

Advancing the Manyoni, Tanzania Uranium Project

19 February, 2025

Outstanding Uranium Assay Results at Manyoni Uranium Project

Highlights:

- Moab is pleased to report assay results for the first 51 drill holes of the 110 hole program from its maiden drill program at its Manyoni Uranium Project, Tanzania
- All 51 drill holes encountered uranium mineralisation with 49 holes returning in excess of 1.0m at 100ppm U₃O₈ while 18 holes exceeded 1.0m at 400ppm U₃O₈.
- Drilling has confirmed a consistently mineralised, flat lying system with only ~1.0m of overburden making the Manyoni Project amenable to low-cost, open cut mining.
- Significant intersections include:
 - o **3.0m at 1126 ppm U₃O₈** from 0m (24PQ003)
 - **2.4m at 1023 ppm U₃O₈** from 0m (24PQ004)
 - 2.3m at 1042 ppm U₃O₈ from 0.7m (24PQ036)
 - **4.5m at 740 ppm U₃O₈** from 0m (24PQ005)
- Moab expects to complete the acquisition of the neighbouring AuKing tenements shortly. These additional tenements contain known uranium mineralisation located immediately adjacent to Moab's existing tenure.
- Assay results for the remaining 59 holes are expected in the coming weeks.
- Assay results will form the basis of Moab's Maiden JORC (2012) Mineral Resource Estimate (MRE) expected in CY2025.

Moab Minerals Limited (ASX:**MOM**) (**Moab**, or the **Company**) is pleased to announce the results of PQ core drilling at its Manyoni uranium project in Manyoni Province in Tanzania, Africa.

Moab Managing Director, Mr Malcolm Day, commented: "These results have exceeded our expectations and confirm the widespread and consistent distribution of uranium mineralisation across the tenements. The mineralisation is remarkably consistent and at shallow depth suitable for open cut mining. The next step is to compare these results with historical assays as part of the verification exercise. This work

Level 1, 2A / 300 Fitzgerald Street North Perth, WA 6006 info@moabminerals.com.au www.moabminerals.com.au

is intended to facilitate a JORC 2012 compliant MRE in 2025. We're excited about acquiring the AuKing ground as it has the potential to add additional uranium resources".

Figure 1. Location of the Manyoni Uranium Project

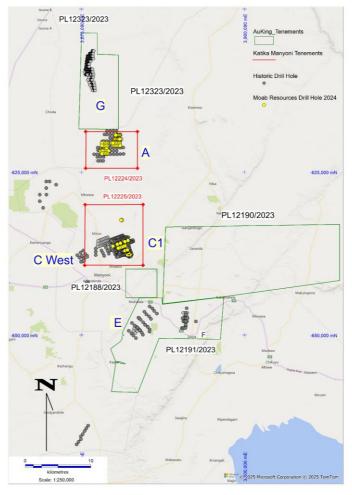


Figure 2. Manyoni Prospecting Licences, showing location of "C1" and "A" projects and including the AuKing tenements that Moab is acquiring

Drill Program

Moab has completed its maiden drill program at the Manyoni Uranium Project covering the C1 tenement area. Table 1 below documents the significant intersections based on exceeding a minimum width-grade of 1.0m at 100ppm U₃O₈. Out of 51 drill holes, 48 holes exceeded this threshold. 18 holes exceed the higher cut-off grade of 1.0m at 400ppm U₃O₈ indicating existence of a high-grade core of mineralisation. These +400ppm U₃O₈ high-grade intervals are highlighted in green in Table 1.

Table 1.

