

ASX ANNOUNCEMENT

5 February 2025

FURTHER BROAD INTERCEPTS OF HIGH-GRADE GOLD AT JASPER HILLS

HIGHLIGHTS

- Brightstar has received the final assay results from the 2024 Lord Byron diamond drilling
 (DD) program at the Jasper Hills Gold Project
- The 13-hole program targeted areas surrounding conceptual A\$3,000/oz Au optimised pit shells, which were developed as part of the 2024 Jasper Hills Scoping Study¹.
- Significant Intercepts from the program include:
 - o LBDD24003:
 - 20.39m @ 3.03 g/t Au from 196.53m, including 1.36m @ 9.23 g/t Au from 198.21m and 2.34m @ 7.72 g/t Au from 205.53m
 - o LBRCD24014:
 - 22.86m @ 1.68 g/t Au from 178.24m, including 0.30m @ 17.3 g/t Au from 179.10m
 - o LBRCD24041:
 - 23.11m @ 1.56 g/t Au from 202.12m
 - o **LBDD24005**:
 - 16.79m @ 2.13 g/t Au from 205m, including 2.70m @ 5.83g/t Au from 218.42m
 - o LBDD24006:
 - 13.40m @ 2.53 g/t Au from 141.00m, including 0.60m @ 10.3 g/t Au from 153.80m
 - o LBRCD24044:
 - 7.80m @ 4.07g/t Au from 233.00m, including 1.00m @ 10.0 g/t Au from 238.50m
- The results delineate consistent high-grade, south-plunging shoots, highlighting excellent targets for potential enlarged pit shells and underground mining scenarios
- Further drilling is planned at Lord Byron, scheduled to commence 1H CY2025, targeting the high-grade shoots at depth below the base of the conceptual pit design
- Brightstar's 2025 drilling campaign is progressing well at Sandstone, with the RC program now completed at Lord Nelson with the RC rig now located at the Vanguard camp

Brightstar Resources Limited (ASX: BTR) (**Brightstar**) is pleased to announce results from diamond drilling completed at the Lord Byron deposit, part of the 293koz Au Jasper Hills Gold Project located in Brightstar's Laverton Hub. The program was designed to infill deeper zones of the deposit, and increase confidence in the geological interpretation prior to a planned update to the Mineral Resource Estimate (**MRE**).

The program also generated important geotechnical and metallurgical data to aid the ongoing development studies of the deposit.

Brightstar's Managing Director, Alex Rovira, commented "These highly encouraging results reinforce Lord Byron's position as a significant gold resource within the company's portfolio. The increased geological understanding, and additional metallurgical and geotechnical data will contribute to updated development studies at our Laverton Hub.

The results highlight wide intervals of open-pit mineable gold grades, including discrete zones of high-grade mineralisation identified near the base of, and below, a A\$3,000/oz optimised pit shell generated during the 2024 Scoping Study. The outcomes of this program represent a major step forward in demonstrating the deposit's potential for both high-grade and bulk-tonnage mining opportunities, while reinforcing the opportunities at depth which are compelling targets due to the wide and higher-grade nature of the main lode centred on the Bicentennial Shear Zone.

The higher-grade plunging shoots at Lord Byron are particularly exciting and are further delineated by these diamond drilling assays. The Brightstar geology team are currently planning new drillholes to target these shoots at depth as we aim to grow the resource ahead of assessing the potential for future open pit cut-backs or underground mining beneath the planned open pit.

Brightstar remains committed to advancing its exploration and development projects to maximise shareholder value while unlocking the full potential of its high-quality gold assets.

Drilling continues with the RC rig now at the Vanguard North deposit in Sandstone, with samples from Lord Nelson currently being processed through the assay laboratory".

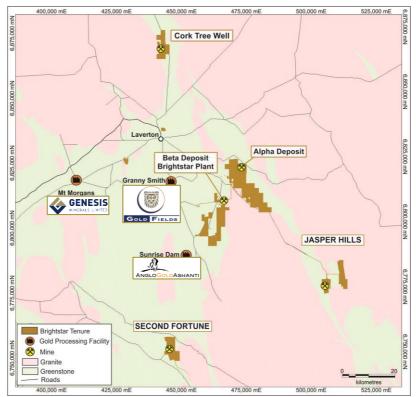


Figure 1 - Jasper Hills Project location, part of Brightstar's 0.9Moz Au Laverton Hub

Figure 2 – Plan view map of Lord Byron diamond drillhole collar locations

TECHNICAL DISCUSSION

The Lord Byron deposit is hosted within a package of amphibolite and banded iron units (BIF), transected by the northwest-trending Bicentennial Shear Zone. This 100m-wide zone of shearing hosts the bulk of the mineralisation at the deposit (termed the 'Main Zone'). Additional mineralisation is also present in supergene lodes, and as primary gold in BIF units that have been deflected and truncated by the Bicentennial Shear.

