31 January 2025

ORLANDO COPPER / GOLD MINERAL RESOURCE DOUBLES

KEY POINTS

- JORC 2012 Mineral Resource Estimate update completed for the Orlando Deposit located at the Tennant Creek Project based on a global estimate of the full drill hole data set.
- The new Mineral Resource Estimate has seen an increase of 88.6% in copper metal tonnes and 120% in gold ounces relative to the previous 2023 estimate, with the overall gold equivalent ounces increasing by 102% to 579koz.
- The Orlando Deposit resource now stands at 5.95 Mt at 1.16% Cu and 1.5 g/t Au based on a 1.0 g/t Au equivalent, and the Combined Tennant Creek Resource operated by CuFe now totals 10.35 Mt at 1.53% Cu and 1.07 g/t Au.
- The new resource provides a key input to the Tennant Creek Alliance (refer ASX Announcement 28 October 2024) scoping study that is in progress and independent stand-alone development options.

Summary

CuFe Limited (ASX: CUF) (**CuFe** or the **Company**), is pleased to announce a significant update to its 55% owned Orlando Copper / Gold Resource at its Tennant Creek Project. The update is a result of a global estimate of the full mineral resource extending the previous Mineral Resource Estimate (**MRE**) both along strike and depth, covering the previously excluded portion of the resource that was partially mined by historical underground operations.

MEC as a technical consultant to CuFe has produced a MRE update for the Orlando deposit based on a global drill hole database, the results are summarised in Table 1. This update follows a detailed technical audit by MEC of the previous 2023 MRE where recommendations from the previous estimate were interrogated and tested (refer CUF ASX announcement dated 8 November 2024).

Table 1: Orl	ando Deposit i	Mineral Resou	rce as of Janu	ary 2025 repo	rted above a c	ut-off 1.0g/t Aเ	ı equivalent.

Resource Category	Tonnes (kt)	Copper Grade (%)	Gold Grade (g/t)	Copper Metal (Kt)	Gold (koz)	Gold Equivalent Grade (g/t)	Gold Equivalent (koz)
Indicated	2,483	1.32	1.3 <mark>3</mark>	32.8	106.2	3.07	245.1
Inferred	3,467	1.04	1.62	36.1	180.6	3.0	334.0
Total	5,950	1.16%	1.5	68.8	287.0	3.0	579.1

Notes:

• Mineral Resources are reported above a 1.0 g/t Au equivalent cut-off.

• The model has been depleted with open pit and underground workings and a 5m buffer around underground workings applied to account for sterilised, unstable and or unrecoverable ore.

• The gold equivalent calculation used for reporting at Orlando only assumes a gold price of US\$2,200/oz for gold and US\$9,250/t for total copper and assumes an 88% recovery for gold and an 87% recovery for copper. US/AUD exchange rate of \$0.67.

ASX: CUF

• Apparent differences may occur due to rounding and numbers may not sum due to rounding

T +61 8 6181 9793 E admin@cufe.com.au cufe.com.au

[•] The gold equivalent value is derived from the following formula: $Au_eq = Au (g/t) + (Cu (\%) \times 1.32)$.

Comparison with previous 2023 MRE is summarised in Table 2.

Table 2: Comparison of 2023 and 2025 Orlando MRE

MRE	Tonnes (kt)	Copper Grade (%)	Gold Grade (g/t)	Copper metal (Kt)	Gold (koz)	Gold Equivalent Grade (g/t)	Gold Equivalent (koz)
2023 MRE	2,885.5	1.30%	1.4	36.5	130.4	3.1	286.5
2025 MRE	5,950.3	1.16%	1.5	68.8	287.0	3.03	579.1
Change %	106.2%	-10.8%	7.1%	88.6%	120.1%	-2.3%	102.1%

Notes:

- Mineral Resources are reported above a 1.0 g/t Au equivalent cut-off.
- There are differences in the input assumptions of the Au equivalent cut-off calculation between MRE's including metal process and metallurgical recoveries
- Apparent differences may occur due to rounding and numbers may not sum due to rounding

The update to the Orlando Resource takes the total project resource of 10.35 Mt at 1.53% Cu and 1.07 g/t Au (See Table 3), cementing the assets as significant deposits within the Tennant Creek Mineral Field.

