

Australian Securities Exchange Announcement

14 February 2025

King River Resources Ltd (ASX:KRR) (**'KRR**' or the **'Company**') provides the following update on the remaining assay results for 2024 which includes Phase 2 Kurundi drilling results and results for the Kurundi Regional targets. Results are summarised below, in Figure 1 and Tables 1 and 2:

Kurundi Main:

- Deeper drilling at Kurundi Main intersected 11m @ 0.69g/t Au from 69m (only 60m vertical) including 1m @ 3.39g/t Au and 1m @ 2.54g/t Au in hole TTRC175 showing improved grades from previously reported deeper drill hole TTRC105 to the northwest.
- Infill drill hole TTRC176 returned high grade gold result of 7m @ 5.8g/t Au including 3m @ 11.9g/t Au with 1m @ 26g/t Au from 32m confirming the southerly plunge to high grade mineralisation and providing information on the high-grade footwall structure reported in ASX: KRR 6 November 2024.
- Exploration drilling testing for new structures around Kurundi Main identified 3 new anomalously mineralised structures with grades up to 0.15gt Au, 0.25% Cu and 26ppm Ag. Also a new target structure 250m northeast of Kurundi has been discovered where historical underground workings in strong veining and alteration was intersected at 10-12m depth.

Kurundi Regional:

- Geochemically anomalous ironstones have been discovered at Millers including 1m @ 0.7% Cu, 1% S and 40ppm Bi (similar to Tennant Creek IOCG style mineralisation).
- Drilling at Tarragans returned anomalous gold mineralisation from multiple structures with grades up 1.17g/t Au.

Figure 1: Kurundi Phase 2 and Regional Drilling Locations and result summary

Kurundi Phase 2:

A total of 36 RC holes for 2,472m have been completed for Kurundi Phase 2 (Table 1). Drilling included exploration for new mineralised structures, north and south extensions to the Kurundi Main structure (up to 1.5km from the main workings), drilling beneath the main mineralised zone and follow up of the high-grade footwall mineralisation reported in ASX: KRR 6 November 2024.

Kurundi Main Drilling

Drilling beneath the Kurundi Main zone intersected very strong veining, structure and hematite alteration demonstrating that the Kurundi structure is very strong and open at depth. TTRC175 intersected 11m @ 0.69g/t Au from 69m (60m vertical) including 1m @ 3.39g/t Au and 1m @ 2.54g/t Au which is a significant improvement on previously reported results in hole TTRC105 which returned 10m @ 0.32g/t Au (ASX: KRR 6 November 2024). Results are shown in Figure 2 and summarised in Table 2. TTRC 173 also intersected very strong structure with anomalous gold and copper mineralisation from 107m but is interpreted to be north of the main mineralised plunge.

Given the strength of the Kurundi structure at depth and the new gold grades in TTRC175 these results are very encouraging for ongoing deeper exploration with the depth potential barely tested past 60m.

TTRC176 was drilled to follow up on the footwall high grade gold mineralisation intersected during phase 1 in TTRC103 (previously announced ASX: KRR 6 November 2024). TTRC176 was drilled between TTRC103 and TTRC041 (see long projection below). The new hole returned high-grade gold result of **7m @ 5.8g/t Au including 3m @ 11.9g/t Au with 1m @ 26g/t Au** from 32m in the main structure confirming the southerly plunge to previously drilled main zone high grade mineralisation. Porphyry was intersected within the main Kurundi fault zone and in the footwall to the zone. Interpretation suggests that the footwall basalt - porphyry contact (where TTRC103 intersected high grade mineralisation) may be influencing the high-grade core of

Figure 2: Long projection of the Central Main Kurundi mineralized zone beneath the central workings area. View is perpendicular to the main vein which dips approximately 35° towards 215°. New results shown in orange boxes, 2022 results shown in grey boxes, light purple box is for the footwall intersection.

mineralisation within the main Kurundi structure. 3D modelling of the porphyry will be undertaken to further test this theory.

Exploration Around Kurundi Main Project

Eight holes were drilled to test the northwest extension of the Kurundi Main structure where 2 northwest trending magnetic low trends were identified under extensive alluvial cover by 2023 drone magnetics (Area KE1 in Figure below). Drilling intersected structure on both geophysical trends with TTRC144 returning 1m @ 0.1g/t Au from 17m (Figure 3).

Figure 3: Kurundi Main Phase 2 Exploration drilling (blue dots) with new results (yellow labels). Phase 1 drilling shown as purple dots, 2022 drilling shown as black dots.

Two holes drilled in area KE2 (Figure 3) intersected anomalous gold mineralisation in veining and shearing along a NNW magnetic low fault trend (Figure 3). Both holes returned 1m @ 0.1g/t Au from the structure suggesting mineralisation is present along these fault lines and presenting a new gold trend for targeting.

Testing of a similar NNW trending magnetic low 1.6km southeast of Kurundi Main (KE4 – Figure 3) also returned anomalous gold up to 0.15g/t Au, antimony up to 80ppm, lead up to 0.24% and arsenic up to 342ppm associated with veining and alteration. This location was previously thought to be the southwest extension of Kurundi Main however interpretation from the 2023 drone magnetics and the new drilling show it is associated with a NNW trending magnetic low.

A new target structure has been discovered (KE3 in Figure 3), located 250m northeast of Kurundi Main. The structure can be seen at surface as minor veining within small historical diggings along an interpreted

strike of 260° (Figure 3). TTRC180 was drilled close to the diggings and intersected a very significant 12m structure with strong veining and alteration. A cavity was intersected at 10 - 12m due to underground workings on the main structure. Assay results were anomalous but no high-grade gold results were returned. Further drilling is planned to test the structure proximal to the underground workings where the main structure has not been mined.

Addisons 1 is located 1.6km south of Kurundi Main (Figure below). Drilling tested beneath minor historical diggings where malachite and azurite mineralisation was found in rock chip sampling. Drilling intersected a flat dipping (slight southerly dip) 10m thick zone of veining, fracturing and alteration with anomalous gold (up to 0.14g/t Au), silver (up to 26ppm Ag), copper (up to 0.25% Cu) and lead (up to 4.35% Pb).

Figure 4: Location of Addisons 1 drilling. Kurundi Main Phase 2 Exploration drilling (blue dots), Phase 1 drilling (purple dots), 2022 drilling (black dots).