The diamond drilling program at the Lord Byron deposit totalled 13 drill holes (including 7 diamond 'tail' extensions of pre-existing 2024 RC drillholes), for a total of ~1,700m of core drilling with all assays now returned.

The purpose of this combined RC and DD program was to infill deeper zones of the resource towards the base of optimised open pit shells. The drilling also provided material for important metallurgical and geotechnical assessment.

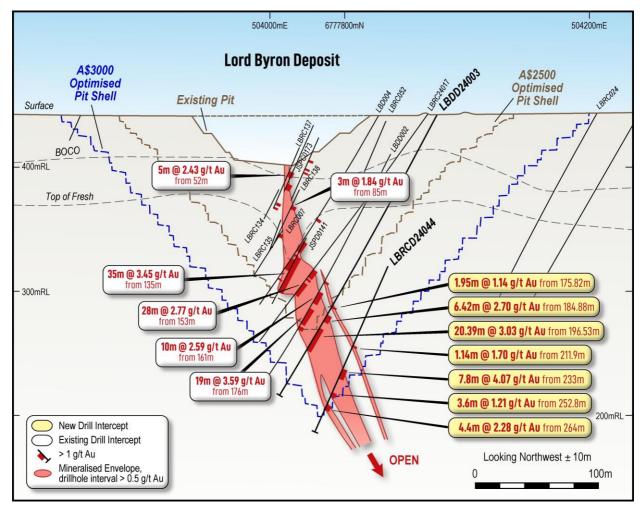


Figure 3 – Cross section A-A' showing LBDD24003 and LBRCD24044 with mineralised intercepts >1g/t Au, with reference to A\$2,500/oz and \$3,000/oz conceptual pit shells. Note drillhole LBRCD24044 is collared from surface off-section.

Geological Observations

Drilling through the main Bicentennial Shear Zone intersected wide zones of shearing associated with significant biotite-silica alteration, quartz veining, and abundant disseminated pyrite. The assay results have further defined several south-plunging, high-grade shoots in the main zone of mineralisation at the deposit, hosted within the Bicentennial Shear.

The strike of the individual shoots varies from 50m to over 200m, within the overall 800m strike of the deposit as a whole. Results from deep drilling into these shoots, from both recent and historic drillholes (Figures 3 & 4), suggests continuity well beyond the depth of the optimised pit shells. Coupled with the higher grades observed, this raises the possibility of future open pit cut-backs and an underground resource target at Lord Byron. Planned drilling later in Q1 will test this potential.

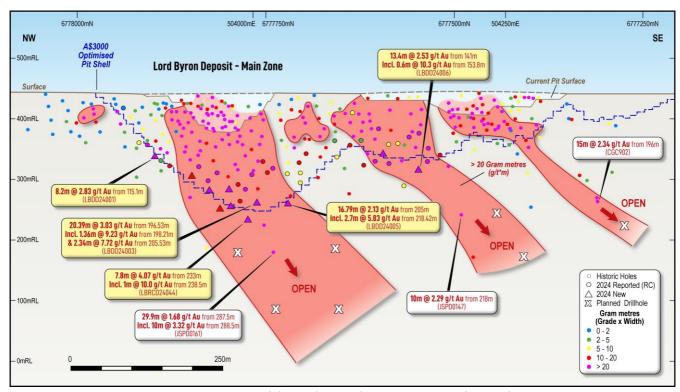


Figure 4 – Long section of the Lord Byron deposit Main Zone of mineralisation. Note mineralisation hosted in BIF lodes or Supergene lodes is not shown on this long section

Figure 5 - Core photo from drillhole LBDD24003, showing one of the high-grade zones (1.36m @ 9.23g/t from 198.21m) within an overall intercept of 20.39m @ 3.03g/t from 196.53m

Table 1 – Significant Intercepts (>1.0g/t Au) for the Lord Byron DD drilling, +10 gram-metre intercepts highlighted.