Table 5. Onanuu, Gecku anu Guanna JORG 2012 Mineral Resource Summary of Termani Creek	Table 3: Orlando,	Gecko and Goanna	JORC 2012 Mineral	Resource Summar	y of Tennant Creek.
---	-------------------	------------------	-------------------	-----------------	---------------------

Resource Category	Tonnes (kt)	Cu Grade (%)	Gold Grade (q/t)	Copper Metal (kt)	Gold (koz)			
Gecko 2022 – Snow	Gecko 2022 – Snowdens Optiro							
Indicated	1,400	2.50%	-	35.6	-			
Inferred	80	1.60%	-	1.3	-			
Sub-total	1,480	2.50%	-	36.9	-			
Goanna 2022 – Sno	wdens Optiro	•	-	•				
Inferred	2,920	1.80%	0.2	53.7	15			
Sub-total	2,920	1.80%	0.2	53.7	15			
Orlando 2025 - MEC		•	-	•				
Indicated	2,483	1.32%	1.32	32.8	106.2			
Inferred	3,467	1.04%	1.62	36.1	180.6			
Sub-total	5,950	1.16%	1.5	68.8	287.0			
CuFe Combined Ter	CuFe Combined Tennant Creek Resources							
Total	10,350	1.53%	1.07	159.4	302.0			

Notes:

- Gecko and Goanna have been reported above a 1.0% copper cut-off (reported in CUF ASX release dated 26 July 2022).
- Orlando has been reported above a 1.0 g/t gold equivalent cut-off.
- The gold equivalent calculation used for reporting at Orlando only assumes a gold price of US\$2,200/oz for gold and US\$9,250/t for total copper and assumes an 88% recovery for gold and an 87% recovery for copper through mining and processing. US/AUD exchange rate of \$0.67.
- Apparent differences may occur due to rounding.

Commenting on the Mineral Resource Estimates, CuFe Executive Director, Mark Hancock, said:

"This resource update has added a significant volume of copper and gold metal value to the project at a very low cost. By analysing and validating the full historical drill hole dataset we have created the opportunity to model the full global Orlando resource, whilst keeping confidence in the data set using the expertise of expert consultants in MEC. This new resource is invaluable to the development options we are currently studying both internally as a stand-alone project but also as part of the Tennant Creek Alliance with Emmerson Resources and Tennant Minerals and allows the most economic options to be determined for

the full resource. The more stones we turn over the more our knowledge and confidence increases in the assets as it is becoming one of the more significant deposits in the Tennant Creek Mineral Field with over 10 Mt of combined resource from the Orlando, Gecko/Goanna deposits. We look forward to continuing our studies including detailed mine planning (open pit and underground) and have commenced the same review process with MEC for the Gecko and Goanna Resources so we look forward to seeing what upside exists there."

The Orlando deposit lies within Mining Lease (ML29919) of the Tennant Creek Project, located approximately 25 km northwest of the Tennant Creek town site in the Northern Territory (Figure 1). The tenure is held by CuFe Tennant Creek Pty Ltd (55%) and Gecko Mining Company Pty Ltd (45%). Orlando has been mined previously by both open cut and underground methods.

Figure 1: The Orland Deposit within the Tennant Creek Mineral Field.

The Orlando deposit was first drilled by Peko in 1957 and by 1962 the first ore was extracted from the Orlando underground mine. The underground operation continued to 1975 when it ceased due to low Copper prices, leaving a significant amount of gold and copper mineralisation behind. The Orlando underground produced 322,060 tonnes of ore, yielding 121,282 oz of gold, and 4.852 tonnes of copper (source Normandy Production Records). Following the change of control from Peko to Normandy Gold Pty Limited in 1991 the development of an open pit at Orlando commenced in 1994 as a small test pit (phase 1) followed by a larger phase 2 pit completed in 1997 (the current open pit surface that exists today). The open pit yielded both copper and gold that was treated at the nearby Warrego Plant.

In 2023 a MRE estimate was undertaken by Snowdens Optiro incorporating surface infill drilling executed in 2022 by CuFe. The estimate was limited to a maximum depth of the 890m RL from west of easting 690 mE, excluding drill hole data at depth as it was assigned as high risk due to a population of underground drill collars that sat outside of the underground development drives. In the 2023 MRE report it was recommended by Snowden Optiro that that a review and validation of the underground drilling

should be undertaken. The underground drilling forms an extensive part of the full drill hole dataset and confirms the presence of high-grade copper and gold at depth. They have been excluded from the previous estimate based on precision or accuracy issues.

A full review of the Orlando global database was initiated, independent of the previously constrained MRE. This data set included all underground and surface drilling from along the full strike length of the deposit. The global data set of 1,397 holes was validated and the following modifications made:

- 10 holes (0.7% of the dataset) removed due to questionable hole collars, no assays and or no geology data,
- 3 holes (0.2% of the dataset) utilised for modelling but not estimation purposes due to unreliable QC,
- 187 holes (13.4% of the dataset) utilised for modelling but not for estimation due to low confidence collar coordinates or elevation >1m from underground voids.
- 230 holes (16.4% of the dataset) utilised for modelling and estimation with moderate confidence due to collars <1m from underground voids,
- 967 holes (69.2% of the dataset) utilised for modelling and estimation with high confidence.