U ₃ O ₈ ppm at 100ppm cut-off Grade and Min 1.0m thickness					
	Interse	ctions in exce	ess of 400 ppm U ₃ Oa	highlighted green	ו
Hole_ID	Depth_From	Depth_To	Interval Width (m)	Grade ppm U3O8	InterceptDescription
24PQ003	0	3	3	1126	3.00m @ 1126 ppm
24PQ004	0	2.4	2.4	1023	2.40m @ 1023 ppm
24PQ005	0	4.5	4.5	740	4.50m @ 740 ppm
24PQ006	0	1.25	1.25	206	1.25m @ 206 ppm
24PQ007	0.75	3.67	2.92	482	2.92m @ 482 ppm
24PQ008	1	4	3	161	3.00m @ 161 ppm
24PQ010	0	3	3	523	3.00m @ 523 ppm
24PQ011	0	2.4	2.4	624	2.40m @ 624 ppm
24PQ012	0	3.57	3.57	683	3.57m @ 683 ppm
24PQ013	0	3.14	3.14	693	3.14m @ 693 ppm
24PQ014	11	12	1	211	1.00m @ 211 ppm
24PQ014	1	3.15	2.15	626	2.15m @ 626 ppm
24PQ014 24PQ015	0	1.5	1.5	196	
	0				1.50m @ 196 ppm
24PQ016	0	2.43	2.43	392	2.43m @ 392 ppm
24PQ017		2	2	127	2.00m @ 127 ppm
24PQ018	0	3.2	3.2	714	3.20m @ 714 ppm
24PQ019	0	3.85	3.85	523	3.85m @ 523 ppm
24PQ020	1.18	3.5	2.32	153	2.32m @ 153 ppm
24PQ021	0	3.85	3.85	614	3.85m @ 614 ppm
24PQ022	0	2.55	2.55	356	2.55m @ 356 ppm
24PQ023	0	9	9	178	9.00m @ 178 ppm
24PQ024	0	3	3	230	3.00m @ 230 ppm
24PQ025	0.8	4.1	3.3	147	3.30m @ 147 ppm
24PQ026	0	2	2	1255	2.00m @ 1255 ppm
24PQ028	0.67	5.16	4.49	158	4.49m @ 158 ppm
24PQ029	0	6.19	6.19	363	6.19m @ 363 ppm
24PQ030	0.5	1.9	1.4	437	1.40m @ 437 ppm
24PQ031	23	24	1	105	1.00m @ 105 ppm
24PQ031	0	4.44	4.44	345	4.44m @ 345 ppm
24PQ032	17	18	1	106	1.00m @ 106 ppm
24PQ032	0	2.2	2.2	159	2.20m @ 159 ppm
24PQ033	0	2.35	2.35	651	2.35m @ 651 ppm
24PQ034	0.85	2.3	1.45	248	1.45m @ 248 ppm
24PQ035	0	5.3	5.3	231	5.30m @ 231 ppm
24PQ036	0.7	3	2.3	1042	2.30m @ 1042 ppm
24PQ037	0.62	4	3.38	214	3.38m @ 214 ppm
24PQ038	1	3.7	2.7	647	2.70m @ 647 ppm
24PQ039	0.8	8.2	7.4	111	7.40m @ 111 ppm
24PQ040	0.5	1.8	1.3	630	1.30m @ 630 ppm
24PQ041	1.1	3	1.9	142	1.90m @ 142 ppm
24PQ043	1.43	7.47	6.04	156	6.04m @ 156 ppm
24PQ044	1.64	4	2.36	207	2.36m @ 207 ppm
24PQ045	1.3	3.5	2.2	209	2.20m @ 209 ppm
24PQ046	0.6	3.5	2.9	203	2.90m @ 204 ppm
24PQ047	2	4.51	2.51	205	2.51m @ 205 ppm
24PQ048	1.95	6.5	4.55	203	4.55m @ 211 ppm
24PQ048	1.33	4.14	2.8	115	2.80m @ 115 ppm
24PQ049 24PQ049	7.11	10.8	3.69	131	3.69m @ 131 ppm
24PQ049 24PQ050	1.64	8	6.36	164	6.36m @ 164 ppm
24PQ051	0.81	6	5.19	142	5.19m @ 142 ppm

U₃O₈ ppm at 100ppm cut-off Grade and Min 1.0m thickness

Note: The selection of a minimum width and U_3O_8 grade for display here is based on a minimum width of 1.0m and a minimum grade of 100ppm U_3O_8 . This is for illustrative purposes only and is not intended to indicate an economic mining cut-off grade in the absence of appropriate mining studies.

A plan view of the drill holes in the C1 project area is in figure 3 and selected cross sections are shown in figures 4 and 5, below. Table 2 gives location coordinates for the completed drill holes.

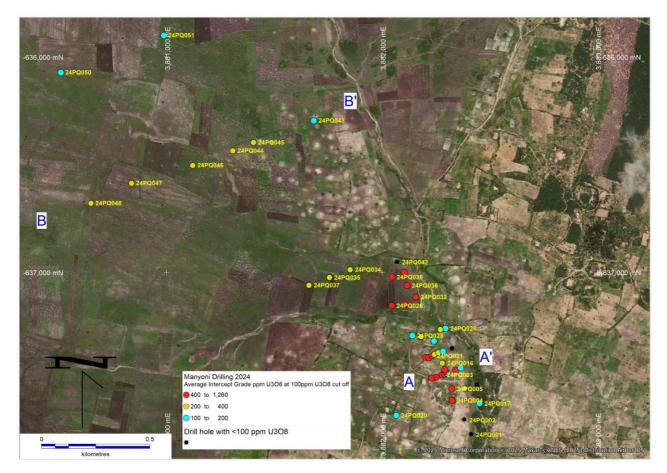


Figure 3. Manyoni 2024 drill holes colour coded according to U308 grade

All drill holes are vertical, so intersection widths are also true widths of mineralisation. PQ core was sampled on 50cm intervals and split in half with a cutting saw for sampling of half-core for assay. Sampling was on geological contacts. Drill collars were all surveyed with a DGPS instrument. Downhole surveys were not carried out due to the shallow depth of the drill holes (<10m).