		From	То	Drilled	Au		Cuam	
Hole ID		(m)	(m)	Interval (m)	(g/t)	Interval	Gram- metres	Notes
		66.20	67.30	1.10	1.11	1.10m @ 1.11g/t from 66.20m	1.2	0.1m Core Loss
		87.00	87.60	0.60	1.04	0.60m @ 1.04g/t from 87.00m	0.6	
LBDD24001		95.90	96.35	0.45	1.08	0.45m @ 1.08g/t from 95.90m	0.5	
		108.65	110.00	1.35	1.45	1.35m @ 1.45g/t from 108.65m	2.0	
		115.10	123.30	8.20	2.83	8.20m @ 2.83g/t from 115.10m	23.2	
		109.55	109.90	0.35	1.93	0.35m @ 1.93g/t from 109.55m	0.7	
		152.42	156.25	3.83	1.19	3.83m @ 1.19g/t from 152.42m	4.6	
100034003		161.60	164.65	3.05	3.28	3.05m @ 3.28g/t from 161.60m	10.0	
LBDD24002		173.50	174.50	1.00	1.40	1.00m @ 1.40g/t from 173.50m	1.4	
		176.50	177.50	1.00	1.53	1.00m @ 1.53g/t from 176.50m	1.5	
		182.05	183.05	1.00	1.31	1.00m @ 1.31g/t from 182.05m	1.3	
		168.70	169.22	0.52	4.26	0.52m @ 4.26g/t from 168.70m	2.2	
		171.32	171.82	0.50	3.57	0.50m @ 3.57g/t from 171.32m	1.8	
		175.82	177.77	1.95	1.14	1.95m @ 1.14g/t from 175.82m	2.2	
100001000		184.88	191.30	6.42	2.70	6.42m @ 2.70g/t from 184.88m	17.3	
LBDD24003		196.53	216.92	20.39	3.03	20.39m @ 3.03g/t from 196.53m	61.8	1.76m Core Loss
	Including	198.21	199.57	1.36	9.23	1.36m @ 9.23g/t from 198.21m	12.6	
	and	205.53	207.87	2.34	7.72	2.34m @ 7.72g/t from 205.53m	18.1	0.1m Core Loss
		237.95	238.37	0.42	2.84	0.42m @ 2.84g/t from 237.95m	1.2	
100034004		104.60	122.00	17.40	1.61	17.40m @ 1.61g/t from 104.60m	28.0	1.9m Core Loss
LBDD24004		128.00	128.50	0.50	1.86	0.50m @ 1.86g/t from 128.00m	0.9	
		205.00	221.79	16.79	2.13	16.79m @ 2.13g/t from 205.00m	35.8	
LBDD24005	Including	218.42	221.12	2.70	5.83	2.70m @ 5.83g/t from 218.42m	15.7	
		225.98	226.32	0.34	3.30	0.34m @ 3.30g/t from 225.98m	1.1	
		25.00	27.10	2.10	1.82	2.10m @ 1.82g/t from 25.00m	3.8	
		33.00	33.40	0.40	3.77	0.40m @ 3.77g/t from 33.00m	1.5	
LBDD24006		116.40	117.60	1.20	1.25	1.20m @ 1.25g/t from 116.40m	1.5	
		141.00	154.40	13.40	2.53	13.40m @ 2.53g/t from 141.00m	33.9	
	Including	153.80	154.40	0.60	10.3	0.60m @ 10.3g/t from 153.80m	6.2	
		162.50	163.25	0.75	1.53	0.75m @ 1.53g/t from 162.50m	1.1	
LBRCD24014		178.24	201.10	22.86	1.68	22.86m @ 1.68g/t from 178.24m	38.4	0.5m Core Loss
	Including	179.10	179.40	0.30	17.3	0.30m @ 17.3g/t from 179.10m	5.2	
LBRCD24016		198.90	201.65	2.75	3.41	2.75m @ 3.41g/t from 198.90m	9.4	0.2m Core Loss
LDNCD24016	Including	199.21	199.68	0.47	9.41	0.47m @ 9.41g/t from 199.21m	4.4	
LBRCD24039		175.00	195.00	20.00	1.22	20.00m @ 1.22g/t from 175.00m	24.4	2.2m Core Loss
LBRCD24040		184.70	185.40	0.70	1.32	0.70m @ 1.32g/t from 184.70m	0.9	
		208.95	218.60	9.65	1.67	9.65m @ 1.67g/t from 208.95m	16.1	