The drill hole collar locations used for the MRE are shown in Figure 2.

Figure 2: 2025 MRE drill hole collar locations and block model extent.

ASX Announcement - 31 January 2025

With the new drill hole dataset the model area that the resource estimate covers, incorporates the area of the historical underground operations (see Figure 3). Wireframes of the copper and gold domains were constructed based on 0.5 % Cu and 0.5 g/t Au respectively. The wireframes were generated using implicit modelling based on interpretation tables and CAD data points reflecting geology and geological controls. Changes in wireframes are predominantly in the area excluded at depth and to the west in the 2023 MRE (see Figure 4 and Figure 5). Both copper and gold mineralisation envelopes now extend with depth below the historical operations supported by the newly validated deep surface and underground drilling dataset (see Figure 6).

Figure 3: The 2025 MRE model extent and the 2023 MRE model extent. Oblique view to the north east.

Figure 4: Long sectional view looking North at 210m northing showing the difference between Cu (>0.5%) between the 2025 and the previous 2023 MRE.

Figure 5: Long sectional view looking North at 210m northing showing the difference between Au (>0.5 g/t) between the 2025 and the previous 2023 MRE.

The newly included resources at depth have been reported as inferred classification to reflect the inherit risk associated with this historical data and level of confidence (see Figure 7).

The underground voids and open pit surface were validated and excluded from the MRE model. Additionally, a 5m halo around underground workings was used to exclude remnant pillars to meet the Reasonable Prospects for Eventual Economic Extraction (RPEEE) condition for the MRE. Future studies will reassess whether some of this material can be recoverable. This material represents around 20% of the total in-situ resource.

Figure 6: Sectional view at 535mE showing the difference between Cu (>0.5%) and Au (>0.5 g/t) between the 2025 and the previous 2023 MRE.

Figure 7: Longsection looking North showing allocation of indicated and inferred assignment

Next Steps

As part of both internal standalone development studies and the Tennant Creek Alliance scoping study that is in progress, the new resource will be used to run open pit optimisations to test changes to an Orlando open pit cut back and to test sensitivities to the cut over point to an underground operation. These work streams have commenced, and outcomes will form inputs to the scoping study over coming months. MEC has commenced an audit of the Gecko and Goanna Resources and will commence a global re-estimate of the deposits.

As an outcome of the MRE there are several areas identified where mineralisation is open and there is the opportunity for further mineralised extensions. These opportunities will be investigated in future near mine drilling campaigns.

The following subsections are provided consistent with the ASX Listing Rule 5.8.1.

Additional information is provided in the JORC Code (2012) – Table 1, which is attached to this announcement in Appendix 1.

Overview - January 2025 Mineral Resource Estimate (MRE)

CuFe Ltd ('CuFe', ASX: CUF) commissioned MEC in October 2024 to report an updated Mineral Resource Estimate (MRE) of the Orlando deposit in accordance with JORC 2012 reporting guidelines. The deposit forms part of the Tennant Creek Project, and is located approximately 30km northwest of Tennant Creek in the Northern Territory. All drillholes used for the MRE are contained within the mining lease ML29919, which is 55% owned by CuFe Tennant Creek Pty Ltd and 45% by Gecko Mining Company Pty Ltd. The deposit has been mined both open pit and underground, with a longstanding history which commenced with underground mining in the 1960's.

The January 2025 MRE for Orlando, by Resource Classification is given in **Table 0-1**. This was depleted for all mining (open pit and underground) to October 1997, when the final open pit mining ceased. An additional 1.6 Mt of material was removed representing a 5m halo around underground workings to account for remnant pillars to meet RPEEE condition. The Resource is reported at a cutoff of 1.00 g/t Au Equivalent, which is derived from the following formula:

 $Au_Eq = Au g/t + (Cu \% * 1.32)$

The Resource is rounded to reflect that it is an estimation, therefore numbers may not sum due to rounding.

The grade tonnage curve is shown in Figure 0-1.

