
	43.50	44.50	1.00	0.49			
	44.50	45.60	1.10	0.31	2.10m @ 0.40 g/t Au	0.8	
DSDD0140	47.93	48.88	0.95	0.03			
	49.50	51.00	1.50	0.96			
	51.00	52.00	1.00	0.37			
	52.00	53.00	1.00	0.14			
	53.00	54.00	1.00	0.36			
	54.00	55.00	1.00	0.21	8.56m @ 0.53 g/t Au	4.6	
	55.00	56.00	1.00	1.54		-	1m @ 1.54 g/t Au
	56.00	57.00	1.00	0.28		-	
	57.00	58.06	1.06	0.22			
	58.50	59.50	1.00	0.07			
	59.50	60.50	1.00	0.86			
	60.50	61.50	1.00	0.37			
	61.50	62.18	0.68	0.35	5.92m @ 0.41 g/t Au	2.4	
	62.18	63.00	0.82	0.17	5.52		
	63.00	64.24	1.24	0.25			

Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	64.24	65.42	1.18	0.41			
	66.00	67.00	1.00	0.85			
	67.00	68.00	1.00	0.56			
	68.00	69.00	1.00	0.33			
	69.00	70.00	1.00	0.80			
	70.00	71.00	1.00	0.99			
	71.00	72.00	1.00	0.42			
	72.00	73.00	1.00	0.64			
	73.00	74.00	1.00	1.18	15m @ 0.60 g/t Au	9.1	1m @ 1.18 g/t Au
	74.00	75.00	1.00	0.18			
	75.00	76.00	1.00	0.10			
	76.00	77.00	1.00	0.18			
	77.00	78.00	1.00	0.35			
	78.00	79.00	1.00	0.37			
	79.00	80.00	1.00	1.74			1m @ 1.74 g/t Au
	80.00	81.00	1.00	0.37			
	81.00	82.00	1.00	0.19			
	82.00	83.00	1.00	0.10			
	132.00	133.00	1.00	0.25			
	133.00	134.00	1.00	0.45	3m @ 0.37 g/t Au	1.1	
	134.00	135.00	1.00	0.40			
	137.00	138.00	1.00	0.14			
	140.00	141.00	1.00	0.81			
	141.00	142.00	1.00	0.92			
	142.00	143.00	1.00	1.66			1m @ 1.66 g/t Au
	143.00	144.00	1.00	0.23	8m @ 0.74 g/t Au	5.9	
	144.00	145.00	1.00	0.39	om @ 0.74 g/t Au	5.9	
	145.00	146.00	1.00	0.27			
	146.00	147.00	1.00	1.02			1m @ 1.02 g/t Au
	147.00	148.00	1.00	0.63			
	149.00	150.00	1.00	0.16			
	150.00	151.00	1.00	0.12			
	155.00	156.00	1.00	1.01	2m @ 0.70 g/t Au	1.4	1m @ 1.01 g/t Au
	156.00	157.00	1.00	0.40	211 @ 0.70 g/ 774	1.7	
	176.00	177.00	1.00	0.10			
	184.50	185.50	1.00	0.38	1m @ 0.38 g/t Au	0.4	
	192.50	193.50	1.00	0.12			
	198.00	199.00	1.00	0.22			
	199.00	200.00	1.00	0.08			
	200.00	201.00	1.00	0.04			
	201.00	202.00	1.00	0.15			
	202.00	203.00	1.00	0.31	10m @ 0.40 g/t Au	4.0	
	203.00	204.26	1.26	0.61			
	204.26	205.00	0.74	1.57			0.74m @ 1.57 g/t Au
	205.00	206.00	1.00	0.36			
	206.00	207.00	1.00	0.44			
	207.00	208.00	1.00	0.50		ļ	
	208.00	209.00	1.00	0.18		ļ	
	215.00	216.00	1.00		1m @ 0.20 g/t Au	0.2	
				0.20 0.18	1m @ 0.20 g/t Au	0.2	

Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	217.00	218.00	1.00	0.19			
	218.00	219.00	1.00	0.14			
	220.00	221.00	1.00	0.14			
	221.00	222.00	1.00	0.26	1m @ 0.26 g/t Au	0.3	
	222.00	223.00	1.00	0.12			
	232.00	233.00	1.00	0.13			
	233.00	234.00	1.00	0.17			
	234.00	235.00	1.00	1.23			1m @ 1.23 g/t Au
	235.00	236.00	1.00	0.13			
	236.00	237.00	1.00	0.82			
	237.00	238.00	1.00	0.86			
	238.00	239.00	1.00	0.44			
	239.00	240.00	1.00	0.99			
	240.00	241.00	1.00	0.97			
	241.00	242.00	1.00	0.70			
	242.00	243.00	1.00	0.39			
	243.00	244.00	1.00	4.71			1m @ 4.71 g/t Au
	244.00	245.00	1.00	0.65			
	245.00	246.00	1.00	0.23			
	246.00	247.00	1.00	0.81			
	247.00	248.00	1.00	0.79			
	248.00	249.00	1.00	4.95			1m @ 4.95 g/t Au
	249.00	250.00	1.00	0.96			-
	250.00	251.00	1.00	0.90			
	251.00	252.00	1.00	0.40	35m @ 1.13 g/t Au	39.5	
	252.00	253.00	1.00	0.39			
	253.00	254.00	1.00	0.79			
	254.00	255.00	1.00	0.40			
	255.00	256.00	1.00	0.80			
	256.00	257.00	1.00	2.69			1m @ 2.69 g/t Au
	257.00	258.00	1.00	0.65			
	258.00	259.00	1.00	2.43			
	259.00	260.00	1.00	0.63			Am @ 1 11 - /+ *··
	260.00	261.00	1.00	0.21			4m @ 1.14 g/t Au
	261.00	262.00	1.00	1.27			
	262.00	263.00	1.00	0.74			
	263.00	264.00	1.00	0.70			
	264.00	265.00	1.00	0.27			
	265.00	266.00	1.00	0.52			
	266.00	267.00	1.00	4.54			1 0 2
	267.00	267.92	0.92	1.19			1.92m @ 2.93 g/t Au
	267.92	269.00	1.08	0.42			
	269.00	270.00	1.00	0.14			
	270.00	271.00	1.00	0.10			
	272.00	273.00	1.00	0.10			
	273.00	274.00	1.00	0.47	1m @ 0.47 g/t Au	0.5	
	274.00	275.00	1.00	0.17	<u>.</u>		
	276.00	277.00	1.00	0.10			
	277.00	278.00	1.00	0.10			
	278.00	279.00	1.00	0.16			

Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	280.00	281.00	1.00	0.61	2m @ 0.47 g/t Au	0.9	
	281.00	282.00	1.00	0.33	211 @ 0.17 g/t/10	0.5	
	284.00	285.00	1.00	0.10			
	286.00	287.00	1.00	0.29			
	287.00	288.00	1.00	0.27			
	288.00	289.00	1.00	0.46			
	289.00	290.00	1.00	1.14	8m @ 0.86 g/t Au	6.9	
	290.00	291.00	1.00	1.87			
	291.00	292.00	1.00	0.73			5m @ 1.18 g/t Au
	292.00	293.00	1.00	0.72			
	293.00	294.00	1.00	1.43			
	0.00	1.00	1.00	0.11			
	1.00	2.00	1.00	0.13			
	3.00	3.77	0.77	0.10			
	6.00	7.00	1.00	0.12	0.02	142.4	0.00m @ 470.40 = ***
	14.82	15.65	0.83	172.40	0.83m @ 172.40 g/t Au	143.1	0.83m @ 172.40 g/t Au
	20.52	21.71	1.19	1.59	1.19m @ 1.59 g/t Au	1.9	1.19m @ 1.59 g/t Au
	22.50	23.17	0.67	0.27	0.67m @ 0.27 g/t Au	0.2	
	25.50	26.13	0.63	0.88	0.63m @ 0.88 g/t Au	0.6	
	27.95	29.00	1.05	0.44	1.05m @ 0.44 g/t Au	0.5	
	30.00	30.75	0.75	0.23	0.75m @ 0.23 g/t Au	0.2	
	45.00	45.96	0.96	0.20	0.96m @ 0.20 g/t Au	0.2	
	48.00	49.00	1.00	0.22			
	49.00	50.00	1.00	0.09			
	50.00 51.00	51.00	1.00 1.00	0.69	6m @ 0.44 g/t Au	2.7	
	52.00	52.00	1.00	0.08			
	53.00	53.00 54.00	1.00	1.05			1m @ 1.05 g/t Au
	55.13	56.00	0.87	0.70			111 @ 1.05 g/t Au
	56.00	57.00	1.00	0.70			
SDD0141	57.00	58.00	1.00	0.02			
5000141	58.00	59.00	1.00	0.35			
	59.00	60.00	1.00	0.35			
	60.00	61.00	1.00	0.16			
	61.00	62.00	1.00	0.30			
	62.00	63.00	1.00	0.12			
	63.00	64.00	1.00	0.69			
	64.00	65.00	1.00	0.03			
	65.00	65.56	0.56	0.02			
	65.56	67.00	1.44	0.01	53.77m @ 0.81 g/t Au	43.6	
	67.00	68.10	1.44	0.23			
	68.10	69.00	0.90	0.25			
	69.00	70.00	1.00	0.49			
	70.00	71.00	1.00	0.53			
	71.00	72.00	1.00	0.55			
	72.00	73.00	1.00	0.24			
	73.00	74.00	1.00	0.24			
	74.00	75.00	1.00	0.27			
	75.00	76.00	1.00	1.46			1m @ 1.46 g/t Au
	76.00	77.00	1.00	0.21			1.10 g/ t Au

Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	77.00	78.00	1.00	0.80			
	78.00	79.00	1.00	0.72			
	79.00	80.00	1.00	0.57			
	80.00	81.00	1.00	0.99			
	81.00	82.00	1.00	1.25			
	82.00	83.00	1.00	0.60			3m @ 1.01 g/t Au
	83.00	84.00	1.00	1.17			
	84.00	85.00	1.00	0.76			
	85.00	86.00	1.00	0.74			
	86.00	87.00	1.00	1.02			1m @ 1.02 g/t Au
	87.00	88.00	1.00	0.38			
	88.00	89.00	1.00	1.12			1m @ 1.12 g/t Au
	89.00	90.00	1.00	0.29			
	90.00	91.00	1.00	0.08			
	91.00	92.00	1.00	0.78			
	92.00	93.00	1.00	0.62			
	93.00	94.00	1.00	0.61			
	94.00	95.00	1.00	1.25			1m @ 1.25 g/t Au
	95.00	96.00	1.00	0.30			
	96.00	97.00	1.00	0.49			
	97.00	98.00	1.00	0.10			
	98.00	99.00	1.00	0.86			
	99.00	100.00	1.00	0.53			
	100.00	101.00	1.00	0.99			
	101.00	102.00	1.00	10.60			
	102.00	103.00	1.00	2.32			
	103.00	104.00	1.00	1.62			5m @ 3.40 g/t Au
	104.00	105.00	1.00	1.32			
	105.00	106.00	1.00	1.16			
	106.00	107.00	1.00	0.76			
	107.00	108.00	1.00	0.45			
	108.00	108.90	0.90	0.22			
	156.00	157.00	1.00	0.16			
	157.00	158.00	1.00	0.41			
	158.00	159.00	1.00	0.08			
	159.00	160.00	1.00	0.01	6m @ 0.21 g/t Au	1.3	
	160.00	161.00	1.00	0.07	0.21 g/t Au	1.5	
	161.00	162.00	1.00	0.46			
	162.00	163.00	1.00	0.24			
	163.00	163.82	0.82	0.09			
	163.82	165.00	1.18	0.14			
	165.00	166.00	1.00	0.14			
	166.00	167.39	1.39	0.14			
	190.11	191.50	1.39	0.14			
	191.50	192.62	1.12	0.15			
	1.00	2.00	1.00	0.21	1m @ 0.21 g/t Au	0.2	
	2.00	3.00	1.00	0.16			
SDD0142	3.00	4.50	1.50	0.15			
	8.00	9.00	1.00	0.29	3.37m @ 0.37 g/t Au	1.2	
	9.00	10.00	1.00	0.29	5.57m @ 0.57 g/t Au	1.2	

Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	10.00	11.37	1.37	0.48			
	13.50	14.00	0.50	1.11	1.80 - 0.00 - 1+ 4.4	1.0	0.50m @ 1.11 g/t Au
	14.00	15.39	1.39	0.90	1.89m @ 0.96 g/t Au	1.8	
	21.00	21.76	0.76	0.50	0.76m @ 0.50 g/t Au	0.4	
	22.50	23.00	0.50	0.31			
	23.00	24.00	1.00	0.02			
	24.00	25.00	1.00	0.48			
	25.00	26.00	1.00	0.11			
	26.00	27.00	1.00	0.65			
	27.00	28.00	1.00	0.43			
	28.00	29.00	1.00	0.22			
	29.00	30.00	1.00	0.74			
	30.00	31.00	1.00	0.47	17.23m @ 0.83 g/t Au	14.3	
	31.00	32.00	1.00	2.94	17.25m @ 0.85 g/t Au	14.5	1m @ 2.94 g/t Au
	32.00	33.00	1.00	0.99			
	33.00	34.00	1.00	0.72			
	34.00	35.00	1.00	0.11			
	35.00	36.00	1.00	0.08			
	36.00	37.00	1.00	1.78			
	37.00	38.00	1.00	0.28			3.73m @ 1.65 g/t Au
	38.00	39.00	1.00	2.97			5.75m @ 1.05 g/t Au
	39.00	39.73	0.73	1.52			
	40.50	41.00	0.50	2.57			0.50m @ 2.57 g/t Au
	41.00	42.00	1.00	0.31	2.37m @ 0.86 g/t Au	2.0	
	42.00	42.87	0.87	0.52			
	43.50	44.00	0.50	0.26			
	44.00	45.00	1.00	1.75	3.50m @ 0.87 g/t Au	3.0	1m @ 1.75 g/t Au
	45.00	46.00	1.00	0.96	5.50m @ 0.67 g/ r/tu	5.0	
	46.00	47.00	1.00	0.20			
	47.00	48.50	1.50	0.16			
	49.00	50.00	1.00	0.10			
	50.00	51.00	1.00	0.13			
	51.00	52.50	1.50	0.16			
	52.50	53.00	0.50	0.78			
	53.00	54.00	1.00	0.64			
	54.00	55.00	1.00	0.87			
	55.00	56.00	1.00	0.76			
	56.00	57.00	1.00	0.14			
	57.00	58.00	1.00	0.12			
	58.00	59.00	1.00	0.07			
	59.00	60.00	1.00	0.24			
	60.00	61.00	1.00	0.89	43.50m @ 1.38 g/t Au	59.9	
	61.00	62.00	1.00	0.64			
	62.00	63.00	1.00	1.93			1m @ 1.93 g/t Au
	63.00	64.00	1.00	0.31			
	64.00	65.00	1.00	0.08			
	65.00	65.67	0.67	0.02			
	65.67	66.50	0.83	0.05			
	66.50	67.00	0.50	0.16			
	67.00	68.00	1.00	0.26			

Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	68.00	69.00	1.00	0.23			
	69.00	70.00	1.00	0.20			
	70.00	71.50	1.50	0.27			
	71.50	72.00	0.50	0.26			
	72.00	73.00	1.00	11.35			
	73.00	74.00	1.00	0.95			
	74.00	75.00	1.00	2.24			
	75.00	76.00	1.00	1.29			7m @ 4.71 g/t Au
	76.00	77.00	1.00	0.83			
	77.00	78.00	1.00	14.73			
	78.00	79.00	1.00	1.61			
	79.00	80.00	1.00	0.65			
	80.00	81.00	1.00	0.31			
	81.00	82.00	1.00	0.61			
	82.00	83.00	1.00	0.13			
	83.00	84.00	1.00	0.34			
	84.00	85.00	1.00	1.60			
	85.00	86.00	1.00	0.75			
	86.00	87.00	1.00	0.46			
	87.00	88.00	1.00	1.11			7m @ 1.99 g/t Au
	88.00	89.00	1.00	1.03			
	89.00	90.00	1.00	1.78			
	90.00	91.00	1.00	7.21			
	91.00	92.00	1.00	0.72			
	92.00	93.00	1.00	1.34			1m @ 1.34 g/t Au
	93.00	94.00	1.00	0.10			
	94.00	95.00	1.00	0.05			
	95.00	96.00	1.00	0.31			
	96.00	97.00	1.00	0.10			
	144.00	145.00	1.00	0.18			
	181.00	182.00	1.00	0.12			
	185.00	186.00	1.00	0.10			
	186.00	187.00	1.00	0.12			
	202.00	203.00	1.00	0.58			
	203.00	204.00	1.00	0.03			
	204.00	205.00	1.00	0.01			
	205.00	206.00	1.00	1.36		[1m @ 1.36 g/t Au
	206.00	207.00	1.00	0.39			
	207.00	208.00	1.00	0.06			
	208.00	209.00	1.00	0.08	13m @ 1.14 g/t Au	14.8	
	209.00	210.00	1.00	0.07			
	210.00	211.00	1.00	0.28			
	211.00	212.00	1.00	1.68		†	
	212.00	213.00	1.00	6.62			
	213.00	214.00	1.00	0.10			4m @ 2.99 g/t Au
	214.00	215.00	1.00	3.56			
	220.00	221.00	1.00	1.04			1m @ 1.04 g/t Au
	221.00	222.00	1.00	0.30			<u>.</u>
	222.00	223.00	1.00	0.42	5.85m @ 0.48 g/t Au	2.8	
	223.00	224.00	1.00	0.12			

Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	224.00	225.00	1.00	0.08			
	225.00	225.85	0.85	1.03			0.85m @ 1.03 g/t Au
	272.00	273.00	1.00	0.10			
	18.00	19.00	1.00	0.15			
	44.00	45.00	1.00	0.40	2m @ 0.54 g/t Au	1.1	
	45.00	46.00	1.00	0.68	2111 @ 0.54 g/t Au	1.1	
	52.00	53.00	1.00	0.20	1m @ 0.20 g/t Au	0.2	
	64.00	65.00	1.00	0.10			
	65.00	66.00	1.00	0.10			
	66.00	67.00	1.00	0.10			
	67.00	68.00	1.00	0.11			
	68.00	69.00	1.00	0.15			
	69.00	70.00	1.00	0.53			
	70.00	70.62	0.62	1.79			0.62m @ 1.79 g/t Au
	70.62	72.00	1.38	0.38			
	72.00	73.00	1.00	0.89			
	73.00	74.00	1.00	2.23	10m @ 2.11 g/t Au	21.1	
	74.00	75.00	1.00	0.79	10m @ 2.11 g/ t Au	21.1	
	75.00	76.00	1.00	0.87			4.82m @ 3.70 g/t Au
	76.00	77.00	1.00	4.52			
	77.00	77.82	0.82	11.52			
	77.82	79.00	1.18	0.20			
	89.00	90.00	1.00	0.21	2m @ 0.29 g/t Au	0.6	
	90.00	91.00	1.00	0.37	2111 @ 0.29 g/t Au	0.0	
	92.00	93.00	1.00	0.13			
	104.00	105.00	1.00	2.94			
OSDD0143	105.00	106.00	1.00	1.14			3m @ 2.59 g/t Au
	106.00	107.00	1.00	3.69			
	107.00	108.00	1.00	0.34	8m @ 1.12 g/t Au	9.0	
	108.00	109.00	1.00	0.19	511 @ 1.12 g/t Au	5.0	
	109.00	110.00	1.00	0.04			
	110.00	111.00	1.00	0.40			
	111.00	112.00	1.00	0.22			
	116.70	118.00	1.30	0.74			
	118.00	119.00	1.00	2.25			
	119.00	120.00	1.00	0.55			
	120.00	121.00	1.00	0.14			5m @ 3.25 g/t Au
	121.00	122.00	1.00	1.73			
	122.00	123.00	1.00	11.59			
	123.00	124.00	1.00	0.41			
	124.00	125.00	1.00	0.04			
	125.00	126.00	1.00	2.54	20.83m @ 2.63 g/t Au	54.7	
	126.00	127.00	1.00	1.35			
	127.00	128.00	1.00	0.54			
	128.00	129.00	1.00	0.41			
	129.00	130.00	1.00	2.05			9m @ 3.88 g/t Au
	130.00	131.00	1.00	1.70			
	131.00	132.00	1.00	23.61			
	132.00	133.00	1.00	1.04			
	133.00	134.00	1.00	1.69			

Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	134.00	135.00	1.00	0.44			
	135.00	136.20	1.20	0.98			
	136.20	137.53	1.33	0.35			
	137.53	139.00	1.47	0.16			
	139.00	140.00	1.00	0.02			
	140.00	141.00	1.00	0.14			
	141.00	142.00	1.00	0.05			
	142.00	142.56	0.56	0.01			
	142.56	144.00	1.44	0.41			
	144.00	145.00	1.00	1.86			1m @ 1.86 g/t Au
	145.00	146.00	1.00	0.90			- U,
	146.00	147.00	1.00	1.79			
	147.00	148.00	1.00	3.03			
	148.00	149.00	1.00	0.61			5m @ 1.45 g/t Au
	149.00	150.00	1.00	0.57			
	150.00	151.00	1.00	1.26			
	151.00	152.00	1.00	0.28			
	152.00	153.00	1.00	0.34			
	153.00	154.00	1.00	0.78			
	154.00	155.00	1.00	4.70			
	155.00	156.00	1.00	0.24			
	156.00	157.00	1.00	3.44			
	157.00	158.00	1.00	3.16	29.44m @ 1.30 g/t Au	38.2	7m @ 2.13 g/t Au
	158.00	159.00	1.00	1.14			C 0,
	159.00	160.00	1.00	0.53			
	160.00	161.00	1.00	1.67			
	161.00	162.00	1.00	0.67			
	162.00	163.00	1.00	1.29			
	163.00	164.00	1.00	1.47			
	164.00	165.00	1.00	0.22			5m @ 1.11 g/t Au
	165.00	166.00	1.00	0.88			511 @ 111 8/ 7 40
	166.00	167.00	1.00	1.71			
	167.00	167.00	1.00	0.22		-	
	167.00	169.00	1.00	0.22			
	169.00	170.00	1.00	0.23			
	170.00	171.00	1.00	0.15			
	170.00	172.00	1.00	3.65		-	1m @ 3.65 g/t Au
	171.00	172.00	1.00	0.20	1m @ 0.20 g/t Au	0.2	III @ 3.03 8/ 1 Au
	180.00	181.00	1.00	0.20	III @ 0.20 B/ t Au	0.2	
	181.00	182.00	1.00	0.14			
	188.00	189.00	1.36	0.10	1.36m @ 0.44 g/t Au	0.6	
	218.00	219.00	1.00	1.07	1.30m @ 0.44 g/t Au 1m @ 1.07 g/t Au	1.1	1m @ 1.07 g/t Au
	218.00	219.00	1.00	0.11	ти с тол в/ти	1.1	1 @ 1.07 g/t Au
	227.00	222.00	1.00	0.11	1m @ 0.29 g/t Au	0.3	
	258.00	259.00	1.00	0.23	1m @ 0.82 g/t Au	0.8	
	258.00	259.00	0.77		பா மு 0.02 g/t Au	0.0	
	276.00	276.77		0.16 0.19			
	276.77		1.23				
		279.00	1.00	0.18			
DSDD0146	281.00 59.00	282.40 60.00	1.40 1.00	0.10 0.10			

Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	60.00	61.00	1.00	0.13			
	63.00	64.00	1.00	1.31			
	64.00	65.00	1.00	4.56	2m @ 2.94 g/t Au	5.9	2m @ 2.94 g/t Au
	67.00	68.00	1.00	0.14			
	68.00	69.00	1.00	0.18			
	69.00	70.00	1.00	0.95	1m @ 0.95 g/t Au	1.0	
	74.00	75.00	1.00	2.66	1m @ 2.66 g/t Au	2.7	1m @ 2.66 g/t Au
	79.00	80.00	1.00	0.13			
	82.00	83.00	1.00	0.13			
	83.00	84.00	1.00	1.13			
	84.00	85.00	1.00	6.02			
	85.00	86.00	1.00	1.28			
	86.00	87.00	1.00	3.32			
	87.00	88.00	1.00	1.57			10m @ 2.16 g/t Au
	88.00	89.00	1.00	0.46			10111 @ 2.10 g/ t Au
	89.00	90.00	1.00	4.93	13m @ 1.74 g/t Au	22.6	
	90.00	91.00	1.00	0.13			
	91.00	92.00	1.00	1.17			
	92.00	93.00	1.00	1.57			
	93.00	94.00	1.00	0.22			
	94.00	95.00	1.00	0.10			
	95.00	96.00	1.00	0.74			
	0.00	1.00	1.00	0.10			
	24.00	25.00	1.00	0.30	1m @ 0.30 g/t Au	0.3	
	36.00	37.00	1.00	0.10			
	39.74	40.97	1.23	0.29	1.23m @ 0.29 g/t Au	0.4	
	56.00	57.00	1.00	0.39			
	57.00	58.00	1.00	0.01			
	58.00	59.00	1.00	0.01	6m @ 1.05 g/t Au	6.3	
	59.00	60.00	1.00	0.15			
	60.00	61.00	1.00	4.11			2m @ 2.88 g/t Au
	61.00	62.00	1.00	1.64			
	74.00	75.00	1.00	0.17			
	75.00	76.00	1.00	1.36			
	76.00	77.00	1.00	0.39			4m @ 1.54 g/t Au
SDD0148	77.00	78.00	1.00	0.48	5m @ 1.38 g/t Au	6.9	-
	78.00	79.00	1.00	3.95			
	79.00	80.00	1.00	0.74			
	81.00 86.00	82.00	1.00	0.14			
	86.00	87.00	1.00	0.61			
	87.00	88.00 89.00	1.00 1.00	0.16	4m @ 0.38 g/t Au	1.5	
	88.00	90.00	1.00	0.27			
	102.19	103.00	0.81	0.49			
	102.19	103.00	1.00	0.14			
	103.00	104.00	1.00	0.17			
	104.00	105.00	1.00	0.12 1.19			1m @ 1.19 g/t Au
	108.00	107.00	1.00	0.26			111 @ 1.19 g/t Au
	107.00	108.24	0.76	0.26 1.81	83m @ 4.87 g/t Au	404.1	
	108.24	109.00	1.00	0.32			2.76m @ 1.13 g/t Au

Hole ID	From	То	Interval	Au (ppm)	Sig Int > 0.2 g/t Au	m*g/t Au (gpm)	Sig Int >1 g/t Au
	110.00	111.00	1.00	1.41		(6011)	
	111.00	112.00	1.00	0.51			
	111.00	112.00	1.00	0.31			
	112.00	113.00	1.00	0.13			
	113.00	114.00	1.00	0.30			
	114.00	116.00	1.00	0.23			
	116.00	117.00	1.00	2.22			1m @ 2.22 g/t Au
	117.00	117.00	1.00	0.50			III @ 2.22 g/ t Au
	117.00	119.00	1.00	0.27			
	119.00	119.00	1.00	0.12			
	120.00	120.00	1.00	0.12			
	120.00	121.00	1.00	0.33			
	121.00	122.00	1.00	0.62			
	122.00	123.00	1.00	0.02			
	123.00	124.00	1.00	1.51			
	124.00	125.00	1.00	1.98			
	125.00	120.00	1.00	1.98			
	120.00	127.00	1.00	1.61			7m @ 2.11 g/t Au
	127.00	129.00	1.00	1.81			/// @ 2.11 g/t Au
	128.00	129.00	1.00	1.96			
	130.00	130.00	1.00	4.81			
	130.00	131.00	1.00	0.58			
	131.00	132.00	1.00	0.38			
	133.00	134.00	1.00	0.29			
	134.00 135.00	135.00	1.00	0.81 1.29			1.30m @ 1.29 g/t Au
	135.00	136.30	1.30	0.07			1.50m @ 1.29 g/t Au
	136.30	137.00	0.70	1.09			1m @ 1.09 g/t Au
	137.00	138.00 138.91	1.00 0.91	0.46			111 @ 1.09 g/t Au
	138.00	138.91	1.09	0.46 1.18			1.09m @ 1.18 g/t Au
	138.91	140.00	0.71	0.21			1.0511 @ 1.18 g/t Au
	140.00						
	140.71	142.00	1.29	45.15			
		143.00 143.60	1.00	133.39			
	143.00 143.60	143.60	0.60	2.91 0.45			6.29m @ 34.94 g/t Au
	145.00 146.00	146.00 147.00	1.00	21.54 4.20			
	146.00	147.00	1.00	0.60			
	148.00	149.00	1.00	0.90 0.57			
	149.00 150.00	150.00 151.00	1.00 1.00	0.57			
	150.00	151.00	1.00	0.53			
	152.00	153.00	1.00	0.79			
	153.00	154.00	1.00	0.48			
	154.00	155.00	1.00	0.36			
	155.00	156.00	1.00	0.51			
	156.00	157.00	1.00	1.41			2m @ 1.70 g/t Au
	157.00	158.00	1.00	1.98			
	158.00 159.00	159.00 160.00	1.00 1.00	0.24 0.06			

Hole ID	From	То	Interval	Au	Sig Int > 0.2 g/t Au	m*g/t Au	Sig Int >1 g/t Au
				(ppm)		(gpm)	
	160.00	161.00	1.00	1.87			
	161.00	162.00	1.00	0.38			3m @ 1.33 g/t Au
	162.00	163.00	1.00	1.74			
	163.00	164.00	1.00	0.52			
	164.00	165.00	1.00	0.04			
	165.00	166.00	1.00	1.95			
	166.00	167.50	1.50	1.60			
	167.50	168.61	1.11	1.03			
	168.61	170.00	1.39	2.73			8m @ 2.08 g/t Au
	170.00	171.00	1.00	5.05			
	171.00	172.00	1.00	0.94			
	172.00	173.00	1.00	1.36			
	173.00	174.00	1.00	0.52			
	174.00	175.00	1.00	0.39			
	175.00	176.00	1.00	0.66			
	176.00	177.00	1.00	0.28			
	177.00	178.00	1.00	0.23			
	178.00	179.00	1.00	0.18			
	179.00	180.00	1.00	2.94			
	180.00	181.00	1.00	3.47			
	181.00	182.00	1.00	2.31			
	182.00	183.00	1.00	0.97			0m @ 14.01 alt Av
	183.00	184.00	1.00	1.19			8m @ 14.81 g/t Au
	184.00	185.00	1.00	1.21			
	185.00	186.00	1.00	13.34			
	186.00	187.00	1.00	93.06			
	187.00	188.00	1.00	0.37			
	188.00	189.00	1.00	0.23			
	216.00	217.00	1.00	0.18			
	233.00	234.00	1.00	0.15			
	246.00	247.00	1.00	0.16			