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram- metres	Notes
		224.50	225.50	1.00	1.12	1.00m @ 1.12g/t from 224.50m	1.1	
		229.90	230.90	1.00	3.16	1.00m @ 3.16g/t from 229.90m	3.2	
		237.60	238.60	1.00	1.77	1.00m @ 1.77g/t from 237.60m	1.8	
		202.12	225.23	23.11	1.56	23.11m @ 1.56g/t from 202.12m	36.1	0.4m Core Loss
LBRCD24041		233.92	234.22	0.30	2.23	0.30m @ 2.23g/t from 233.92m	0.7	
		237.10	237.75	0.65	2.80	0.65m @ 2.8g/t from 237.10m	1.8	
LBRCD24043		219.00	222.60	3.60	1.76	3.60m @ 1.76g/t from 219.00m	6.3	
		211.90	213.04	1.14	1.70	1.14m @ 1.70g/t from 211.09m	1.9	
		233.00	240.80	7.80	4.07	7.80m @ 4.07g/t from 233.00m	31.7	
LBRCD24044	Including	238.50	239.50	1.00	10.0	1.00m @ 10.0g/t from 238.50m	10.0	
		252.80	256.40	3.60	1.21	3.60m @ 1.21g/t from 252.80m	4.4	
		264.00	268.40	4.40	2.28	4.40m @ 2.28g/t from 264.00m	10.0	

Table 2 – Lord Byron 2024 Diamond drilling collar information. DD denotes diamond from surface, RCDT indicates reverse circulation pre-collar with diamond tail. Holes located on tenements M39/185 and M39/262. Grid coordinates shown in MGA94 Zone 51.

Hole ID	Hole Type / EOH drill method	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)	Comment
LBDD24001	DD	503968	6777946	442	231	-61	130	This ASX Announcement
LBDD24002	DD	504026	6777920	442	228	-57	201	This ASX Announcement
LBDD24003	DD	504109	6777843	443	231	-62	261	This ASX Announcement
LBDD24004	DD	504183	6777638	442	229	-60	141	This ASX Announcement
LBDD24005	DD	504154	6777815	443	229	-60	265	This ASX Announcement
LBDD24006	DD	504237	6777607	442	230	-59	160	This ASX Announcement
LBRCD24014	RCDT	504081	6777884	443	231	-59	220	This ASX Announcement Diamond core from 91.2m
LBRCD24016	RCDT	504090	6777863	443	225	-59	224	This ASX Announcement Diamond core from 198.9m
LBRCD24039	RCDT	504058	6777896	443	232	-61	233	This ASX Announcement Diamond core from 137.9m
LBRCD24040	RCDT	504074	6777905	443	227	-60	250	This ASX Announcement Diamond core from 161.9m
LBRCD24041	RCDT	504087	6777885	443	230	-61	247	This ASX Announcement Diamond core from 201.1m
LBRCD24043	RCDT	504103	6777869	443	232	-62	255	This ASX Announcement Diamond core from 219m
LBRCD24044	RCDT	504121	6777877	443	231	-60	291	This ASX Announcement Diamond core from 180m

Next Steps

Brightstar will announce drilling information and assay results as they are received. Results remain outstanding from the Lord Nelson RC drilling program at the Sandstone Project.

Concurrently with ongoing drilling programs, work continues on the Definitive Feasibility Study and near-term development of mining operations at the Jasper Hills project.

References

1. Refer Brightstar Resources ASX announcement 25 March 2024 "Jasper Hills Scoping Study"

This ASX announcement has been approved by the Managing Director on behalf of the board of Brightstar.

FOR FURTHER INFORMATION, PLEASE CONTACT:

Alex Rovira

Managing Director

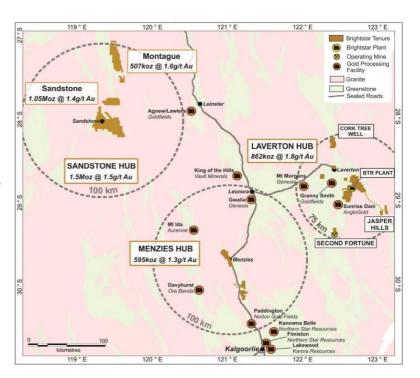
Email: alex@brightstarresources.com.au

Investor Relations

Lucas Robinson

Phone: +61 408 228 889

Email: <u>lucas@corporatestorytime.com</u>



ABOUT BRIGHTSTAR RESOURCES

Brightstar Resources Limited is a Perthbased gold development company listed on the Australian Securities Exchange (ASX: BTR).

The Company hosts a portfolio of high quality assets hosted in the prolific Goldfields and Murchison regions of Western Australia, which are ideally located proximal to significant regional infrastructure and suppliers.

The company currently operates the underground Second Fortune Gold Mine south of Laverton, and recently completed the Selkirk Mining JV at Menzies pouring first gold in March 2024.