						Au_Eq	ŀ	AU		Cu	
	Resource Category	Volume (m³)	Density (t/m³)	Tonnes (kt)	Au_Eq (g/t)	Ounces (oz)	Grade (g/t Au)	Ounces (oz)	Grade (% Cu)	Metal (Cu t)	
	Measured	-	-	-	-		-	-	-	-	
τοται	Indicated	881,000	2.82	2,483	3.07	245,058	1.33	106,191	1.32	32,781	
TOTAL	Inferred	1,198,000	2.89	3,467	3.00	333,972	1.62	180,573	1.04	36,056	
	Total	2,079,000	2.86	5,950	3.03	579,119	1.50	286,961	1.16	69,024	

Table 0-1: 2025 Orlando Mineral Resource Estimate by Resource Category and Au_Eq at 1.00 g/t cutoff grade

MRE are reported above a 1.00 g/t economic cutoff, with no top-cut and are rounded to reflect they are an estimation. Numbers may not sum due to rounding

The total tonnage for the 2025 MRE is 5,950,336 tonnes as compared to 2,885,500 tonnes from the previous estimate. The Au_Eq grade changed from 3.1 g/t to 3.03 g/t with the gold grade from 1.4 g/t to 1.50 g/t and the copper grade from 1.3% to 1.16%. There has been no new drilling since the previous MRE, but the substantial increase in tonnage can be attributed to the inclusion of 965 additional drillholes after a detailed risk assessment and sensitivity analysis. The solid used to constrain the 2025 model is also over seven times larger than that used to constrain the 2023 model. The MREs were reported using a gold equivalent cutoff of Au 1.0 g/t, however as gold equivalent calculations are time sensitive based on current metal prices, the parameters used to report the Resource are not equal.

<u>Geology</u>

The Orlando project, located in the Tennant Creek Mineral Field of the Paleoproterozoic Warramunga Formation, features a structurally complex geology shaped by intense tectonic activity during the Barramundi Orogeny. This deformation facilitated hydrothermal fluid interaction, resulting in significant gold, copper, and bismuth mineralisation. The Orlando orebody, a conformable, pipe-like structure within a shear zone, hosts multiple mineralisation phases, the most notable involving chlorite, magnetite, chalcopyrite, pyrite, bismuthite, and gold. Local geology includes ironstones, siltstones, shales, and minor intrusions, with sericitisation, chloritisation, and silicification prominent near ironstone. Oxidation, extending to 120 metres, produces a hematite-goethite-quartz-clay assemblage.

The mineralisation style is an iron oxide copper-gold (IOCG) system, characterised by iron-rich hydrothermal fluids depositing minerals within structurally controlled traps like shear zones. Mineralisation occurs in pipe-like, brecciated ironstone bodies, predominantly in two steeply south-dipping, east-west

striking lenses within structural flexures of the folded Warramunga Formation. These lenses contain stacked and continuous mineralised domains hosting gold and copper, with elevated arsenic, cobalt, and bismuth levels. Chalcopyrite is the primary copper mineral, with oxidation in the weathered horizon producing secondary minerals like malachite, chalcocite, and covellite.

Drilling Techniques

Drilling has been completed sporadically across the deposit from the 1960's up until 2022. A total of 1,397 drill holes (97,977.7 m) for a total of 41,285 gold samples and 41,872 copper samples were used in January 2025 MRE. The drilling approaches included reverse circulation (RC), diamond (DH), reverse circulation with diamond tail (RCDH), percussion (PC) and rotary air blasting (RAB). The majority of the drill holes are diamond, comprising 58.5%. The drill hole spacing is highly variable as a function of multiple phases of drilling and includes drillholes up to 100m apart to underground drillhole splays collared from the same location at depth. Validation checks were performed on the drillhole database using Vulcan software and Excel spreadsheets, and any issues resolved prior to estimation. There was uncertainty in the locations of approximately 14% of collars at depth due to misalignment with the triangulation representing the underground workings. Drill holes were flagged with a model rating representing overall confidence in the data. This accounted for confidence in all the data, not just the location. The model ratings were used to exclude certain drillholes from the estimate such that a sensitivity analysis could be performed to compare the impact of excluding or including them. The effect was found to be minor and not material to the estimate.

Sampling and Sub Sampling Techniques

The majority of samples were collected over 1 metre intervals by diamond or RC drilling methods. Due to the longstanding nature of the project, there is limited information available on sampling from historic drilling campaigns. The 2011-2012 drilling samples were analysed by Genalysis Laboratories in Alice Springs. For the 2022 drilling program, 2–3 kg RC samples and quarter core diamond samples were sent to North Australian Laboratories in Pine Creek.

Sampling Analysis Method

The 2011-2012 drilling samples were despatched to Genalysis Laboratories in Alice Springs by Tennant Creek Freight Lines, with the laboratory sending reconciliation information on receipt of the samples. There is no information available on the specific sample preparation procedures.