The program has involved 110 PQ core holes for a total of 1608m on the Manyoni C1 project and the Manyoni A project. All holes were designed to twin pre-existing drill holes and to check and verify the uranium results in those holes by physical assay of the Moab drill core using the Pressed Pellet XRF method. Samples were assayed at SGS laboratories in South Africa. The collection of QA/QC information including insertion of Certified Reference Materials (CRM's), blank samples and laboratory standards was rigorously adhered to throughout. Systematic core photography, specific gravity and collection of other physical properties of the core is also designed to comply with the standards required for a 2012 JORC compliant Mineral Resource estimation.

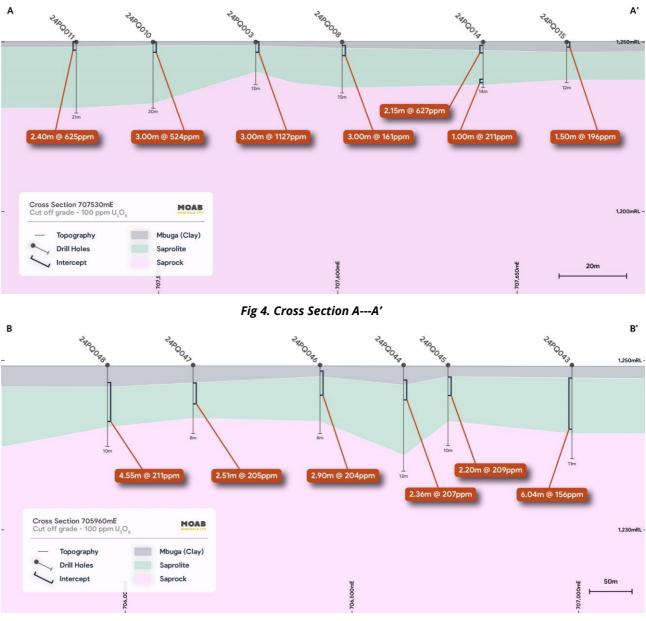


Fig 5. Cross Section B—B'

Overview of the Manyoni Uranium Project

Project Location

The Manyoni Uranium Project tenements are located in the Republic of Tanzania (pop. 65 million), Africa, approximately 100km northwest of the capital city of Dodoma (pop. 765,000). The location of the uranium project at Manyoni is shown in figure 1. Whilst figure 2 shows the location of the Auking tenements that Moab (via its 80% owned local subsidiary company Katika Resources Ltd) has acquired.

Geological Setting and Uranium Mineralisation

The tenements are located in the central part of the Tanzanian Archaean Shield, which is a stable platform of granite-gneiss terrane with marginal greenstone belts. Radiometrically "hot" granites have been subject to erosion over geological time and have contributed uranium and other metals into the pluvial streams and lakes which drain the shield.

In the Manyoni area the uranium is deposited in a shallow playa lake system as schröckingerite (in the lake sediments) and carnotite in the granitic saprolite below the lake sediments. The mineralisation varies from flat lying to gently undulating as it follows the direction of the palaeodrainage to the south-east while the average depth to the top of mineralisation is approximately 1.0m in the Manyoni C1 area. The mineralisation is horizontal and varies in thickness from 1.5m to 6m.

Metallurgical Testwork

A metallurgical testwork program is underway in order to determine the optimum processing pathway for the Manyoni mineralisation. Core samples have been selected to be representative of the different types of lithology and mineralisation including Mbenga Clay and Saprolite and for mineralisation that is either less than 400ppm U308 or greater than 400ppm U308. Metallurgical testwork results will also help focus future exploration into areas where metallurgical recovery is most favourable.

Exploration Plan

In addition to the drilling, Moab is planning to undertake an exploration drilling program that is designed to define the limits of the known mineralisation by step-out drilling on broad centres up to 200m x 400m apart.

Purchase Agreement with AuKing

Subject to an Asset Sale and Purchase Agreement between AuKing Mining Limited (Auking), Moab, 92U Tanzania Ltd (92U) and Katika Resources Ltd (Katika), executed on 15 October 2024, Katika, a wholly owned subsidiary in Tanzania of Moab, will acquire the prospecting licences from 92U, a wholly owned subsidiary in Tanzania of AuKing. The acquisition is subject to certain Conditions Precedent including:

- Due Diligence to the satisfaction of Moab,
- AuKing to provide access to all pertinent information within its control,
- The tenements being in good standing,
- Ministerial approval for the transfers,
- Fair Competition Council (FCC) of Tanzania approval if required.