About Aurum

Aurum Resources (ASX:AUE) is an Australian based gold exploration company focused on discovery and development of major gold projects in Côte d'Ivoire, West Africa. Aurum has 2.47Moz gold resources coming from two gold projects, the 1.59Moz Boundiali Gold Project and the 0.87Moz Napié Gold Project. Aurum owns and runs eight (8) diamond drill rigs allowing it to explore faster and more cost effectively than its peers.

			Oxide			Transition			Fresh			Total	
Area	Class	Quantity	A (#)	Au	Quantity	A (/ h)	Au	Quantity	A (m /h)	Au	Quantity	Au	Au
		(Mt)	Au (g/t)	(Oz)	(Mt)	Au (g/t)	(KOz)	(Mt)	Au (g/t)	(KOz)	(Mt)	(g/t)	(KOz)
	Indicated	0.8	1.1	30,000	0.7	1.2	30,000	2.4	1.0	80,000	3.9	1.1	130,000
BST	Inferred	0.6	1.0	20,000	1.3	1.0	40,000	5.1	1.0	160,000	7.1	1.0	220,000
	Sub Total	1.4	1.1	50,000	2.0	1.0	70,000	7.6	1.0	240,000	11.0	1.0	360,000
	Indicated												
BDT1	Inferred	0.8	0.9	20,000	0.3	0.9	10,000	10.8	0.9	310,000	11.9	0.9	340,000
	Sub Total	0.8	0.9	20,000	0.3	0.9	10,000	10.8	0.9	310,000	11.9	0.9	340,000
	Indicated												
BDT2	Inferred	0.1	0.8	3,000	2.1	0.8	60,000	14.1	0.8	380,000	16.3	0.8	440,000
	Sub Total	0.1	0.8	3,000	2.1	0.8	60,000	14.1	0.8	380,000	16.3	0.8	440,000
	Indicated												
BMT1	Inferred	0.3	1.0	10,000	0.1	1.0	3,000	7.1	1.3	288,000	7.5	1.2	300,000
	Sub Total	0.3	1.0	10,000	0.1	1.0	3,000	7.1	1.3	288,000	7.5	1.2	300,000
	Indicated												
BMT3	Inferred	0.2	1.1	10,000	0.3	1.1	10,000	3.8	1.1	130,000	4.2	1.1	150,000
	Sub Total	0.2	1.1	10,000	0.3	1.1	10,000	3.8	1.1	130,000	4.2	1.1	150,000
	Indicated	0.8	1.2	30,000	0.7	1.3	30,000	2.4	1.0	80,000	3.9	1.0	130,000
All	Inferred	2.0	1.0	60,000	4.1	0.9	120,000	40.8	1.0	1,270,000	47.0	1.0	1,450,000
	Total	2.8	1.0	90,000	4.8	1.0	150,000	43.3	1.0	1,350,000	50.9	1.0	1,590,000

Statement of Boundiali Mineral Resources by Deposit as at 29 December 2024. Reported at 0.5 g/t Au cut off within pit shells; and 1.0 g/t Au cut off below the pit shells¹⁰

Napié Mineral Resource Estimate; On 14 June 2022, a maiden Mineral Resource Estimate was reported in accordance with JORC (2012) comprising two deposits, Tchaga and Gogbala.¹¹

Deposit	Category	Tonnes (Mt)	Grade (g/t Au)	Au (koz)
Tchaga	Inferred	14.6	1.16	545
Gogbala	Inferred	7.8	1.29	323
Global Resource	Total	22.5	1.20	868

Resources reported at a cut-off grade of 0.6g/t gold. Differences may occur in totals due to rounding.

¹⁰ "Aurum delivers 1.59Moz Maiden JORC Resource at Boundiali Gold Project" released to the Australian Securities Exchange on 30 December 2024 and amended on 31 December 2024 and available to view on www.asx.com.au.

¹¹ "Napie Project Listing Rule 5.6 Disclosure (Amended)" released to the Australian Securities Exchange on 4 February 2025 and available to view on www.asx.com.au.

Boundiali Gold Project (1.6Moz)

The flagship 1.6Moz Boundiali Gold Project is comprised of four neighbouring exploration tenements and is located within the same greenstone belt as Resolute's large Syama (11.5Moz) gold mine and Perseus' Sissingue (1.4 Moz) gold mine to the north and Montage Gold's 4.5Moz Koné project located to the south. Barrick's Tongon mine (5.0Moz) is located to the northeast (Figure 1):

- Boundiali Minex Tenement PR0893 ("BM"), 400km², holder Minex West Africa, of which Aurum holds 80% (through its fully owned subsidiary Plusor Global Pty Ltd "Plusor") and can hold interest of between 80-88% in a mining licence.
- 2) Boundiali DS tenement PR808 ("**BD**"), 260km², holder DS Resources Joint Venture Company, of which Aurum is 80% share capital owner through its fully owned subsidiary Plusor.
- 3) Boundiali South tenement PR414 ("BST"), 167.34km² is located directly south of Aurum's BD and BM tenement. The BST exploration tenement was renewed on 19th August 2024. Predictive Discovery Côte d'Ivoire SARL (89% owned by Turaco Gold Limited and 11% owned by Predictive Discovery Limited) agreed to sell 100% interest to Aurum, subject to Aurum obtaining a renewal of the Boundiali South tenement (or the granting of a replacement tenement) and being satisfied that the terms of the renewal (or replacement) do not restrict exploration or potential future mining rights, along with all required Government approvals.
- 4) Boundiali North tenement PR283 ("**BN**"), 208.87km2, under renewal, Aurum to earn up to 70% interest through its wholly owned subsidiary Plusor.