Kurundi Regional Targets:

New Geophysical Targets and Drilling

Results have been returned for drilling at the Kurundi Regional Targets: Millers and Tarragans (Figure 1). A total of 26 RC holes were drilled for 2,197m with anomalous gold mineralisation identified in multiple structures including grades up 1.17g/t Au (Table 1 and 2).

Tarragans

Tarragans is situated 30km southeast of Kurundi Main and immediately south of the Kurinelli Gold field where gold mineralisation and historical mining is associated with the contact between Proterozoic sediments and an underlying gabbro unit. There are multiple historical workings close to Tarragans including the nearby historical mine Great Davenport. The area is renowned for nuggety gold mineralisation and is said to be associated with hematite quartz veinlets.

As part of the 2023 geophysical programme KRR completed GAIP and Drone magnetics over the two main target areas at Tarragans (Tarragans south and Tarragans northeast) to assist with targeting of gold results returned from rock chip grab sampling at Tarragans South during previous KRR reconnaissance exploration including 23.93g/t Au (ASX KRR 8 March 2023), 9.28g/t Au and 5.72g/t Au (ASX KRR:1 September 2022). New GAIP results have highlighted the extensions of this structure to the east.

The northern target area (Tarragans North) is close to a historical alluvial gold prospect known as Mick and Petas, where gabbroic rocks and specular hematite beneath Proterozoic sandstones have been mapped. The GAIP and drone work has identified structural trends associated with gold anomalies.

The figures below show results from the southern target area (Tarragans workings) and northern target area.

Figure 5: Tarragans South 2023 GAIP and Drone Magnetic Geophysical results.

Figure 6: Tarragans North 2023 GAIP and Drone Magnetic Geophysical results.

Tarragans North Drilling

Drilling has shown that the Tarragans North prospect is situated within a small anticlinal/dome structure with sandstone (forming the outer ridges) overlying diorite (which forms the valley floor). Drilling discovered two gold anomalous structures (Figure 7).

TTRC128 was drilled in the valley floor close to the central GAIP chargeability anomaly and intersected a broad strong structure in altered diorite with specular hematite, alteration and veining. Anomalous results up to 12% Fe, 0.46% As, 20ppm Sb, 3.82ppm Bi and 1m @ 0.37g/t Au were returned.

TTRC141 was drilled on the sandstone ridge to the east side of the anticline and close to the main Mick and Petas prospect. The hole intersected anomalous gold in sandstones and quartz with 8m @ 0.27g/t Au (4m composite samples). Diorite was not intersected by this hole even though drilling reached150m suggesting a significant fault exists between this location and the valley floor.

The strong association of arsenic with gold mineralised structures means the area could be effectively tested with soil sampling to identify new target areas and mineralisation trends.

- Diorite immediately below sandstones in valley floor
- Strong structure with anomalous gold up to 0.37g/t Au discovered.
- Arsenic anomalism means area could be effectively tested with soil sampling to identify target areas.
- Depth of sandstone on eastern ridge suggests significant faulting at eastern edge of valley

Figure 7: Tarragans North drilling and results summary.

Tarragans South Drilling

Eight holes were drilled at the main Tarragans historic workings (Figure 8). Drilling intersected a shallow and southerly dipping fault zone with quartz, dolerite and iron alteration, anomalous gold, arsenic and lead. Gold intersections include:

- TTRC130: 2m 0.12g/t Au
- TTRC132: 1m @ 0.12g/t Au
- TTRC135: 4m 0.32g/t Au (composite sample)
- TTRC136: 1m @ 1.04g/t Au

TTRC129 was drilled north of the main workings and intersected a second structure with grades of 1m @ 0.75g/t Au, 778ppm As and 0.26% Pb.

An exploration hole (TTRC137) was drilled 200m east of the Tarragans main workings to test for eastern extensions to the structure and successfully intersected 2m @ 0.65g/t Au including 1m @ 1.17g/t Au from 116m in veining and iron alteration hosted by sandy siltstones.

Drilling at Tarragans mid zone (Figure 8) intersected strong structure and veining in with anomalous arsenic values however no significant gold results were returned.

The strong association of arsenic with gold mineralised structures means the area could be effectively tested with soil sampling to identify new target areas and mineralisation trends.

Figure 8: Tarragans South drilling and results summary.

Millers

The Millers area is located 20km northwest of Kurundi Main (Figure 2). Previous KRR reconnaissance work identified three primary target structures associated with gold mineralization, with the best rock chip grab sample yielding 5.03g/t Au (ASX: KRR 1 September 2022). Also KRR's reconnaissance exploration uncovered a significant fault-related hematite-magnetite ironstone, visually similar to typical Tennant Creek-style ironstones within a very broad structural corridor. Rock chip grab sampling of this ironstone returned geochemically anomalous values, including 0.18g/t Au and elevated levels of bismuth, molybdenum, and antimony.

Figure 9 Millers GAIP results: left Chargeability, right Resistivity.

A DDIP geophysical survey conducted over this broad structure and ironstone target area identified two separate, coincident resistivity and chargeability anomalies beneath the new ironstone target (Figure 10 below). These are within the structural corridor and beneath alluvial and colluvial cover.

Three holes were drilled to test these DDIP anomalies (Figure 10). Drilling intersected a very broad structural corridor with multiple veins, shearing and ironstones. TTRC128 returned 1m at 0.7% Copper and 40ppm Bismuth from 58m at the base of the main central ironstone and TTRC129 returned 1m @ 0.13g/t Au from 51m in quartz and iron alteration. This result is very promising with ironstone, gold, copper sulphides and bismuth anomalies having similarity to Tennant Creek IOCG style mineralisation.

Figure 10: 3D oblique section (facing NW) of Millers DDIP Resistivity (black lines) overlain by DDIP chargeability contours (red lines) and drilled RC holes (blue lines).

Drilling at Millers west, where GAIP surveys identified a chargeability anomaly on a major north trending fault zone, intersected strong structure but no significant results were returned.

Upcoming Drilling

Drilling in 2024 has been completed at the Providence, Langrenus, Commitment, the Kurundi Regional targets (Millers, Mick and Petas, Tarragans) and two phases at Kurundi Main. Further drilling is planned in 2025 to follow up on best results from this work. The location of KRR's tenements and projects drilled in 2024 are shown below in Figure 11.