In August 2024, Brightstar announced the consolidation of the Sandstone district with the integration of the Sandstone and Montague East Gold Project into Brightstar resulting in a total combined JORC Mineral Resource of **3.0Moz Au at 1.5g/t Au.** The resource is spread across three geographically separate hubs, providing excellent optionality for a staged development of all assets to build to a meaningful ASX-listed gold producer.

Consolidated JORC Resources of Laverton & Menzies Hubs

Location		Me	easured		In	dicated			Inferred			Total	
	Au Cut- off (g/t)	Kt	g/t Au	Ko z	Kt	g/t Au	Koz	Kt	g/t Au	Koz	Kt	g/t Au	Koz
Alpha	0.5	623	1.6	33	374	2.1	25	455	3.3	48	1,452	2.3	106
Beta	0.5	345	1.7	19	576	1.6	29	961	1.7	54	1,882	1.7	102
Cork Tree Well	0.5	-	-	-	3,036	1.6	157	3,501	1.3	146	6,537	1.4	303
Lord Byron	0.5	453	1.8	26	1,141	1.6	58	2,929	1.7	160	4,523	1.7	244
Fish	0.6	26	7.7	6	149	5.8	28	51	4.3	7	226	5.7	41
Gilt Key	0.5	-	-	-	15	2.2	1	153	1.3	6	168	1.3	8
Second Fortune (UG)	2.5	17	16.9	9	78	8.2	21	71	12.3	28	165	10.9	58
Total – Laverton		1,464	2.0	93	5,369	1.8	319	8,121	1.7	449	14,953	1.8	862
Lady Shenton System	0.5	-	-	-	2,770	1.3	119	4,200	1.3	171	6,970	1.2	287
Yunndaga	0.5	-	-	-	1,270	1.3	53	2,050	1.4	90	3,320	1.3	144
Yunndaga (UG)	2.0	-	-	-	-	-	-	110	3.3	12	110	3.3	12
Aspacia	0.5	-	-	-	137	1.7	7	1,238	1.6	62	1,375	1.6	70
Lady Harriet System	0.5	-	-	-	520	1.3	22	590	1.1	21	1,110	1.2	43
Link Zone	0.5	-	-	-	145	1.2	6	470	1.0	16	615	1.1	21
Selkirk	0.5	-	-	-	30	6.3	6	140	1.2	5	170	2.1	12
Lady Irene	0.5	-	-	-	-	-	-	100	1.7	6	100	1.7	6
Total – Menzies		-	-	-	4,872	1.4	214	8,898	1.3	383	13,770	1.3	595
Montague-Boulder	0.6	-	-	-	522	4.0	67	2,556	1.2	96	3,078	1.7	163
Whistler (OP) / Whistler (UG)	0.5 / 2.0	-	-	-	-	-	-	1,700	2.2	120	1,700	2.2	120
Evermore	0.6	-	-	-	-	-	-	1,319	1.6	67	1,319	1.6	67
Achilles Nth / Airport	0.6	-	-	-	221	2.0	14	1,847	1.4	85	2,068	1,5	99
Julias ¹ (Resource)	0.6	-	-	-	1,405	1.4	61	503	1.0	16	1,908	1.3	77
Julias² (Attributable)	0.6	-	-	-							1,431	1.3	58
Total – Montague (Glo	bal)	-	-	-	2,148	2.1	142	7,925	1.5	384	10,073	1.6	526
Total – Montague (BTF	R) ^{1,2}	-	-	-	2,148	2.1	142	7,925	1.5	384	9,596	1.6	502
Lord Nelson	0.5	-	-	-	1,500	2.1	100	4,100	1.4	191	5,600	1.6	291
Lord Henry	0.5	-	-	-	1,600	1.5	78	600	1.1	20	2,200	1.4	98
Vanguard Camp	0.5	-	-	-	400	2.0	26	3,400	1.4	191	3,800	4.5	217
Havilah Camp	0.5	-	-	-	-	-	-	1,200	1.3	54	1,200	1.3	54
Indomitable Camp	0.5	-	-	-	800	0.9	23	7,300	0.9	265	8,100	0.9	288
Bull Oak	0.5	-	-	-	-	-	-	2,500	1.1	90	2,500	1.1	90
Ladybird	0.5	-	-	-	-	-	-	100	1.9	8	100	1.9	8
Total – Sandstone		-	-	-	4,300	1.6	227	19,200	1.3	819	23,500	1.4	1,046
Total Janastone													

 $\label{lem:Reference} \textbf{Refer MRE Notes below. Note some rounding discrepancies may occur.}$

Pericles, Lady Shenton & Stirling consolidated into Lady Shenton System; Warrior, Lady Harriet & Bellenger consolidated into Lady Harriet System.