The Asset Sale and Purchase Agreement includes an agreement from Auking and 92U to irrevocably and unconditionally release and waive the 92U Claim and hold harmless Moab and Katika from any further claims or actions with respect to the 92U Claim. The 92U Claim means the claim of 92U and/ or AKN in relation to the Katika Prospecting Licences. The consideration for the acquisition is A\$175,000 cash payable within two days of satisfaction of the Conditions Precedent, or waiver thereof.

The AuKing Tenements

The tenements subject to acquisition are:

Prospecting Licence No.	Area (km²)	Date Granted
12188/2023	19.90	26 January,2023
12190/2023	268.99	26 January 2023
12191/2023	126.05	26 January,2023
12323/2023	73.56	5 May, 2023

Next Steps

- 1. Assay results for the remaining 59 holes are expected in the coming weeks.
- 2. Completion of Metallurgical sampling and shipment of samples to ANSTO in Australia for metallurgical testwork.
- 3. Commencement of drilling in AuKing tenements immediately adjacent to Moab's existing tenure.
- 4. Potential step-out drilling at high-priority targets at the Manyoni Uranium Project
- 5. Maiden Mineral Resource Estimation for the Manyoni Uranium Project

This announcement is authorised by the Board of Directors.

For further information, please contact:

Jane Morgan
Investor and Media Relations
JMM
jm@janemorganmanagement.com.au
+61405 555 618

Competent Person Statement

The information in this report regarding the Tanzanian uranium project as it relates to exploration results and geology was compiled by Mr Geoff Balfe who is a Member of the Australasian Institute of Mining and Metallurgy and a Certified Professional. Mr Balfe is a consultant to Moab Minerals Limited. Mr Balfe has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Balfe consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

ABOUT MOAB MINERALS

Moab Minerals Limited (ASX:MOM) is an exploration and project development company with a portfolio of exploration projects including:

- The Manyoni and Octavo Uranium Projects located in Tanzania,
- The REX Uranium-Vanadium Project located in the famed Uravan Mineral Belt of Colorado,
- The Highline Copper-Cobalt Project in Southern Nevada, and

Moab also holds a 11.02% interest in CAA Mining, an exploration and development company focused on lithium and gold exploration in Ghana, Africa, providing Moab shareholders with an interest in three lithium projects that are complementary to its existing assets, expanding its business as a junior exploration company.