New undrilled targets that are currently planned to be drilled in 2025 include: Kuiper (Kuiper 1 and 2) and Rover East (BIF Hill East, Anomaly 5 and Explorer 42) as shown in Figure 12.

KRR expects to generate further drill targets as processing and interpretation of 2023 geophysical results and 2024 assay results continues. The market will be updated on these progressively.

Figure 11: Tennant Creek Projects and recent exploration work (coloured polygons – KRR Tenements).

Figure 12: KRR Tennant Creek tenements, main project areas and main target zones (coloured ellipses) identified from the 2023 Geophysical Exploration Program.

This announcement was authorised by the Chair of King River Resources Limited.

Anthony Barton

Chair King River Resources Limited Email: info@kingriverresources.com.au Phone: +61 8 92218055

Competent Persons Statement

The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the 'JORC Code') sets out minimum standards, recommendations and guidelines for Public Reporting in Australasia of Exploration Results, Mineral Resources and Ore Reserves.

The information in this report that relates to Exploration Results is based on information compiled by Ken Rogers and Andrew Chapman and fairly represents this information. Mr. Rogers is the Chief Geologist and an employee of the Company, and a member of both the Australian Institute of Geoscientists (AIG) and The Institute of Materials Minerals and Mining (IMMM), and a Chartered Engineer of the IMMM. Mr. Chapman is a Consulting Geologist contracted with the Company and a member of the Australian Institute of Geoscientists (AIG). Mr. Rogers has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Chapman and Mr. Rogers consent to the inclusion in this report of the matters based on information in the form and context in which it appears.

TABLE 1

RC Drill Collar Locations, GPS coordinates, Kurundi Main and Regional Targets.

HoleID	Propsect	Easting (m) MGA94	Northing (m) MGA94	Elevation (m)	Dip	Azimuth	Depth (m)
		Z53	Ζ53		(degrees)	(degrees)	
TTRC118	Millers East	458,120	7,748,229	415	-55	23	150
TTRC119	Millers East	458,008	7,748,148	415	-63	45	150
TTRC120	Millers East	458,160	7,748,300	415	-60	45	145
TTRC121	Millers West	456,675	7,747,407	415	-60	223	72
TTRC122	Millers West	456,659	7,747,476	415	-60	243	174
TTRC123	Millers West	456,685	7,747,540	415	-57	243	94
TTRC124	Mick Petas	503,246	7,703,509	415	-60	144	90
TTRC125	Mick Petas	503,229	7,703,544	415	-57	144	72
TTRC126	Mick Petas	503,317	7,703,564	415	-57	144	24
TTRC127	Mick Petas	503,316	7,703,569	415	-57	324	42
TTRC128	Mick Petas	503,639	7,703,728	415	-60	144	54
TTRC129	Tarragans	502,143	7,702,051	415	-60	160	42
TTRC130	Tarragans	502,178	7,702,023	415	-60	340	48
TTRC131	Tarragans	502,163	7,702,000	415	-60	340	43
TTRC132	Tarragans	502,150	7,702,010	415	-60	340	49
TTRC133	Tarragans	502,219	7,702,030	415	-60	340	54
TTRC134	Tarragans	502,218	7,702,046	415	-60	340	36
TTRC135	Tarragans	502,281	7,702,031	415	-60	340	120
TTRC136	Tarragans	502,268	7,702,051	415	-60	340	78
TTRC137	Tarragans Mid Zone	502,458	7,702,145	415	-60	340	120
TTRC138	Tarragans Mid Zone	502,676	7,702,451	415	-60	350	60
TTRC139	Tarragans Mid Zone	502,752	7,702,493	415	-60	60	60
TTRC140	Tarragans Mid Zone	502,947	7,702,592	415	-60	340	60
TTRC141	Mick Petas	504,037	7,703,661	415	-60	324	60
TTRC142	Tarragans Mid Zone	502,715	7,702,407	415	-60	340	150
TTRC143	Mick Petas	504,040	7,703,660	415	-60	45	150
TTRC144	Kurundi	466,232	7,731,090	415	-60	31	60
TTRC145	Kurundi	466,350	7,731,110	415	-60	31	60
TTRC146	Kurundi	466,347	7,730,958	415	-60	31	60
TTRC147	Kurundi	466,272	7,730,924	415	-60	215	60
TTRC148	Kurundi	466,293	7,730,827	415	-60	31	78
TTRC149	Kurundi	466,773	7,730,752	415	-60	31	60
TTRC150	Kurundi	466,815	7,730,731	415	-60	31	96

HoleID	Propsect	Easting (m) MGA94 Z53	Northing (m) MGA94 Z53	Elevation (m)	Dip	Azimuth	Depth (m)
TTRC151	Kurundi	466,842	7,730,708	415	-60	31	72
TTRC152	Kurundi	467,522	7,730,503	415	-60	31	60
TTRC153	Kurundi	467,460	7,730,420	415	-60	31	72
TTRC154	Kurundi	467,593	7,730,350	415	-60	31	72
TTRC155	Kurundi	467,780	7,730,394	415	-60	31	72
TTRC156	Kurundi	467,754	7,730,354	415	-60	31	60
TTRC157	Kurundi	467,728	7,730,311	415	-60	31	60
TTRC158	Kurundi	467,696	7,730,280	415	-60	31	78
TTRC159	Kurundi	467,698	7,730,242	415	-60	31	66
TTRC160	Kurundi	467,684	7,730,218	415	-60	31	66
TTRC161	Kurundi	467,673	7,730,200	415	-60	31	84
TTRC162	Kurundi	468,245	7,729,808	415	-60	45	36
TTRC163	Kurundi	468,297	7,729,803	415	-60	212	66
TTRC165	Addisons	467,428	7,728,693	415	-60	31	60
TTRC166	Addisons	467,447	7,728,716	415	-60	212	66
TTRC167	Addisons	467,456	7,728,728	415	-60	210	90
TTRC168	Addisons	467,440	7,728,669	415	-60	31	90
TTRC169	Addisons	467,456	7,728,695	415	-60	290	36
TTRC170	Addisons	467,483	7,728,684	415	-60	290	54
TTRC171	Addisons	467,469	7,728,714	415	-60	290	36
TTRC172	Kurundi	468,239	7,729,791	415	-60	212	30
TTRC173	Kurundi	467,336	7,730,201	415	-60	41	126
TTRC174	Kurundi	468,280	7,729,738	415	-60	83	30
TTRC175	Kurundi	467,390	7,730,240	415	-60	56	96
TTRC176	Kurundi	467,435	7,730,311	415	-60	35	72
TTRC177	Kurundi	467,663	7,730,199	415	-60	35	72
TTRC178	Kurundi	467,247	7,730,085	415	-60	35	126
TTRC179	Kurundi	467,315	7,730,174	415	-60	215	96
TTRC180	Kurundi	467,797	7,730,361	415	-60	356	54

TABLE 2: RC Drill Assay Results Kurundi Main and Regional Targets. Selected based on geology and values of Au

(>0.1ppm), Ag (>4ppm), Cu (>1,000ppm), Pb (>1,000ppm). Below detection values are shown as "L".