BM gold project JV

Plusor has earnt 80% interest through drilling 8,000m and spending US\$2.5M accumulated exploration expenditure.

- Completed drilling 4,000m diamond holes to earn 30% interest
- Completed drilling a further 4,000m diamond holes to earn accumulated 51% interest
- Earnt an accumulated 80% interest from a total exploration expenditure of US\$2.5M using a nominal diamond drilling cost of US\$140/m in calculation for expenditure commitment.
- 80-88% interest in future gold production company (Government gets 10% free carry from local partner):
 - 80% if local partner contributes 11% capex
 - \circ 85% if local partner does not contribute capex they go to 5% free carry
 - \circ ~~ 88% if local partner sells us 3% of their interest they go to 2% free carry

BD gold project JV

Plusor owns 80% interest acquired from DS Joint Venture Company's two shareholders:

- acquired 45% share capital of DS Joint Venture Company Sarl by paying US\$430,000 to DS Resources Sarl; and
- acquired 35% share capital of DS Joint Venture Company Sarl from Turaco Gold Ltd by drilling 3,500m diamond holes in Turaco's other gold projects in Côte d'Ivoire . This commitment has been completed.
- 80-88% interest in future gold production company (Government gets 10% free carry from local partner):
 - 80% if local partner contributes 11% capex

- 85% if local partner does not contribute capex they go to 5% free carry
- 88% if local partner sells us 3% of their interest they go to 2% free carry

BST gold project consideration and payment for the binding term sheet

- Purchase of the tenement is subject to Aurum obtaining a renewal of the BST tenement (or the granting of a replacement) and being satisfied that the terms of the renewal (or replacement permit) do not restrict exploration or potential future mining rights, along with required Government approvals
- Within 15 business days of the satisfaction (or waiver) of the conditions precedent above, the Seller will, by written notice to the Purchaser, elect to receive **one** of the following forms of consideration (**Election**):
 - (i) A\$800,000 in cash (Cash Consideration); or
 - (ii) If the 20-day volume weighted average trading price of Shares (VWAP) is:
 - Less than or equal to A\$0.20 at the time of the Election, 5,000,000 fully paid ordinary shares in the Purchaser (Shares) (Consideration Shares 1); or
 - Greater than A\$0.20 at the time of the Election, Shares to a value of A\$1.2 million, as determined by dividing A\$1.2 million by the 20-day VWAP for the Shares (Consideration Shares 2)
- 90% interest in future gold production company (Government get 10% free carry from our interest)

BN gold project JV

Aurum is earning interest through carrying out exploration to earn 70% interest in three stages:

- Stage 1: Aurum earns 35% interest by spending USD 1.2 million within 36 months of license grant
- Stage 2: Aurum earns 51% interest by spending USD 2.5 million within 60 months of license grant
- Stage 3: Aurum earns 70% interest upon completion of a pre-feasibility study on the tenement.
- Diamond drilling conducted by Aurum will be valued at US\$140 per meter for expenditure calculations
- Upon grant of a mining exploitation license, the ownership structure will be: Aurum (70%), GNRR (20%), Ivorian Government (10%)

Mako Gold projects (0.87Moz)

Mako Gold (majority owned subsidiary of Aurum) holds 90% interest in the Napié Gold Project (10% held by Occidental Gold SARL, a subsidiary of West African gold miner Perseus Mining Limited ASX/TSX:PRU). Mako Gold has 100% ownership of the Korhogo Project (significant manganese discovery) and the Brobo Project (lithium/rare earths).

Section 1 of the JORC Code, 2012 Edition – Table 1

Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Criteria Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Samples were collected using diamond drilling techniques generally angled at 50° to optimally intersect the mineralised zones. Diamond core was logged both for geological and mineralised structures as noted above. The core was then cut in half using a diamond brick cutting saw on 1m intervals. Typically, the core was sampled to geological intervals as defined by the geologist within the even two metre sample intervals utilised. The right-hand side of the core was always submitted for analysis with the left side being stored in trays on site. Sampling and QAQC procedures were carried out to industry standards. Sample preparation and assay was completed by independent international accredited laboratory MSALABS. Following cutting or splitting, the samples were bagged by the Client employees and then sent to the laboratory for preparation. These samples were subsequently sent to MSALABS at Yamousoukro for analysis via 500g Photon Assay.
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	• Diamond drilling carried out with mostly NTW and some HQ sized equipment. PQ-size rods and casing were used at the top the holes to stabilise the collars although no samples were taken from the PQ size core.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond drilling core recoveries ranged between 85% and 100% for all holes with no significant issues noted.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or 	• All holes were field logged by company geologists. Lithological, alteration and mineralogical nomenclature of the deposit as well as sulphide content were recorded. Metallurgical, Geotechnical and structural data has been recorded

Criteria	JORC Code explanation	Commentary
Sub-sampling	 quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether 	 Photography and recovery measurements were carried out by assistants under a geologist's supervision. All drill holes were logged in full. Logging was qualitative and quantitative in nature. NTW core cut in half using a core saw.
techniques and sample preparation	 quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Typically, the core was sampled to major geological intervals as defined by the geologist within the even two metre sample intervals utilised. All samples were collected from the same side of the core. Sample sizes are considered appropriate to correctly represent the moderately nuggetty gold mineralisation based on: the style of mineralisation, the thickness and consistency of the intersections, the sampling methodology and assay value ranges for Au. The entire sample was crushed to 70% passing 2mm. Crushed sample was split to produce 500g sample for analysis and the remaining reject kept for checks. Field QC procedures involved the use of 2 types of certified reference materials (1 in 20) which is certified by Geostats Ltd, Primary DD duplicate: Generated by cutting the remaining half core into a ¼ and sampled. Coarse blank samples: Inserted 1 in every 20 samples Laboratory Internal Duplicates and Standards Sample sizes are considered appropriate to correctly represent the moderately nuggetty gold mineralisation based on: the style of mineralisation, the thickness and consistency of the intersections, the sampling methodology and assay value ranges for gold
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures 	The analytical technique used is ChrysosTM PhotonAssay methodology . This uses a high-energy X-ray source that is used to irradiate large mineral samples, typically about 500g compared to the 50g of the fire assay. The X-rays induce short-lived changes in the structure of any gold nuclei present. As the excited gold nuclei return to their ground state, they emit a characteristic gamma-ray signature, the intensity of which is directly proportional to the concentration of gold. The penetrating nature of ChrysosTM PhotonAssay provides much