Table 2 Drill Hole Locations

					iole Loc				
Hole_ID 24PQ001	Hole_Type DDH	Max_Depth 13.5	NAT_Grid_ID ARC60_36	NAT_East 707710	NAT_North 9367764	NAT_RL 1241	NAT_Survey_Meth DGPS	od Lease_ID PL12225/2023	Prospec Manyoni C1
24PQ002	DDH	15	ARC60_36	707679	9367831	1241	DGPS	PL12225/2023	Manyoni C1
4PQ003	DDH	12.5	ARC60_36	707577	9368039	1244	DGPS	PL12225/2023	Manyoni C1
4PQ004 4PQ005	DDH DDH	15	ARC60_36 ARC60_36	707622 707621	9367921 9367974	1243 1243	DGPS	PL12225/2023 PL12225/2023	Manyoni C1
4PQ005	DDH	6.5	ARC60_36	707621	9367976	1243	DGPS	PL12225/2023	Manyoni C1 Manyoni C1
1PQ007	DDH	15	ARC60_36	707588	9368042	1244	DGPS	PL12225/2023	Manyoni C1
1PQ008	DDH	15	ARC60_36	707601	9368046	1243	DGPS	PL12225/2023	Manyoni C1
1PQ009	DDH	9.5	ARC60_36	707738	9367990	1241	DGPS	PL12225/2023	Manyoni C1
PQ010 PQ011	DDH DDH	19.5 21	ARC60_36 ARC60_36	707549 707528	9368027 9368024	1244 1244	DGPS	PL12225/2023 PL12225/2023	Manyoni C1 Manyoni C1
PQ012	DDH	15	ARC60_36	707593	9368055	1244	DGPS	PL12225/2023	Manyoni C1
PQ013	DDH	13.5	ARC60_36	707589	9368063	1244	DGPS	PL12225/2023	Manyoni C1
IPQ014	DDH	13.5	ARC60_36	707640	9368061	1243	DGPS	PL12225/2023	Manyoni C1
4PQ015	DDH	12	ARC60_36	707663	9368070	1242	DGPS	PL12225/2023	Manyoni C1
4PQ016 4PQ017	DDH DDH	13	ARC60_36 ARC60_36	707578 707749	9368092 9367907	1244 1241	DGPS	PL12225/2023 PL12225/2023	Manyoni C1 Manyoni C1
1PQ018	DDH	16.5	ARC60_36	707501	9368120	1244	DGPS	PL12225/2023	Manyoni C1
4PQ019	DDH	18	ARC60_36	707515	9368117	1244	DGPS	PL12225/2023	Manyoni C1
4PQ020	DDH	20	ARC60_36	707365	9367854	1246	DGPS	PL12225/2023	Manyoni C1
4PQ021 4PQ022	DDH DDH	17.5 13.5	ARC60_36 ARC60_36	707531 707542	9368126 9368133	1244 1244	DGPS	PL12225/2023 PL12225/2023	Manyoni C1 Manyoni C1
4PQ022	DDH	11	ARC60_36	707342	9368219	1244	DGPS	PL12225/2023	Manyoni C1
4PQ024	DDH	15	ARC60_36	707560	9368141	1244	DGPS	PL12225/2023	Manyoni C1
4PQ025	DDH	10.5	ARC60_36	707582	9368146	1244	DGPS	PL12225/2023	Manyoni C1
4PQ026	DDH	20	ARC60_36	707346	9368357	1244	DGPS	PL12225/2023	Manyoni C1
4PQ027 4PQ028	DDH DDH	12 17.5	ARC60_36 ARC60_36	707623 707593	9368158 9368251	1243 1243	DGPS	PL12225/2023 PL12225/2023	Manyoni C1 Manyoni C1
1PQ028	DDH	22.5	ARC60_36	707595	9368247	1243	DGPS	PL12225/2023 PL12225/2023	Manyoni C1
4PQ030	DDH	15.5	ARC60_36	707406	9368364	1245	DGPS	PL12225/2023	Manyoni C1
1PQ031	DDH	30	ARC60_36	707481	9368214	1245	DGPS	PL12225/2023	Manyoni C1
1PQ032	DDH	21	ARC60_36	707540	9368194	1244	DGPS	PL12225/2023	Manyoni C1
1PQ033	DDH	15.5	ARC60_36	707457	9368396	1245	DGPS	PL12225/2023	Manyoni C1
1PQ034 1PQ035	DDH DDH	21	ARC60_36 ARC60_36	707154 707058	9368523 9368487	1246 1246	DGPS	PL12225/2023 PL12225/2023	Manyoni C1 Manyoni C1
4PQ035 4PQ036	DDH	8	ARC60_36	707038	9368449	1246	DGPS	PL12225/2023	Manyoni C1
4PQ037	DDH	21	ARC60_36	706964	9368452	1247	DGPS	PL12225/2023	Manyoni C1
4PQ038	DDH	17	ARC60_36	707347	9368488	1246	DGPS	PL12225/2023	Manyoni C1
4PQ039	DDH	13.5	ARC60_36	707443	9370010	1250	DGPS	PL12225/2023	Manyoni Ci
1PQ040 1PQ041	DDH DDH	12.5 19.5	ARC60_36 ARC60_36	707404 706966	9368510 9369835	1245 1250	DGPS	PL12225/2023 PL12225/2023	Manyoni C1 Manyoni C1
4PQ041 4PQ042	DDH	8	ARC60_36	707371	9368556	1230	DGPS	PL12225/2023	Manyoni C1
1PQ043	DDH	11	ARC60_36	706988	9369207	1248	DGPS	PL12225/2023	Manyoni C1
4PQ044	DDH	12.5	ARC60_36	706614	9369070	1249	DGPS	PL12225/2023	Manyoni C1
4PQ045 4PQ046	DDH DDH	9.5 8.1	ARC60_36	706710	9369108 9369004	1248 1249	DGPS	PL12225/2023	Manyoni C1 Manyoni C1
4PQ046 4PQ047	DDH	8.1	ARC60_36 ARC60_36	706429 706146	9369004	1249	DGPS	PL12225/2023 PL12225/2023	Manyoni C1 Manyoni C1
4PQ048	DDH	9.5	ARC60_36	705958	9368832	1250	DGPS	PL12225/2023	Manyoni C1
4PQ049	DDH	12.5	ARC60_36	705124	9369164	1251	DGPS	PL12225/2023	Manyoni C1
1PQ050	DDH	20	ARC60_36	705821	9369432	1250	DGPS	PL12225/2023	Manyoni C1
4PQ051	DDH	21	ARC60_36	706297	9369600	1249	DGPS	PL12225/2023	Manyoni C1
4PQ052 4PQ053	DDH DDH	51 9.5	ARC60_36 ARC60_36	705401 706301	9385397 9385997	1318 1318	DGPS	PL12224/2023 PL12224/2023	Manyoni_A Manyoni A
4PQ054	DDH	8	ARC60_36	706206	9385997	1318	DGPS	PL12224/2023	Manyoni A