Holeid	Sample ID	From	То	Interval	Au	Ag	As	Bi	Cu	Fe	Pb	S	Sb	Zn
		(m)	(m)	(m)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
TTRC118	T5007404	58	59	1	0.01	2	14	39.94	7201	65601	198	10389	1.94	501
TTRC119	T5007452	51	52	1	0.13	L	10	0.38	16	50211	10	76	4.36	82
TTRC128	T5007792	11	12	1	0.03	1	133	0.25	28	92013	14	100	3.95	115
TTRC128	T5007793	12	13	1	0.01	1	181	0.23	20	96773	16	115	4.47	122
TTRC128	T5007794	13	14	1	0.01	1	176	0.32	30	90356	25	125	4.07	109
TTRC128	T5007795	14	15	1	L	1	225	0.35	20	87804	20	107	6.34	86
TTRC128	T5007796	15	16	1	0.01	1	245	0.34	18	101858	20	145	5.54	112
TTRC128	T5007797	16	17	1	0.07	1	720	1.23	36	88614	27	95	5.26	95
TTRC128	T5007798	17	18	1	0.37	1	4577	3.82	67	122229	50	144	20.03	157
TTRC128	T5007801	18	19	1	0.03	1	146	0.9	54	96755	50	140	4.87	109
TTRC129	T5007817	5	6	1	0.06	1	70	0.53	45	62883	535	283	4.33	155
TTRC129	T5007818	6	7	1	0.75	3	778	2.83	351	139561	2577	289	16.97	105
TTRC129	T5007819	7	8	1	0.09	2	164	1.19	173	99731	612	271	9.89	105
TTRC130	Intersection	0	2	2	0.12									
including	T5007837	0	1	1	0.1	1	70	1.37	49	79198	190	77	1.64	371
including	T5007838	1	2	1	0.13	2	144	1.65	75	142015	369	132	8.45	202
TTRC131	T5007865	22	23	1	L	3	872	1.53	43	117232	639	136	8.77	135
TTRC131	T5007866	23	24	1	0.03	2	74	0.57	97	80614	257	45	5.55	88
TTRC131	T5007867	24	25	1	0.02	3	141	0.47	27	110296	272	102	8.14	119
TTRC131	T5007868	25	26	1	0.04	2	1373	0.52	14	93398	444	113	6.02	255
TTRC132	T5007883	28	29	1	0.02	4	172	1.58	19	102039	9	64	0.26	98
TTRC132	T5007884	29	30	1	0.04	4	334	3.48	19	117575	20	58	0.43	99
TTRC132	T5007885	30	31	1	0.12	4	777	2.33	9	125361	17	48	0.57	59
TTRC132	T5007886	31	32	1	0.03	5	271	1.97	24	89729	15	59	0.32	70
TTRC132	T5007887	32	36	4	0.02	3	146	1.57	38	86954	20	96	0.23	94
TTRC135	T5007943	24	28	4	0.32	4	252	6.07	132	42012	26	51	4.15	40
TTRC136	T5007984	5	6	1	0.07	6	255	0.38	24	120800	34	55	12.75	134
TTRC136	T5007985	6	7	1	1.04	7	713	6.53	46	137800	177	70	15.99	169
TTRC136	T5007986	7	8	1	0.09	6	285	1.87	41	115650	271	85	12.66	152
TTRC137	Intersection	116	118	2	0.65									
including	T5008047	116	117	1	0.12	3	17	0.7	30	17324	L	62	6.48	26
including	T5008048	117	118	1	1.17	1	30	0.52	18	17414	L	92	12.01	24
TTRC141	Intersection	50	58	8	0.27	(composites)								
including	T5008138	50	54	4	0.38	2	16	0.48	19	11102	20	66	1.39	49
including	T5008139	54	58	4	0.15	2	12	0.08	8	14056	L	36	1.18	22
TTRC144	T5008278	17	18	1	0.1	L	L	0.13	18	48825	6	L	5.72	70
TTRC150	T5008452	47	48	1	1.66	9	L	2.7	1102	99912	10488	298	59.89	642
TTRC151	T5008506	52	53	1	0.06	63	L	2.02	128	23724	67	28	11.39	172
TTRC151	T5008507	53	54	1	0.36	24	18	5.18	2023	46100	6284	48	388.81	1185
TTRC152	T5008544	51	52	1	0.1	L	L	0.04	83	50271	39	54	17.84	95