Note 1: Julias is located on M57/427, which is owned 75% by Brightstar and 25% by Estuary Resources Pty Ltd

Note 2: Attributable gold ounces to Brightstar include 75% of resources of Julias as referenced in Note 1.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Brightstar Resources Limited's planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Brightstar believes that its expectations reflected in these forward- looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that further exploration will result in the estimation of a Mineral Resource.

Competent Person Statement - Exploration

The information presented here relating to exploration of the Menzies, Laverton and Sandstone Gold Project areas are based on information compiled by Mr Edward Keys, MAIG. Mr Keys is a Member of the Australasian Institute of Geoscientists (AIG) and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a "Competent Person" as that term is defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)". Mr Keys is a fulltime employee of the Company in the position of Exploration Manager and has provided written consent approving the inclusion of the Exploration Results in the form and context in which they appear.

Competent Person Statement - Mineral Resource Estimates

This Announcement contains references to Brightstar's JORC Mineral Resource estimates, extracted from the ASX announcements titled "Cork Tree Well Resource Upgrade Delivers 1Moz Group MRE" dated 23 June 2023, "Maiden Link Zone Mineral Resource" dated 15 November 2023, "Aspacia deposit records maiden Mineral Resource at the Menzies Gold Project" dated 17 April 2024, "Brightstar Makes Recommended Bid for Linden Gold", dated 25 March 2024, "Brightstar to drive consolidation of Sandstone Gold District" dated 1 August 2024 and "Scheme Booklet Registered by ASIC" dated 14 October 2024.

Brightstar confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the Mineral Resource estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Compliance Statement

With reference to previously reported Exploration Results and Mineral Resources, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

APPENDIX 1: JORC CODE, 2012 EDITION – TABLE 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Industry standard RC & DD drilling and sampling protocols for lode and supergene gold deposits have been utilised throughout the BTR campaign. DD results are reported in this announcement, some of which follow from previously released RC pre-collars. Diamond samples are selected for and collected at geologically defined intervals and cut using an automated core saw. Quarter and Half core samples are submitted for analysis depending on metallurgical or geotechnical requirements. Brightstar samples were submitted to Bureau Veritas Laboratory in Kalgoorlie where the entire sample was crushed, pulverised, split and assayed by fire assay using a 50-gram charge. Sample spoils from previously released (selected) RC drill holes were placed into green bags for possible future use.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	BTR RC holes (pre-collars) were drilled utilising a 5.5 inch face sampling hammer and surveyed using a Axis Champ true-North-seeking gyroscopic survey tool. Drilling was conducted by Topdrill using a Schramm C685 drill rig with a booster compressor. RC samples are not presented in this release.

Criteria	JORC Code Explanation	Commentary
		 An Azi aligner was used on all holes drilled from surface (TN14 Gyro Compass true-North-seeking). BTR Diamond drilling is drilled by Topdrill utilising a Sandvik DE840 drill rig. HQ and NQ diameter drill core was obtained. In areas of unconsolidated ground, triple tube configuration was used to maximise core recovery. All drill core was oriented (where possible), using the Axis Champ Ori system.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recoveries are recorded on sample registers and recorded as part of the logging procedure with core loss quantified. Good to moderate sample recovery was observed in reported programs with moderate core loss observed in structurally deformed areas (shear zones) Short core runs were selected to maximise sample recovery, with core loss noted on core blocks within the core trays and subsequently checked by Brightstar personnel at the core farm. No grade versus sample recovery biases, or biases relating the loss or gain of fines have been identified in BTR's drilling. All samples are weighed at the laboratory and reported as a part of standard preparation protocols. No water compromised samples were reported in this program. For diamond core, sample recovery is recorded for every drill run, with intervals of core loss accurately logged. Drilling is carried out orthogonal to the mineralisation to get representative samples of the mineralisation. All samples are core. Intervals of lost core are not length weighted.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 Diamond core is logged to specific geological intervals. Detailed geological logging includes the lithology, alteration, veining and mineralisation of the drill chips or core. Structural measurements