For the 2022 drilling program, 2–3 kg RC samples and quarter core diamond samples were sent to North Australian Laboratories in Pine Creek for preparation and analysis. Samples were dried at 140°C for 4.5 hours, crushed to 2.5 cm, and milled to 90% passing 75µm using an LM2 pulveriser. Homogenisation was ensured with roll mixing, and a barren quartz flush was used between samples. Gold samples were pulverised using a Keegormill, with the ability to pulverise coarse gold. Field duplicate samples are available for the 2012 and 2022 drilling programs at a rate of approximately 1:40 for 2012 and 1:50 for 2022. The copper performed adequately with almost 70% sample reporting <10% HARD. The gold field duplicates have not met the performance metric with only 40-50% of samples being <10% HARD, partly due to outlier points skewing the overall statistics. Historically assay for gold was carried out by fire assay using a 50g charge followed by Atomic Absorption Spectroscopy (AAS). Base metals were by acid digest and AAS finish. More recently a 40g sample was produced and analysed by Fire Assay with AAS finish (total assay) for gold. Copper and other elements were analysed by 4-acid digest with ICP-OES finish (near-total assay). High-grade results (>1 ppm gold or >1% copper) were re-analysed.

<u>QAQC</u>

The historical drilling data is incomplete, presenting a significant information gap due to the absence of available QAQC documentation. It is presumed that the QAQC data is missing rather than not having been undertaken. Verifying historic data is challenging due to the deposit's long history and multiple changes in ownership. A review of historical reports and/or data is recommended to source QAQC information. QQ

plots of the historical data and recent 2022 data indicate the copper assay data is fit for purpose. However, the gold assay data was deemed to be inconclusive due to the small sample size and the high variability and nugget. The following assessment have been made:

- The 2011 drilling is informed only by blanks. The limited data infer the data is of low confidence.
- The 2012 drilling is the most comprehensive with CRM, paired field duplicate data, lab checks and blanks that represent adequate precision and repeatability. The 2012 data is of moderate confidence.
- 2022 data is incomplete with internal lab CRMs and lab checks only that can only be considered as moderate confidence despite the good accuracy and precision.

Additional improvements to the QC data can be made by cleaning and validating the data to better reflect the field and laboratory performance and therefore confidence.

Mineral Resource Classification

The Mineral Resource classification for the Orlando 2025 MRE has been updated to align with the current geological understanding and available data, and it has been classified as Indicated and Inferred Mineral Resources in accordance with the JORC Code (2012). The classification process considered factors such as data location uncertainty, drill spacing, sample quality, estimation confidence, grade continuity, and geological complexity. Additionally, the 2023 model area extents were used to constrain the classification, with areas outside the model assigned as Inferred due to uncertainties related to underground developments, voids, and collar coordinates. To define Indicated resources, polygons were digitised in long section view and applied to the mineralisation wireframe solids using the Vulcan relimit function, generating Indicated classification wireframes. Copper and gold domains were initially coded as Inferred, with Indicated classification applied using Vulcan's tri-block parameters function.

Estimation Methodology

The Orlando Mineral Resource Estimate was completed using Maptek Vulcan software. Two elements (gold and copper) were estimated into parent blocks using Ordinary Kriging in mineralised domains. Sample data was composited to a 1.0 m downhole length and flagged with the relevant domain. Quantitative Kriging Neighborhood Analysis (QKNA) was performed in Supervisor software order to optimise estimation parameters, including block size. Parent blocks are 15 mE by 2.5 mN by 5m RL. Blocks are aligned orthogonal to the grid. Sub blocks are 1.25 mE by 1.25 mN by 2.5m RL. Directional variograms were modelled using a normal scores transformation in Supervisor software and back-transformed prior to use in the estimation. Copper and gold were estimated independently in their respective domains, where the domains overlapped, copper was estimated in the mineralised copper domain and gold in the mineralised gold domain. Unestimated blocks at the end of the 3rd pass were assigned the nearest neighbour value for that domain. Gold and copper are both positively skewed with a high coefficient of variation of >3 and 2 respectively. Global top cuts were applied individually to each domain to manage the impact of the extreme grade outliers on the estimate. The waste copper grades in the gold domains were estimated by ordinary kriging using variograms defaulted from the mineralised gold domains. The waste estimation excluded all overlapping mineralised copper composite samples to prevent smearing of the copper mineralised grades into the waste areas. This process was repeated for the waste gold grades in the copper domains.

An Inverse Distance (IDW) estimate was also performed as a baseline estimate against which to compare the OK estimate. No issues were found in the comparison. Global validation was completed by comparing the composited assays and the estimated block grades. Local validation was completed by using trend/swath plots by easting, northing and RL slices. There were no concerns with the outcomes of the validation checks. A cross section through the Orlando Deposit showing the drillhole grades for gold in relation to the blocks is given in Figure 0-2.