Holeid	Sample ID	From	То	Interval	Au	Ag	As	Bi	Cu	Fe	Pb	S	Sb	Zn
		(m)	(m)	(m)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
TTRC154	T5008612	30	34	4	0.1	L	15	0.05	109	90750	26	219	9.1	118
TTRC160	T5008847	51	52	1	0.16	13	74	14.87	1180	63736	2595	2064	107.54	217
TTRC161	T5008894	56	57	1	0.15	15	66	24.08	630	57618	24246	1018	163.24	142
TTRC163	T5008937	38	39	1	0.05	2	342	0.05	23	73691	25	348	0.11	101
TTRC163	T5008938	39	40	1	0.03	3	132	0.1	73	83751	138	279	0.14	197
TTRC165	T5008954	5	6	1	0.02	3	L	0.46	842	74763	2753	164	1.01	99
TTRC165	T5008955	6	7	1	0.02	4	L	0.41	1038	75762	2910	157	1.34	158
TTRC166	T5008982	0	1	1	0.01	L	12	2.08	216	41392	11612	176	1.43	31
TTRC166	T5008983	1	2	1	0.01	1	L	0.91	131	38402	2911	257	0.64	433
TTRC167	T5009010	0	4	4	0.02	L	L	0.18	134	55804	1394	170	1.46	50
TTRC168	T5009064	9	10	1	0.03	25	16	4.64	933	58175	43453	215	35.57	32
TTRC168	T5009065	10	11	1	0.02	1	L	0.17	294	86566	2281	234	7.13	101
TTRC169	T5009119	7	8	1	0.07	6	12	0.95	2466	63791	6031	867	16.12	117
TTRC169	T5009123	14	18	4	0.11	1	L	L	104	78894	L	710	1.02	94
TTRC170	T5009133	8	10	2	0.14	1	L	L	110	80186	L	365	1.05	88
TTRC171	T5009158	3	4	1	0.01	1	L	0.12	54	64063	1343	133	3.33	36
TTRC171	T5009159	4	5	1	L	26	18	2.14	2394	61536	16662	178	4.41	116
TTRC171	T5009160	5	6	1	0.01	4	L	0.24	922	58797	2281	163	5.77	99
TTRC172	T5009177	5	6	1	0.15	1	44	0.14	115	67195	2413	110	80.03	195
TTRC172	T5009178	6	7	1	0.07	1	25	0.09	124	59302	1213	85	78.9	546
TTRC173	T5009203	44	48	4	0.23	1	L	0.06	212	91098	L	516	1.39	132
TTRC173	T5009207	54	55	1	0.31	2	L	L	112	82447	15	493	3.28	62
TTRC173	T5009209	56	57	1	0.22	3	L	0.14	94	91290	L	230	4.56	87
TTRC173	T5009231	107	108	1	0.13	1	L	1.47	539	66001	75	384	19.23	68
TTRC173	T5009232	108	109	1	0.05	1	13	2.17	108	58108	45	133	20.82	99
TTRC173	T5009233	109	110	1	0.04	1	22	1.96	38	64415	59	118	14.5	105
TTRC173	T5009234	110	111	1	0.02	1	20	2.18	1721	59963	18	3234	24.78	72
TTRC173	T5009235	111	112	1	0.16	1	L	1.58	312	65862	12	571	21.82	91
TTRC174	T5009258	15	16	1	0.06	<0.2	103	2	200	72200	1380	L	54	191
TTRC175	Intersection	69	80	11	0.69									
including	T5009290	69	70	1	0.18	0.7	4	L	73	100000	22	L	3	626
including	T5009291	70	71	1	0.07	<0.2	7	L	36	93000	26	L	7	506
including	T5009292	71	72	1	0.03	<0.2	4	L	22	98900	28	L	5	468
including	T5009293	72	73	1	0.33	0.2	22	L	37	96000	26	100	18	320
including	T5009294	73	74	1	3.39	0.8	15	L	29	81600	18	L	11	260
including	T5009295	74	75	1	0.09	0.2	14	2	145	101000	47	L	14	357
including	T5009296	75	76	1	0.1	0.2	7	L	77	23500	15	L	9	50
including	T5009297	76	77	1	0.04	<0.2	5	L	34	14600	7	L	7	25
including	T5009298	77	78	1	0.26	2	18	2	221	34200	154	L	26	138
including	T5009301	78	79	1	2.54	2.9	18	5	253	34500	169	L	30	118
including	T5009302	79	80	1	0.57	0.5	7	2	113	81100	87	L	11	360
TTRC176	Intersection	32	39	7	5.80									
including	T5009338	32	33	1	0.59	0.8	4	2	194	116000	92	L	9	877

Holeid	Sample ID	From	То	Interval	Au	Ag	As	Bi	Cu	Fe	Pb	S	Sb	Zn
		(m)	(m)	(m)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
including	T5009339	33	34	1	2.41	5.8	4	5	2650	39700	177	300	60	105
including	T5009340	34	35	1	7.39	42.2	11	10	7300	22200	308	1200	127	43
including	T5009341	35	36	1	26	3.9	4	11	546	67600	240	L	34	383
including	T5009342	36	37	1	0.97	1.4	3	2	105	53300	26	L	9	181
including	T5009343	37	38	1	0.06	0.5	3	L	37	61800	22	L	14	175
including	T5009344	38	39	1	3.19	1.3	3	2	258	63000	45	100	20	193
TTRC176	T5009352	44	45	1	0.12	<0.2	<2	L	6	58400	2	L	2	187
TTRC176	T5009356	48	49	1	0.12	0.3	3	L	111	54100	16	100	5	130
TTRC177	T5009408	45	46	1	0.14	0.5	4	L	226	81100	18	L	14	410
TTRC180	T5009535	0	1	1	0.01	0.6	34	L	187	74200	773	L	30	82
TTRC180	T5009536	1	2	1	0.01	0.6	48	L	247	90700	1125	L	46	93
TTRC180	T5009537	2	3	1	L	0.5	40	L	274	97300	1165	L	38	109
TTRC180	T5009538	3	4	1	0.03	0.6	20	L	162	46800	723	L	31	55
TTRC180	T5009539	4	5	1	0.01	0.8	7	L	118	31100	706	L	13	65
TTRC180	T5009540	5	6	1	0.04	1.1	3	2	85	22000	504	L	13	48
TTRC180	T5009541	6	7	1	0.03	0.7	4	L	74	19800	182	L	13	35
TTRC180	T5009542	7	8	1	L	0.5	9	L	126	35400	281	L	22	81
TTRC180	T5009543	8	9	1	L	0.6	6	L	66	39000	532	L	13	251
TTRC180	T5009544	9	10	1	L	0.5	3	L	36	38900	342	L	11	231
TTRC180	T5009545	10	12	2	Mine Cavity									

TABLE 3NT TENEMENTS TREASURE CREEK PTY LTD(wholly-owned subsidiary of King River Resources Limited)

Tenement	Project	Ownership	Comment
EL31617		100%	
EL31618		100%	
EL31619		100%	
EL31623		100%	
EL31624		100%	
EL31625		100%	
EL31626		100%	
EL31627		100%	
EL31628	Tennant Creek	100%	
EL31629		100%	
EL31633		100%	
EL31634		100%	
EL32199		100%	
EL32200		100%	
EL32344		100%	
EL32345		100%	
MLC629		100%	
ML32745		100%	Application

Note:

EL = Exploration Licence (granted)