4PQ055	DDH	9.5	ARC60_36	706104	9385996	1318	DGPS	PL12224/2023	Manyoni_A
4PQ056	DDH	8	ARC60_36	706006	9385996	1318	DGPS	PL12224/2023	Manyoni_A
4PQ057	DDH	51	ARC60_36	705503	9385395	1318	DGPS	PL12224/2023	Manyoni_A
4PQ058 4PQ059	DDH DDH	8	ARC60_36 ARC60_36	705908 705803	9385997 9385998	1318 1318	DGPS	PL12224/2023 PL12224/2023	Manyoni_A Manyoni_A
4PQ060	DDH	51	ARC60_36	705702	9385396	1318	DGPS	PL12224/2023 PL12224/2023	Manyoni_A
4PQ061	DDH	6.5	ARC60_36	705702	9385997	1318	DGPS	PL12224/2023	Manyoni_A
4PQ062	DDH	6.5	ARC60_36	705593	9385999	1318	DGPS	PL12224/2023	Manyoni_A
4PQ063	DDH	6.5	ARC60_36	706197	9384798	1318	DGPS	PL12224/2023	Manyoni_A
4PQ064	DDH	7.5	ARC60_36	705002	9384802	1318	DGPS	PL12224/2023	Manyoni_A
4PQ065 4PQ066	DDH DDH	7.5	ARC60_36 ARC60_36	705308 705505	9384409 9384400	1318 1318	DGPS	PL12224/2023 PL12224/2023	Manyoni_A Manyoni A
4PQ067	DDH	6	ARC60_36	705701	9384400	1318	DGPS	PL12224/2023	Manyoni_A
4PQ068	DDH	6	ARC60_36	705894	9384402	1318	DGPS	PL12224/2023	Manyoni_A
4PQ069	DDH	6.5	ARC60_36	706003	9384786	1318	DGPS	PL12224/2023	Manyoni_A
4PQ070	DDH	6	ARC60_36	706107	9384398	1318	DGPS	PL12224/2023	Manyoni_A
4PQ071	DDH	7.5	ARC60_36	706294	9384405	1318	DGPS	PL12224/2023	Manyoni_A
4PQ072 4PQ073	DDH DDH	6.5 7.5	ARC60_36 ARC60_36	705803 704308	9384800 9384801	1318 1318	DGPS	PL12224/2023 PL12224/2023	Manyoni_A Manyoni_A
4PQ073 4PQ074	DDH	8	ARC60_36 ARC60_36	705613	9384801 9384795	1318	DGPS	PL12224/2023 PL12224/2023	Manyoni_A
4PQ075	DDH	6	ARC60_36	704125	9384803	1318	DGPS	PL12224/2023	Manyoni_A
4PQ076	DDH	7.5	ARC60_36	703897	9384804	1319	DGPS	PL12224/2023	Manyoni_A
4PQ077	DDH	6.5	ARC60_36	705405	9384803	1318	DGPS	PL12224/2023	Manyoni_A
4PQ078 4PQ079	DDH DDH	7.5 6.5	ARC60_36 ARC60_36	703700 705195	9384811 9384803	1319 1318	DGPS DGPS	PL12224/2023 PL12224/2023	Manyoni_A Manyoni_A
1PQ079 1PQ080	DDH	9	ARC60_36 ARC60_36	703195	9384803	1318	DGPS	PL12224/2023 PL12224/2023	Manyoni_A
1PQ081	DDH	7.5	ARC60_36	704198	9384002	1319	DGPS	PL12224/2023	Manyoni_A
1PQ082	DDH	8	ARC60_36	704297	9384396	1318	DGPS	PL12224/2023	Manyoni_A
4PQ083	DDH	8	ARC60_36	704119	9384403	1319	DGPS	PL12224/2023	Manyoni_A
4PQ084	DDH	51	ARC60_36	705601	9385396	1318	DGPS	PL12224/2023	Manyoni_A
4PQ085 4PQ086	DDH DDH	6.5 8	ARC60_36 ARC60_36	703896 703704	9384405 9384406	1319 1319	DGPS	PL12224/2023 PL12224/2023	Manyoni_A Manyoni_A
4PQ087	DDH	51	ARC60_36	705802	9385397	1319	DGPS	PL12224/2023	Manyoni_A
1PQ088	DDH	8	ARC60_36	703500	9384408	1319	DGPS	PL12224/2023	Manyoni_A
1PQ089	DDH	8	ARC60_36	703294	9383594	1318	DGPS	PL12224/2023	Manyoni_A
1PQ090 1PQ091	DDH	8	ARC60_36	703497	9383607 9383594	1318	DGPS	PL12224/2023	Manyoni_A
4PQ091 4PO092	DDH DDH	11 51	ARC60_36 ARC60_36	703694 705902	9383594 9385395	1318 1318	GPS DGPS	PL12224/2023 PL12224/2023	Manyoni_A Manyoni_A
1PQ092 1PQ093	DDH	8	ARC60_36 ARC60_36	703899	9385395	1318	DGPS	PL12224/2023 PL12224/2023	Manyoni_A
PQ094	DDH	8	ARC60_36	703701	9383598	1318	DGPS	PL12224/2023	Manyoni_A
IPQ095	DDH	8	ARC60_36	704103	9383595	1318	DGPS	PL12224/2023	Manyoni_A
1PQ096	DDH	8	ARC60_36	704326	9383595	1318	DGPS	PL12224/2023	Manyoni_A
4PQ097	DDH	51	ARC60_36	706008	9385400	1318	DGPS	PL12224/2023	Manyoni_A
4PQ098	DDH	8	ARC60_36	704506	9383606	1318	DGPS	PL12224/2023	Manyoni_A
4PQ099 4PQ100	DDH DDH	8	ARC60_36 ARC60_36	704301 704109	9383196 9383212	1318 1318	DGPS DGPS	PL12224/2023 PL12224/2023	Manyoni_A Manyoni_A
4PQ100 4PQ101	DDH	8.1	ARC60_36	703921	9383202	1318	DGPS	PL12224/2023 PL12224/2023	Manyoni_A
4PQ102	DDH	8	ARC60_36	703704	9383203	1318	DGPS	PL12224/2023	Manyoni_A
4PQ103	DDH	8	ARC60_36	703496	9383196	1318	DGPS	PL12224/2023	Manyoni_A
4PQ104	DDH	51	ARC60_36	706104	9385393	1318	DGPS	PL12224/2023	Manyoni_A
4PQ105	DDH	51	ARC60_36	706208	9385393	1318	DGPS	PL12224/2023	Manyoni_A
4PQ106 4PQ107	DDH DDH	11 9.5	ARC60_36 ARC60_36	706447 706462	9373146 9373101	1265 1266	DGPS	PL12225/2023 PL12225/2023	Manyoni C1 Manyoni C1
4PQ107 4PQ108	DDH	9.5	ARC60_36	706462	9373101	1266	DGPS	PL12225/2023 PL12225/2023	Manyoni C1
	DDH	6.5	ARC60_36	706460	9373045	1265	DGPS	PL12225/2023	Manyoni C1
4PQ109									