Figure 0-2: Gold grades in drillholes versus estimated block grades

Cut Off Grades

For reporting of the resource a cutoff of 1.00 g/t Au Equivalent has been applied consistent with previous estimates, which is derived from the following formula:

 $Au_Eq = Au g/t + (Cu \% * 1.32)$

The calculation assumes a gold price of US\$2,200/oz for gold and US\$9,250/t for total copper based on an average of:

- Consensus of Brokers June 2024 Long term forecasts
- Macquarie Bank Dec 2024 Long term Forecast
- January 2025 LME spot price
- Calander year 2024 actual LME
- LME forward curve (where applicable)

A \$US exchange rate of \$0.67 has been assumed.

Copper and Gold recoveries of 87.2% and 88.1% have been used in the calculation sourced from recent and historical metallurgical test work.

Mining and Metallurgical Methods Parameters

A conventional open pit cutback of the exiting open pit has been assumed based on recent pit optimisation work of the previous resource estimate and it is reasonable to assume the upper portion of the new resource is amenable to this method. A brief analysis of the remnant pillars was carried out by MEC to provide a quantitative measure of the proportion of the reported MRE within the historical underground working area immediately below the exiting open pit. A minimum 5 metre standoff from the voids was utilised, along with a 1.0% Au_Eq cutoff (Au g/t+(Cu % * 1.32). This returned 1.6 Mt at 4.9% Au_Eq that has been excluded from the Mineral Resource and is sterilised to represent pillars that are likely to be needed to remain to provide safe and operable conditions.

Historical underground production from the 1960s and open pit mining from the 1990s provide valuable data supporting its economic potential considering the much lower commodity prices during operations compared with 2025 actual and forecasted metal process. These historical operations offer insights into production rates, costs, technical challenges, and economic viability, helping to justify its classification under the JORC Code and to satisfy the Reasonable Prospects for Eventual Economic Extraction (RPEEE) requirement.

Strategic Metallurgy in Jan 2025 have undertaken a comprehensive review of historical metallurgical test work for the Orlando deposit. The review has included 27 sets of test work ranging from as early as 1990 and more recently 2022. Test work has been predominantly on oxide and transitional ores for both copper and gold with a focus on conventional flotation and CIL flow sheets. Strategic Metallurgy have built metallurgical regressions to predict product recoveries based on an assumed feed grade. The calculated recoveries used for the Au equivalent calculation are as follows:

	Recovery Au	Recovery Cu
Oxide	89.2	66.1
Transitional	88.2	90.1
Fresh	87	90
Weighted Average	88.1	87.3

Table 0-3: Strategic	Metallurgy -	Au and Cu	recovery	calculations
----------------------	--------------	-----------	----------	--------------

Further metallurgical test work of fresh material is recommended for further workstreams to improve the accuracy of the regressions.

Released with the authority of the CuFe Board.

For further information please contact:

Investor Relations

+61 8 6181 9793

ir@CuFe.com.au

Follow us

COMPETENT PERSON

The information in this report that relates to Exploration Results and data that was used to compile the Mineral Resource estimate at Orlando is based on, and fairly represents, information which has been compiled by Ms Michelle Smith. Ms Smith is a member of The Australasian Institute of Mining and Metallurgy (AusIMM, #210040) and the Australian Institute of Geoscientists (AIG #5005). Ms Smith is a consultant for MEC engaged by CuFe. Ms Smith has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ms Smith consents to the inclusion in this report of the matters based on his information in the form and context in which they appear.

The information in this release that relates to the CuFe Gecko and Goanna Mineral Resource estimate is extracted from CuFe's ASX release dated 26th July 2022 and based on, and fairly represents, information which has been compiled by Mr I Glacken. Mr Glacken is a fellow Member of The Australasian Institute of Mining and Metallurgy. Mr Glacken is a consultant for Snowden Optiro engaged by CuFe. Mr Glacken has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Glacken consented to the inclusion in that ASX announcement of the matters based on his information in the form and context in which they appear. CuFe confirms that it is not aware of any new information or data that materially affects the information that relates to Exploration Results, Mineral Resources or Ore Reserves included in previous market announcements. The Company confirms that the form and context in which the Competent Person's findings area presented have not been materially modified from the original market announcements.