Appendix 1: King River Resources Limited JORC 2012 Table 1 The following section is provided to ensure compliance with the JORC (2012) requirements for the reporting of exploration results:

SECTION 1 : SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling Techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	This ASX Release dated 14 February 2025 reports on the phase 2 drilling results at Kurundi Main and results from Kurundi Regional. <i>Historical Drilling</i>
Sampling Techniques (continued)	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	There is no historical drilling within EL32200 at Kurundi Main or the Kurundi Regional Targets Millers (EL31626) and Tarragans (EL31628).
	Aspects of the determination of mineralisation that are Material to the	Current RC Programme
	In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m	RC Sampling: All samples from the RC drilling are taken as 1m samples. Samples were sent to NAL Laboratory (Up to T5009430) in Pine Creek and ALS Laboratory in Perth for assaying.
	samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules)	Appropriate QAQC samples (standards, blanks and duplicates) are inserted into the sequences as per industry best practice. Samples are collected using cone or riffle splitter. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays.
	may warrant disclosure of detailed information.	Onsite XRF analysis is conducted on the fines from RC chips using a hand-held Niton XRF Model XL3T 950 Analyser. These results are only used for onsite interpretation and preliminary assessment subject to final geochemical analysis by laboratory assays. It is mentioned in the text that lead was detected by the niton – actual values are not quoted and the results are used as an interpretive tool for further drill hole design.
		The RC drilling rig has a cone splitter built into the cyclone on the rig. Samples are taken on a one meter basis and collected directly from the splitter into uniquely numbered calico bags. The calico bag contains a representative sample from the drill return for that metre. This results in a representative sample being taken from drill return, for that metre of drilling. The remaining majority of the sample return for that metre is collected and stored in a green plastic bag marked with that specific metre interval. The cyclone is blown through with compressed air after each plastic and calico sample bag is removed. If wet sample or clays are encountered, then the cyclone is opened and cleaned manually and with the aid of a compressed air gun.
		Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays. Downhole surveys of dip and azimuth are conducted using a single shot camera every 50m to 100m to detect deviations of the hole from the planned dip and azimuth (every 10m for close spaced infill drilling. The drill-hole collar locations were recorded using a hand held GPS,

Criteria	JORC Code explanation	Commentary
		which has an accuracy of +/- 10m. At a later date the drillhole collar may be surveyed with a DGPS to a greater degree of accuracy (close spaced infill drilling is pegged and picked up with DGPS).
		Aspects of the determination of mineralisation that are Material to the Public Report.
		RC Sampling: Sampling is done from the 1m splits in altered or mineralised rock and at 4m composites in unaltered/unmineralised rock.
		KRR Samples were assayed by NAL Laboratory and ALS Laboratory for multi elements using either a four acid digest followed by multi element analysis with ICP <aes (inductively="" analysis="" and="" assay="" assayed="" atomic="" au="" being="" by="" coupled="" dependent="" element="" emission="" fire="" for="" grade="" icp<aes.<="" icp<ms="" is="" mass="" on="" or="" plasma="" processed="" ranges).="" spectrometry)="" spectroscopy)="" td="" with=""></aes>
		Laboratory QAQC procedures summary:
		Following drying of samples at 85°C in a fan forced gas oven, material <3kg was pulverised to 85% passing 75µm in a LM<5 with samples >3kg passing through a 50:50 riffle split prior to pulverisation. Fire assay was undertaken on a 30g charge using lead flux Ag collector fire assay with aqua regia digestion and ICP <aes 0.25g="" a="" acid="" acids="" and="" combination="" completed="" determination="" digestion.="" element="" finish.="" for="" four="" hydrofluoric="" icp<aes="" icp<ms="" including="" instrumentation.<="" methodology="" multiple="" near="" of="" on="" td="" total="" undertaken="" using="" was="" with=""></aes>
Drilling techniques	Drill type (e.g. core, reverse circulation, open <hole air<br="" hammer,="" rotary="">blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face<sampling bit="" or="" other<br="">type, whether core is oriented and if so, by what method, etc.).</sampling></hole>	<i>Current RC Programme</i> The RC drilling uses a 140 mm diameter face hammer tool. High capacity air compressors on the drill rig are used to ensure a continuously sealed and high pressure system during drilling to maximise the recovery of the drill cuttings, and to ensure chips remain dry to the maximum extent possible.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Current RC Programme
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC samples are visually checked for recovery, moisture and contamination.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material	Geological logging is completed at site with representative RC chips stored in chip trays and core in diamond core trays.
		RC Samples are collected using cone or riffle splitter. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays.

Criteria	JORC Code explanation	Commentary
		To date, no detailed analysis to determine the relationship between sample recovery and grade has been undertaken for any drill program. This analysis will be conducted following any economic discovery.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 <i>Current RC Programme</i> Geological logging is carried out on all drill holes with lithology, alteration, mineralisation, structure and veining recorded. Logging of records lithology, mineralogy, mineralisation, structures (foliation), weathering, colour and other noticeable features. Selected mineralised intervals were photographed in both dry and wet form. All drill holes are geologically logged in full and detailed lithogeochemical information is collected by the field XRF unit to help determine potential mineralised intersections. The data relating to the elements analysed is used to determine further information regarding the detailed rock composition and mineralised intervals.
Sub <sampling techniques and sample preparation</sampling 	 If core, whether cut or sawn and whether quarter, half or all core taken. If non<core, and="" dry.<="" etc.="" li="" or="" riffled,="" rotary="" sampled="" sampled,="" split,="" tube="" wet="" whether=""> For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub<sampling li="" maximise="" of="" representivity="" samples.<="" stages="" to=""> Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second<half li="" sampling.<=""> Whether sample sizes are appropriate to the grain size of the material being sampled. </half></sampling></core,>	 <i>Geophysics:</i> The UAV drone survey was flown with a PAS H100 Rotary Wing Electric helicopter with onboard GNSS GPS receiver accuracy of Vertical: ±0.5 m, Horizontal: ±1.5 m (hovering). The DDIP survey was carried out with a GDD Tx4 Transmitter along with a SmartEM24 receiver. <i>Current RC Programme</i> <i>There is no diamond drilling reported, any core is sampled half core using a core saw.</i> RC samples are collected in dry form. Samples are collected using cone or riffle splitter when available. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays. Assay preparation procedures ensure the entire sample is pulverised to 75 microns before the sub-sample is taken. This removes the potential for the significant sub-sampling bias that can be introduced at this stage.