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 PQ size drill core is cut in half onsite with a cutting disc or diamond saw and one half of the core is bagged for assay. Soft or clay rich samples may be cut with a chisel. Sample intervals are a nominal 0.5m in mineralisation and 1.0m in sub-grade material and samples do not cross geological contacts. Samples are dispatched by courier to an ISO certified laboratory in Mwanza, Tanzania, for sample prep and assay. Certified Reference Materials (CRM's) are inserted at a frequency of 1:12 by Moab and 1:22 by the lab. The checks are within acceptable limits. Duplicate samples are taken at a frequency of 1:14 and laboratory pulp checks made at a frequency of 1:22.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 PQTT core drilling is carried out using split inner tube to maximise sample recovery and preserve the condition of the core when transferring to the core trays. Drilling is carried out with low water pressure and minimal pull-down pressure to avoid washing away soft formations and/or grinding of core in the tube. Short core runs are employed if there is any risk of losing core. Core is not oriented as all holes are vertical.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery is measured at the drill site by Geotechnicans and notes taken as to any reason for core loss. Drill holes with excessive core loss have been redrilled Core recovery data is entered into the OCRIS software logging system and stored in the company's SQL server database. Visual examination of the core leads to the conclusion that there is no physical difference between core in the zones of core loss and the

Criteria	JORC Code explanation	Commentary
		recovered core. This is because the dominant style of mineralisation for uranium minerals is disseminated. Therefore, any loss of core during drilling should not cause a significant bias in the analytical results. The very high correlation of results between field duplicate core samples and original core assay results further attests to the homogenous nature of the uranium mineralisation.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drill core is logged at the company's core farm in Manyoni. Prior to starting drilling the company carried out investigations into the key geological and geotechnical parameters for the Manyoni uranium mineralisation in conjunction with the company's geotechnical and resource advisors Snowdens-Optiro. The OCRIS software system was chosen as the most useful geologing software and the necessary parameters for future MRE and mining studies were identified and recorded in the logging template. The entire drill hole is logged and sampled with mineralisation intervals sampled on 0.5m intervals and sub-grade material sampled on 1.0m intervals. Where possible, all logging is quantitative, with efforts made to estimate the percentage of uranium minerals.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The holes are cored from surface using PQTT size drill equipment which provides core that is 83mm diameter. Core is cut in half on-site using a diamond saw and half core is bagged on 0.5m intervals for shipment to the lab. The grainsize of the mineralisation is typically less than 2mm and due to its disseminated habit there is no indication of potential sample bias caused by crushing and splitting samples. Statistical analysis of field duplicate samples collected during drilling has been carried out for the XRF samples reported here and results for U₃O₈ show near 100% correlation between field duplicate samples were collected at a frequency of 1:14. In the lab the entire sample is crushed to -2mm and a split sample is further pulverized to -75µm.
Quality of assay data and	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	 The determination of U and Th by pressed pellet XRF is preferred for samples of potentially ore grade due to precision and accuracy being higher than for other techniques such as digestion by 4 acids and ICP