Criteria	JORC Code Explanation	Commentary
Sub-sampling techniques	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. 	 are also taken from oriented drill core. Photographs are taken of all core as part of the sampling process. Geotechnical consultants logged selected core for geotechnical purposes. Logging is both quantitative and qualitative in nature, depending on the feature. 100% of BTR drilling is geologically logged. QAQC samples (blanks and standards) were submitted for all
and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 QAQC samples (blanks and standards) were submitted for all samples at a rate between 1:10 and 1:25 Duplicate samples were not taken in this core logging program, however sampling is deemed representative in the opinion of the competent person. Single cut (half core) diamond core was selected for sampling with the remaining core left for future reference and or metallurgical testwork purposes. Sample preparation comprised industry standard oven drying, crushing, and pulverisation to less than 75 microns. Homogenised pulp material was used for assaying. Internal certified laboratory QAQC is undertaken including check samples, blanks and internal standards. Samples volumes were typically 0.5kg-4.0 kg depending on the length of core sampled and are considered to be of suitable size for the style of mineralisation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Samples were assayed by 50g Fire Assay by Bureau Veritas Laboratory, Kalgoorlie for gold. Sample lengths for diamond core are determined by the Brightstar Geologist and are between 0.3m and 1.5m. Laboratory QAQC procedures include the insertion of certified

Criteria	JORC Code Explanation	Commentary
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	reference 'standards'. Assay results have been satisfactory and demonstrate an acceptable level of accuracy and precision. 2 different grade gold Certified Reference Materials from Geostats have been used during the program. Certified blank material has also been used and also sourced from Geostats. Laboratory QC involves the use of internal lab standards, certified reference material, blanks, splits and replicates. QC results (blanks, coarse reject duplicates, bulk pulverised, standards) are monitored and were within acceptable limits. ~5-10% standards were inserted to check on precision of laboratory results. Brightstar uses a lead collection Fire Assay, with an ICP-AAS (atomic absorption spectroscopy) finish. The lower detection limit for this technique is 0.01ppm Au and the upper limit is 1,000ppm Au that is considered appropriate for the material and mineralisation and is industry standard for this type of sample. In addition to standards, duplicates and blanks previously discussed, Bureau Veritas conducted internal lab checks using standards and blanks. No geophysical measurements were collected.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections have been reviewed by several company personnel.
	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Data storage was captured electronically onsite using a standard set of templates, before uploading to a cloud-based server and imported into an externally managed Datashed geological database. No twinned holes were completed as part of this program. Security is set through both SQL and the DataShed configuration software. Brightstar has an external consultant Database Administrator with expertise in programming and SQL database administration. Access to the database by the geoscience staff is

Criteria	JORC Code Explanation	Commentary
		controlled through security groups where they can export and import data with the interface providing full audit trails. Assay data is provided in MaxGEO format from the laboratories and imported by the Database Administrator. The database assay management system records all metadata within the MDS, providing full audit trails to meet industry best practice. • No data was adjusted. No transformations or alterations are made to assay data stored in the database. The lab's primary Au field is the one used for plotting purposes. No averaging of results for individual samples is employed. No top cuts are applied to the assays when calculating intercepts.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill collar locations were initially surveyed using a hand-held GPS, accurate to within 3-5m. All RC and DD holes are routinely surveyed by differential GPS (DGPS) once drilling is complete, (Reported Lord Byron holes have been DGPS surveyed). Some historic drill collars have existing DGPS surveys The grid system used is MGA94 Zone 51. All reported coordinates are referenced to this grid. The site topography utilised DTM imagery from 2020-2024 with accuracy <1m.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Holes are variably spaced with aim to provide pierce point spacing ~20m where the drillhole is projected through the mineralised trend. The reported diamond program is planned to infill the spacing to approximately 20m x 20m Results will be used to update previously reported Mineral Resources at Lord Byron. No sample compositing of field samples has been applied.

Criteria	JORC Code Explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The relationship between the drilling orientation and the orientation of mineralised structures is not considered to have introduced a sampling bias. Most holes have been drilled perpendicular to the main orientation of mineralisation. The drill holes were designed to best test the interpreted geology in relation to known mineralisation trends, regional structure and lithological contacts. Drilling was all inclined with orientation based on predicted geological constraints. No drilling orientation related sampling bias has been identified at the project.
Sample security	The measures taken to ensure sample security.	 Samples were collected on site under supervision of the geologist. Visitors needed permission to visit site. Once collected core samples were put in core trays, they were transported to Kalgoorlie by company personnel or trusted contractors for logging/sampling followed by assaying with Bureau Veritas. Logging/sampling was conducted in a secure core yard in Kalgoorlie by trusted contractors and Brightstar staff. Despatch and consignment notes were delivered and checked for discrepancies. No sample security measures were recorded for the historic drilling
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Sampling techniques and data has been reviewed internally by company personnel. The process of drilling, sample selection, sample bagging, and sample dispatch have all been reviewed by a Competent Person as defined by JORC.