Criteria	JORC Code explanation	Commentary
		Field QC procedures maximise representivity of RC samples and eliminate sampling errors, including the use of duplicate samples. Also the use of certified reference material including assay standards and with blanks aid in maximising representivity of samples.
		For fire assay a run of 78 client samples includes a minimum of one method blank, two certified reference materials (CRMs) and three duplicates. For the multi <element 35="" 9001:2008.<="" a="" analytical="" and="" are="" blank,="" certified="" client="" consists="" crms="" duplicates.="" facilities="" iso="" lot="" method="" method,="" minimum="" of="" one="" qc="" samples="" td="" the="" to="" two="" up="" with=""></element>
		Field duplicates were taken every 20 th sample for RC samples.
		The sample sizes are considered to be appropriate to correctly represent the gold/silver mineralisation at the Project based on the style of mineralisation, the thickness and consistency of the intersections and the sampling methodology.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	<i>Geophysics:</i> Geophysical field data is collected by the contracted survey companies then reviewed by their geophysicist before submitted to geophysical consultants employed by KRR - Core Geophysics – for further review, this review work is ongoing during the survey and also after the survey for final processing.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 IP survey parameters below: Array Type: Dipole-Dipole (DDIP) Receiver Dipole Spacing: 50m Receiver Station Spacing: 50m Receiver Line Length: various from 800-1000 m Transmitter Dipole Spacing: 50m Transmitter Station Spacing: 50 m Tx/Tx Line Spacing: 200m Line Direction: various Transmitter Frequency: 0.125Hz (2 sec time base)
		Current RC Programme

Criteria	JORC Code explanation	Commentary
		RC drill samples as received from the field were assayed by NAL Laboratory and ALS Laboratory for multi <elements (inductively="" (nitric,="" 9001:2008.<br="" a="" acid="" acids)="" analysis="" analytical="" and="" assay="" assayed="" atomic="" au="" being="" by="" certified="" coupled="" dependent="" digest="" either="" element="" emission="" facility="" fire="" followed="" for="" four="" grade="" hydrochloric,="" hydrofluoric="" icp<aes="" icp<aes.="" icp<ms="" is="" iso="" mass="" minimum="" multi="" of="" on="" or="" perchloric="" plasma="" processed="" ranges).="" spectrometry)="" spectroscopy)="" the="" to="" using="" with="">Handheld XRF instruments for RC drilling</elements>
		A handheld XRF instrument (Niton XRF Model XL3T 950 Analyser) is used to systematically analyse the RC chips onsite. Reading time was 60 seconds. The instruments are serviced and calibrated at least once a year. Field calibration of the XRF instrument using standards is undertaken each day. If It is mentioned in the text that gold was detected by the niton – actual values are not quoted and the results are used as an interpretive tool for further drill hole design. Detection of gold by the niton device is not considered reliable as it is possible that a mineral with similar characteristics was detected.
		Nature of quality control procedures adopted for RC drilling Laboratory QA/QC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of in house procedures. The Company will also submit an independent set of field duplicates, standards and blanks (see above).
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	<i>Geophysical:</i> All survey data was transferred to contractor personnel on a daily basis for verification.
		RC:
		Data entry carried out by field personnel thus minimizing transcription or other errors. Careful field documentation procedures and rigorous database validation ensure that field and assay data are merged accurately. Significant intersections are verified by the Company's Chief Geologist and Senior Consulting Geologist.
	The use of twinned holes.	This is the second drill programme at the relevant targets and work is at an early exploration stage no twin holes have been drilled yet.
Verification of	Documentation of primary data, data entry procedures, data verification,	Current RC Programme
sampling and	data storage (physical and electronic) protocols.	Geological data was collected using handwritten log sheets and imported in the field onto a laptop detailing geology (weathering, structure, alteration, mineralisation), sampling quality and

Criteria	JORC Code explanation	Commentary
assaying (continued)		intervals, sample numbers, QA/QC and survey data. This data, together with the assay data received from the laboratory and subsequent survey data was entered into the Company's database.
	Discuss any adjustment to assay data.	No adjustments or calibrations will be made to any primary assay data collected for the purpose of reporting assay grades and mineralised intervals.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down <hole and="" locations="" mine="" other="" surveys),="" trenches,="" used<br="" workings="">in Mineral Resource estimation.</hole>	 <i>Geophysics</i> The UAV drone data has been collected automatically by the on-board integrated GPS which employs a recording rate of 10Hz. The IP survey data points were located with Garmin hand held GPS which provides an accuracy around 5m All data were collected in WGS84 datum converted to MGA Zone 53 grid system <i>Current RC Programme</i> Hand held GPS pickups of exploration drilling is considered adequate at this stage of preliminary exploration.
	Specification of the grid system used.	All rock samples, drill collar and geophysical sample locations recorded in GDA94 Zone 53.
	Quality and adequacy of topographic control.	Geophysical: Topographic locations interpreted from handheld GPS pickups (barometric altimeter), DEMs and field observations. Adequate for first pass exploration. <i>Current RC Programme</i> Topographic locations interpreted from handheld GPS pickups (barometric altimeter), DGPS
		pickups, DEMs and field observations. Adequate for first pass reconnaissance. Best estimated RLs were assigned during drilling and are to be corrected at a later stage.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	 Geophysical: The UAV drone line spacing was 50m with data recorded every 0.1 second to provide stations at approximately 50cm. The base station recorded every 1 second. The IP lines ranged from 200m to 250m spacing with receiver electrodes at 50m spacing. The data density is considered appropriate to the purpose of the survey. <i>Current RC Programme</i> Exploration holes vary from 25m to 700m spacing.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral	Geophysics:

ion targets for drilling. The spacing
sation has not yet demonstrated to ate for the Mineral Resource and e applied.
d where necessary to reflect local
encountered, in order to preserve
ion targets for drilling. The spacing
ere possible, to be perpendicular to e discrete anomalies. At Kurundi the I northwest target trend.
otherwise stated) on an azimuth ar perpendicular orientation. iable and any relationship to
e data to date.
y until samples pass to a duly rock chip and RC sample bags are by the Company or a competent nsport logs have been set up to upon delivery of the samples to the
othe ear p iable ∋ da > roc by t nsp upo

Criteria	JORC Code explanation	Commentary
Audits or Reviews	The results of ay audits or reviews of sampling techniques and data.	Sampling techniques and procedures are regularly reviewed internally, as is data. To date, no external audits have been completed on the drilling programme. Geophysical data was verified by Core Geophysics.