Criteria	JORC Code explanation	Commentary
laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Certified Reference Materials (CRM's) are inserted at a frequency of 1:12 by Moab and 1:22 by the Lab. Moab inserts duplicate samples at a frequency of 1:14 and the lab carries out repeat pulp analyses at a frequency of 1:22.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 In Tanzania the company employs an Exploration Manager, a Senior Geologist and a consultant who have significant experience in uranium exploration and evaluation including the Manyoni Project prior to 2010. The entire core has been visually inspected by the geological team and visual confirmation of uranium mineralisation confirmed and photographed. The entire drilling program is essentially a program of twinning historical drill holes to confirm the grade of uranium mineralisation. Statistical analysis of the results of all the twinned holes will be carried out when all results are to hand. Primary geotechnical and sample data is recorded in the OCRIS Mobile software logging system and uploaded to SQL server Datashed at Mitchell River Group in Perth.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill holes are all surveyed by DGPS to +/- 10mm. There are no other mine workings or trenches. The grid system is Arc60 UTM zone 36. It is planned to fly a DTEM survey of the project area so as to capture the new drill holes and topographic information.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill hole spacing has been chosen as suitable for Mineral Resource Estimation and Ore Reserves; hole spacing varies from 100m x 200m to 50m x 200m. In the case of twinned holes the holes may be less than 1.0 metre apart but can be up to 4m apart. Sample compositing is not applied to the samples reported on here.
Orientation of data in relation to	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a 	 The mineralisation is essentially a flat lying tabular deposit so vertical drill holes are an appropriate drill test. The drill data is amenable to geostatistical analysis for directional bias which will be carried out when all results are available.

Criteria	JORC Code explanation	Commentary
geological structure	sampling bias, this should be assessed and reported if material.	
Sample security	The measures taken to ensure sample security.	• Samples and drill core are kept in a secure compound on the Manyoni property with security guards on site at all times. Samples are periodically shipped to Mwanza for analysis by private courier services. Each sample shipment is inspected and sealed so that any interference with the shipment on route to the lab would be detectable.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 During the validation drilling the project was visited by a Resource Specialist from Snowdens-Optiro who made suggestions on core handling and use of additional CRM samples which have been implemented.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Manyoni uranium project is secured by two Prospecting Licences which are held by Katika Resources Pty Ltd, a Tanzanian company owned by Moab Minerals Limited. Details of the tenements held were presented in the company's last Quarterly Report (December 2024). The tenure is secure providing that the tenement holder complies with the Mining Act, Revised Edition, 2019.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The area now covered by the Katika Tenements and the Auking tenements was formerly explored for uranium by Uranex in the period 2006 – 2010. Uranex carried out an extensive drill program on five separate project areas involving multiple types of drilling followed by metallurgical testwork and Mineral Resource Estimates. A summary of this work is contained in ASX:MOM 12 March 2024.
Geology	• Deposit type, geological setting and style of mineralisation.	• The uranium mineralisation at Manyoni is hosted by a series of Quaternary palaeochannels and playa lake beds situated within an Archaean granite-gneiss terrane that is the source for the uranium mineralisation. The mineralisation is shallow, usually no more than 3m to the top of mineralisation, and varying from 3m to 10m vertical

Criteria	JORC Code explanation	Commentary
		thickness. The mineralized beds are essentially horizontal and consist of an upper carbonate and organic rich layer known as the Mbuga Clay overlying palid granitic saprolite. Uranium minerals are dominantly Schröckingerite in the Mbuga Clay and Carnotite in the saprolite. The uranium minerals can readily be identified in the core.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Tables 1 and 2. In the body of this report provide the drill hole information.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Sample lengths are a nominal 0.5m in mineralisation and 1.0m in sub-grade material. For the purposes of reporting, the U₃O₈ results in ppm are compiled and averaged on the basis of a 100ppm U₃O₈ cut off grade and with a maximum of 2.0m of internal waste. No metal equivalent values are involved.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 As the mineralisation is flat lying and the drill holes are all vertical the intercept widths are equivalent to true widths of mineralisation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Maps and sections are included in the body of this report.

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Only results in excess of 2.0m of 100ppm U₃O₈ are reported in this report. 48 out of 51 holes in this report meet these criteria.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Specific Gravity measurements are being carried out by the laboratory using the air pycnometer method. Bulk Density determinations will be carried out on pieces of drill core during the metallurgical test program.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Subject to the results of the validation drilling it is planned to carry out a program of step-out drilling on 200m x 400m grid spacing around the known mineralisation to test for extensions in the undrilled areas.

Section 3 Estimation and Reporting of Mineral Resources – not applicable at this time