APPENDIX 1 – TABLE 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information 	 Samples collected over 1m intervals by RC and diamond drilling methods. Due to the longstanding nature of the project, there is limited information available on sampling from historic drilling campaigns. Total no of drillholes = 1,397, total metres = 97,977.7m, total number Au samples = 41,285, total number Cu samples = 41,872. RC: 2011-2012 Emmerson: Samples collected every 1m into green plastic and calico bags via cyclone. Composite samples (3m, ~6kg) split using a Jones Riffle Splitter, with one portion analysed and the other retained as a duplicate. Field technicians recorded magnetic susceptibility and portable XRF readings. Samples sent to Genalysis Laboratories via Tennant Creek Freight Lines. 2022 CuFe: Samples collected every 1m via cyclone. Samples sent to lab were obtained using a 12.5% riffle split under the cyclone. Dry RC samples riffle split on-site, yielding 2–3 kg per sample. Sampling typically began 10–100m downhole, with an average depth of 60m. Diamond: 2011 Emmerson. Field techs marked up core and took mag sus and SG readings of historical core. Photos taken both wet and dry. Geologist determined sampling intervals (variable lengths), updated sample record and sent to database admin. Half core samples cut using a diamond core saw 10 mm to the right of orientation line to ensure consistency. Placed in pre-numbered calicos, then polyweave bags (5 samples per polyweave), and secured with cable ties. 2022 CuFe: Core loaded at the rig, transported securely to processing area. Field crew marked up core and photos taken both wet and dry. HQ core half cut then quarter cut. One quarter sent for assay, other quarter sent to Perth for metallurgical testing or storage in the core yard. Diamond tails were drilled on selected 2022 RC drillholes. Sampling over 1m intervals, with residual length samples at the end of the

Criteria	JORC Code explanation	Commentary									
			Company	Year	Drilling Technique	No. Holes	No. metres	Sample Type	No. samples	Sample Method	Laboratory
			Peko- Wallsend	1960s	Diamond & RC	653	28,354.83	Core	9,864	Unknown	Unknown
			GeoPeko	1974	Diamond	12	761	Core	478	Unknown	Unknown
			GeoPeko	1975	Diamond	13	883.47	Core	641	Unknown	Unknown
			GeoPeko	1980s	RC & RC with diamond tail	102	7,871.04	Chips and core	4,288	Unknown	Unknown
			GeoPeko	1985	RC and RC with diamond tail	81	10,500.64	Chips and core	2,615	Unknown	Unknown
			GeoPeko	1986	Percussion	19	361	Chips	358	Unknown	Unknown
			GeoPeko	1988	Percussion	6	288	Chips	172	Unknown	Unknown
			GeoPeko	1989	RC	11	387	Chips	370	Unknown	Unknown
			GeoPeko	1990	RC	2	146	Chips	140	Unknown	Unknown
			GeoPeko/ Normandy	1990s	RC	217	24,217.62	Quarter core, half core, chips	13,329	Cut core	Unknown
			Normandy	1994	RAB	167	10,311	Chips	4,333	Unknown	Unknown
			Normandy	1995	RAB	24	481	Chips	481	Unknown	Unknown
			Normandy	1996	RC	25	1,384.2	Chips	892	Unknown	Unknown
			Normandy	1997	RC	19	4,206.2	Chips and core	2,058	Unknown	Unknown
			Normandy	1998	RC	6	1,078	Chips	359	Unknown	Unknown
			Emmerson	2011	RC	3	966	2m & 3m composites, resplits	289	Cone and riffle	Genalysis
			Emmerson	2012	RC	12	2,918	2m, 3m & 4m composites, resplits	1,080	Riffle	Genalysis
			CuFe	2022	RC and RC with diamond tail	25	2,862.70	Chips & HQ core	1,000	Cyclone and riffle	North Australian Laboratories
Drilling techniques	 Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- 	•	Across all c Diamond (i Limited info Depth of dia 2011-2012	drilling p ncluding prmatior amond Emmer	programs, a g diamond t n available c tails variable rson: RC dri	combir ails), a on spec e. illing co	nation of o nd Percus ifics of ea mpleted	drilling techn ssion. See s ach drilling te with 5.5" fac	iques wei ummary t echnique. e samplin	re used, ind able above g hammer	cluding RC, F e.