SECTION 2 : REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Tennant Creek Project comprises 16 granted exploration licences, one granted mining lease and one application mining lease. Details are listed in Table 3 of the announcement. The tenements are 100% owned by Treasure Creek Pty Ltd (a wholly owned subsidiary of King River Resources Limited), located over the Tennant Creek-Davenport Inliers, south, east and south east of Tennant Creek in the Northern Territory. The Kurundi Native Title Claim (DCD2011/015) covers the Kurundi Pastoral Lease PPL 1109 affecting EL31623, 31624, 31626, 31628, 31629, EL32199 and EL32200. The Davenport and Murchison Ranges sites of conservation significance affect portions of EL31626, 31627, 31628, 31629, EL32199, EL32200, EL32344 and EL32345.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	<i>Tennant Creek Project:</i> Tennant Creek mineral field has had a long history of exploration and mining (since 1933). Historical exploration around the main Tennant Creek Gold Field primarily included work by Giants Reef, Peko, Posiedon, Roebuck, Normandy (later Newmont) and Tennant Creek Gold. Exploration was primarily based on geophysical surveys targeting coincident gravity and ground magnetic anomalies, followed by RC or diamond drilling. Lines of RAB or Aircore holes were also drilled where specific geophysical models were not present. Currently the bulk of the Tennant Creek mineral field is held by Emmerson Resources. Treasure Creeks applications are outside of the main gold field (except ELA31619) extending from Tennant Creek to Hatches Creek gold fields. Historic exploration over the applications east of the Stuart highway has been sparse and sporadic, with companies including Giants Reef, Normandy, Newmont doing minimal, if any, on ground work (on ground work included a few very broad spaced RAB lines). In the early to mid-2000's Arafura completed some broad spaced soil samples but relinquished the ground without pursuing any anomalies that were discovered. Applications west of the highway cover ground that was involved in exploration around the Rover Gold Field, including companies such as Geopeko, Giants Reef, Newmont, Western Desert Resources and Tennant Creek Gold. Exploration included magnetic and gravity surveys, geophysical analysis, targeted RC and diamond drilling. The tenements in this area cover significant IOCG targets generated from this work. EL31617 covers ground held by Tennant Creek Gold/Western Desert Resources as part of their Rover Exploration Project which they relinquished in 2014 in favour of their developing iron ore projects. Rock chip sample results referred to at Kurundi and Whistle Duck were taken were taken by various companies in the 1960's.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	Exploration at Tennant Creek is targeting Iron Oxide-Copper Gold (IOCG) style of mineralisation in several settings, lithologies and structural complexities within the Proterozoic Tennant Creek- Davenport Inliers. Kurundi Mineralisation is hosted within Proterozoic Edmirringee Basalts within quartz veining and shearing.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Drill information reported in this announcement relates to KRC's 2024 RC drilling and is presented in Table 1, Table 2 and Figures 1 to 10.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut <off and="" are="" be="" grades="" material="" should="" stated.<="" td="" usually=""><td>Drill intersections: o Intersections calculated using a weighted average of grade vs metres. Also: o No metal equivalent calculations used. o No upper cuts used in intersection calculations.</td></off>	Drill intersections: o Intersections calculated using a weighted average of grade vs metres. Also: o No metal equivalent calculations used. o No upper cuts used in intersection calculations.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	The downhole drill intersects in this report have been reported for samples >0.1g/t Au allowing 2m of internal waste, Significantly higher grades within these zones are reported as including intervals. Selection for lisiting in Table two is based on: geological intersections and Au (>0.1ppm), Ag (>4ppm), Cu (>1,000ppm), Pb (>1,000ppm). No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Down hole widths have been quoted in this report. The main targets are assumed 35 degree dip to the south west. Down hole widths are close to true width for the Kurundi Stucture. o Drill holes were drilled perpendicular to structure strike where possible. o This is the second drill programme at Kurundi Main and a full interpretation of the respective prospect is still yet to be done.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being	Figure 1 shows the location of the drill targets summarises results, Figure 2 shows a long projection of the main results at the Kurundi Main zone, Figure 3 and 4 shows location of and

Criteria	JORC Code explanation	Commentary
	reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	summarises drilling of exploration targets close to Kurundi Main, Figure 5 and 6 shows Tarragan targeting, Figure 7 and 8 shows location of and summarises drilling of Tarragans. Figure 9 shows location of drilling at Millers, Figure 10 shows a DDIP section with drilled holes and significant results, Figures 11 and 12 show King Rivers Tennant Creek holdings with recent work and planned work.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Reports on recent exploration can be found in ASX Releases that are available on our website at <u>www.kingriverresources.com.au</u> . The exploration results reported are representative of the mineralisation style with grades and/or widths reported in a consistent manner.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Historic exploration on KRR's Tennant Creek holdings is sparse. Historic exploration at Kurundi is sparse, there has been little exploration in these areas. KRR is the first company to drill at the Kurundi, Millers and Tarragans prospect. There is no historical drilling within EL32200. KRR has previously undertaken reconnaissance, RC drilling and ground geophysics at Kurundi, Millers and Tarragans.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large <scale and="" areas="" areas,="" clearly="" commercially="" diagrams="" drilling="" drilling).="" extensions,="" future="" geological="" highlighting="" including="" information="" interpretations="" is="" main="" not="" of="" possible="" provided="" sensitive.<="" step<out="" td="" the="" this=""><td>KRR plans to implement a focused, thorough gold and copper exploration process utilising contemporary geophysical and exploration techniques. A large geophysics programme across KRR's main targets has been completed and KRR is allocated 13,500m of RC drilling to the best targets generated to be completed 2023/2024 this started with drilling at Providence and Langrenus and will now continues at the Kurundi Project.</td></scale>	KRR plans to implement a focused, thorough gold and copper exploration process utilising contemporary geophysical and exploration techniques. A large geophysics programme across KRR's main targets has been completed and KRR is allocated 13,500m of RC drilling to the best targets generated to be completed 2023/2024 this started with drilling at Providence and Langrenus and will now continues at the Kurundi Project.