SECTION 2 REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Lord Byron Project consists of two Mining Leases: M38/185 Lord Byron 987.45 Ha M38/162 Lord Byron 307.2 Ha All are granted tenements with gold rights owned 100% by Brightstar Resources Limited held in good standing with no known impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Jasper Hills Project has had numerous drilling campaigns undertaken by third parties contributing to the 2022 MRE. Lord Byron AngloGold, 2001-2004 Crescent Gold, 2005-2012 Focus, 2013-2015 Sons of Gwalia, 1987, 1996-1999 Western Mining Corporation, 1988, 1989, 200 Fish Crescent Gold, 2005-2012 Western Mining Corporation, 1988, 1989, 2000.
Geology	Deposit type, geological setting and style of mineralisation.	The Lord Byron deposit is hosted within a thick sequence of amphibolite and interbedded chert/BIF. There are 3 zones of mineralization, the supergene zones, the central zone with a North-West strike and southern zone with a North strike.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar 	 The relevant data for drillholes reported in this announcement is provided in the body of the announcement. Data for historical collars referenced in this announcement is provided in tables within the announcement.

BRIGHTSTAR RESOURCES LIMITED

Criteria	JORC Code Explanation	Commentary
Data aggregation methods	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for 	 Assay results reported here have been length weighted. Significant intercepts are reported above 1.0 g/t Au with a maximum consecutive interval of internal dilution (<0.5 g/t Au) of 2m. Where core loss was encountered over (reported) significant intercepts the core loss was attributed with 0 grade while the overall
	 such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 interval was used (including core loss). Core loss was quantified and reported herewith in the tables where core loss was observed within significant intercepts No metal equivalent calculations were applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	True widths are not confirmed at this time although all drilling is planned close to perpendicular to interpreted strike of the target lodes at the time of drilling.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being	Refer to figures in this report.

Criteria	JORC Code Explanation	Commentary				
	reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.					
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	their context discussed.				
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No other exploration data is reported here. Metallurgical and geotechnical work is ongoing with core samples recovered in this reported program. 				
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Additional drilling is being planned and if successful, further mineral resource estimates will be calculated.				

APPENDIX 2: Historic Hole Details: Lord Byron

Hole ID	Hole Type	Easting	Northing	RL	EOH (m)	Dip	Azi	From (m)	To (m)	Drilled Interval (m)	Au (g/t)
CGC902		504457	6777317	438	234	-60	270	144	145	1	2.89
	RC							158	161	3	2.1
	, inc							182	188	6	1.1
								192	193	1	1.24
								196	211	15	2.34
								218	224	6	2.73
JSPC0173	RC	504038	6777777	442	108	-60	270	63	68	5	1.59
J3PC0175	NC							92	104	12	2.38
JSPD0141	DD	504092	6777778	442	198	-58	266	107	108	1	1.26
J3PD0141						-38	200	135	170	35	3.45
JSPD0147	DD	504338	6777518	438	253	-60	270	218	228	10	2.29
	DD	504217	6777777	444	362.6	-63	271	251	252	1	1.74
JSPD0161								264.5	269.5	5	2.19
								281.7	282.1	0.4	1.44
								287.5	317.4	29.9	1.68
LBD002	DD	504095	6777827	442	253	-62	230	151	152	1	2.62
								161	171	10	2.59
								176	195	19	3.59
		504074	6777811	442	181		230	97	98	1	2.15
LBD004	DD					-60		120	143	23	1.31
								154	155	1	1.25
LBRC007	RC	504058	6777795	442	150	-60	230	90	93	3	3.1
LBKC007	KC							102	108	6	1.76

Hole ID	Hole Type	Easting	Northing	RL	EOH (m)	Dip	Azi	From (m)	To (m)	Drilled Interval (m)	Au (g/t)
LBRC024	RC	504210	6777923	442	180	-60	230	NSI			
LBRC052	RC	504082	6777814	443	228	-60	272	144	173	29	1.82
LDDC424	D.C.	504050	6777760	442	100	-59	270	38	52	14	1.38
LBRC134	RC							60	65	5	3.04
		504060	6777760	442	125	-60	270	63	64	1	1.14
LBRC135	RC							70	79	9	1.63
								87	96	9	1.25
	RC	504040	6777770	442	100	-60	270	52	57	5	2.43
LBRC137							270	81	92	11	1.5
	RC	504060	6777770	442	130	-61	270	62	63	1	1.3
								66	67	1	1.58
1000420								85	88	3	1.84
LBRC138								100	101	1	1.33
								104	105	1	1.41
								110	114	4	2.01