Criteria	JORC Code explanation	Commentary
	adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 higher energy than those used in conventional X-ray fluorescence (XRF), which provides a true bulk analysis of the entire sample. Samples are presented into a fully automatic process where samples are irradiated, measured, data collection and reporting. No geophysical tools were used to determine any element concentrations used for this report. Sample preparation checks for fineness were carried out by the laboratory as part of internal procedures to ensure the grind size of 2mm was being attained. Laboratory QAQC includes the use of internal standards using certified reference material, and pulp replicates. No anomalous assays were noted in information provided to the Client. The QAQC results confirm that acceptable levels of accuracy and precision have been established for the Classifications applied
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 (exploration results only). NA No holes have been twinned No adjustment to assay data Logging records were mostly registered in physical format and were input into a digital format. The core photographs, collar coordinates and down the hole surveys were received in digital format. Assay values that were below detection limit were adjusted to equal half of the detection limit value. Un-sampled intervals were assumed to have no mineralisation and they were therefore set to blank in the database, however these are minimal.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 DD collar positions were initially located using a handheld GPS with a location error of +/3m. The datum employed is WGS84, Zone 29 All drill hole locations are then surveyed utilising the differential GPS methods by both company and third party surveyors. DGPS system utilised is typically within a 10 cm accuracy range which is suitable for the classification applied.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 Drillholes were completed on variable spacings (between 100-50m lines) and orientations. No mineral resource on this prospect (BDT3). The samples were not composited prior to assay.

Criteria	JORC Code explanation	Commentary
	 Whether sample compositing has been applied. 	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• Drill holes were drilled approximately at right angles to the anticipated strike of the target geochemical anomaly and orthogonal to the interpreted mineralisation orientation.
Sample security	The measures taken to ensure sample security.	 Chain of custody is managed by the Client's senior site geologists and geotechnicians. Samples are stored in a core shed at site and samples were delivered to the laboratory by client geologists. Client employees have no further involvement in the preparation or analysis of the samples.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	Detailed reviews of sampling techniques were carried out on the site visit by RPM in October 2024.

Section 2 of the JORC Code, 2012 Edition – Table 1

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Exploration results are from the Boundiali project area Boundiali DS tenement PR808 ("BD"), 260km2, holder DS Resources Joint Venture Company, of which Aurum is 80% share capital owner through its fully owned subsidiary Plusor. There are no impediments to working in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The exploration results reported in this announcement are from work undertaken by wholly owned subsidiary PlusOr on behalf of Aurum Resources Limited The licence area is known as a prospective region for gold and recent artisanal workings revealed the presence of primary gold mineralisation in artisanal pits and small-scale underground mining.
Geology	 Deposit type, geological setting and style of mineralisation. 	• The Boundiali Deposits are located within the Proterozoic Birimian rocks of the Man shield. It is situated on, 100km west of from the Korhogo in the northern part of the Côte d'Ivoire. They are located in the Bagoué- Syama shear zone within the

Criteria	JORC Code explanation	Commentary
		 sedimentary rock with minor associated intrusions of mafic dykes and late-stage granitoids. The various rock units trend NS to NNE similar to the regional metamorphic grade. The regional trend is NE to N. The Boundiali deposits resemble typical shear zone deposits of the West African granite-greenstone terrane. The deposits themselves are associated with a major regional shear zone and are developed in a sandstone. Mineralisation may be spatially related to the emplacement of intrusives. The gold mineralisation is mesothermal in origin and occurs as free gold in quartz vein stockworks and zones of silicification, associated with pyrite and chalcopyrite. The gold mineralisation is found in linear zones with the contacts showing evidence of shearing. Free gold is frequently observed. Alteration is weak to strong depending on the development of the system typically being sericite. Two types of deformation are present in the drill cores: ductile deformation and brittle deformation. The gold mineralisation is related to deformed sandstone and graywacke, in shear zones, with sulphides (mainly pyrite and minor chalcopyrite) associated with visible gold. Alteration is characterized by chlorite, sericite, calcite, secondary quartz and disseminated pyrite. This assemblage is well developed in schistose, foliated rocks with presence of quartz veins or veinlets.
Drill hole information	 A summary of all information material to the under-standing of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why 	 Complete drill hole data has been provided. Drill hole collar locations are shown in figures in main body of announcement.

Criteria	JORC Code explanation	Commentary
	this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Assay Intervals are shown in detail. Drilling intervals are predominantly 1m. Metal equivalent values are not being reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 True widths have not been estimated as the geological controls on mineralisation in these initial drill holes into the prospect are not yet well understood. The holes were drilled from east to west to test a steeply east dipping foliation in the limited rock exposures seen in the area. The mineralisation lies within what has been interpreted to be a ductile shear zone which would suggest that mineralisation should lie parallel to foliation.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Appropriate diagrams relevant to material results are shown in the body of this announcement.
Balanced Reporting	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All drill hole and trench collar locations were surveyed utilising handheld GPS methods. Exploration results only being reported. Drilling teams utilised the Reflex EZ-shot instrument to measure deviations in azimuth and inclination angles for all holes; however, vertical holes were not surveyed. The first measurement is taken at 6 m depth, and then at approximately every 30m depth interval and at the end of the hole. being reported
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, 	All relevant exploration data is either reported in this announcement or has been reported previously by Aurum, Randgold or Predictive Discovery and is referred to in the announcement.

Criteria	JORC Code explanation	Commentary
	geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The Company intends to continue exploration on the project and this work will include auger, aircore, RC and diamond core drilling, along with further geophysical surveys and geochemical sampling programs. Diagrams included in body of report as deemed appropriate by competent person