Criteria	JORC Code explanation	Commentary
	sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 2022 CuFe: Completed 25 RC pre-collars of which 12 were selected for diamond tails. RC holes were drilled with 4.5" hammer and 5.14" face sampling drill bit. The diamond tails were cored with HQ3 (63mm) diameter. Core was orientated with the Reflex EZ orientation tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No quantitative information is available on sample recovery. There is no known relationship between sample recovery and grade. For 2022 drilling campaign to ensure maximum sample recovery and limit cross contamination the cyclone was cleaned after each rod change. All diamond drill core placed in core trays and geologically logged and sampled.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 A geology table was provided but contains a combination of lithology codes which is a function of the various company ownerships. The historical codes appear to be the concatenation of lithology fields. The fields provided include lith code, structure, grain size, texture, regolith overprint, oxidation, colour and stratigraphy, however the majority of fields were not populated. The 2022 holes had basic descriptive geology summary (not in code format) consisting of colour, primary lithology mineralisation, and oxidation state. Logging was qualitative. Existing surfaces for the weathering profiles were provided and coded into the model, but it was not possible to validate this against the database. Photographs of diamond core are available, both wet and dry, from the 2022 program. Qualified Geologist supervising sampling and drilling practices.
Subsampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No sub sampling or sample prep information is available for drilling prior to 2011. Sample condition information (dry/moist/wet) is available for the 2011-2012 RC drilling program samples. 58.6% were recorded as dry, 2.7% were moist or wet, and the remaining 38.7% have no sample condition recorded. The 2011-2012 drilling samples were despatched to Genalysis Laboratories in Alice Springs by Tennant Creek Freight Lines, with the laboratory sending reconciliation information on receipt of the samples. There is no information available on the specific sample preparation procedures. For the 2022 drilling program, 2–3 kg RC samples and quarter core diamond samples were sent to North Australian Laboratories in Pine Creek for preparation and analysis. Samples were dried at 140°C for 4.5 hours, crushed to 2.5 cm, and milled to 90% passing 75µm using an LM2 pulveriser. Homogenisation was ensured with roll mixing, and a barren quartz flush was used between samples. Gold samples are available for the 2012 and 2022 drilling programs at a rate of approximately 1:40 for 2012 and 1:50 for 2022. The copper performed adequately with almost 70% sample reporting <10% HARD. The gold field duplicates have not met the performance metric with only 40-50% of samples being <10% HARD, partly due to outlier points skewing the overall statistics.

Criteria	JORC Code explanation	Commentary
	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	 Normandy Normandy RC samples were assayed for Au.Bi,Cu,Fe,Pb and ZN. Assay for gold was carried out by fire assay using a 50g charge followed by Atomic Absorption Spectroscopy (AAS). Base metals were by acid digest and AAS finish. CuFe A 40g sample was produced and analysed by Fire Assay with AAS finish (total assay) for gold. Copper and other elements were analysed by 4-acid digest with ICP-OES finish (near-total assay). High-grade results (>1 ppm gold or >1% copper) were re-analysed.
	 For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	No information is available on geophysical data or tools.
Quality of assay data and laboratory tests	 Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 No QAQC information is available for drilling programs prior to 2011, QQ plots of the historical data and recent 2022 data indicate the copper assay data is fit for purpose. However, the gold assay data was deemed to be inconclusive due to the small sample size and the high variability and nugget. For the 2011 program, standard and blank information is available along with re-sampling data of sample originally analysed in the 1990's. Standard information is limited. The limited data infer the data is of low confidence. For the 2012 program, standards, field duplicates, lab checks and blanks are available. The 2012 drilling is the most comprehensive representing adequete precision and accuracy. The 2012 data is of moderate confidence. For the 2022 program, lab standards, field duplicates and lab checks are available. They are considered as moderate confidence despite the good accuracy and precision due to the limited available data. Summary: Standards: Available at a rate of 1:50 for 2011 drilling and 1:5 Cu, 1:10 Au for 2012 drilling. Overall performance is poor, 10 standards failed with >5% mean bias and/or multiple points lying outside acceptable limits. Some standards appear to be attributed to the incorrect CRM type. A wide variety of CRM types were used, making it difficult to draw meaningful observations from the small datasets. Field duplicates: Available at a rate of approximately 1:40 for 2012 and 1:50 for 2022. The copper performed adequately with almost 70% sample reporting <10% HARD. The gold field duplicates have not met the performance metric with only 40-50% of samples being <10% HARD, partly due to outlier points skewing the overall statistics. Lab checks: unclear if lab repeats or lab splits. Available for 2012 at a rate of 1:15 and 2022 at 1:5 Au and 1:25 Cu. All performed well giving confidence to the analytical accuracy of the 2012 a

Criteria	JORC Code explanation	Commentary	
		 Blanks: Available at an approx. rate of 1:50 for the 2011 drilling and 1:15 Au, 1:10 Cu for the 2012 drilling. Overall blanks performed well, supporting good lab hygiene processes for these samples. Lab standards: Available for the 2022 program only, at approx. 1:10 for Au and 1:5 for Cu. All performed well. 	
	 The verification of significant intersections by either independent or alternative company personnel. 	 For the 2022 drilling, any samples >1% Cu or >1ppm Au were automatically sent for re-assay. No other information is available on verification of significant intersections. 	
	The use of twinned holes.	No drillholes were completed for the purposes of twinning.	
Verification of sampling and assaying	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Data is managed by CuFe with validation checks in place prior to exporting the data to the Database Administrator contractor located in Perth. Further validation checks are conducted by the Administrator. The data is stored in a secure relational SQL database and exports provided back to CuFe in Microsoft Access format. The original information for historical drilling programs has been lost so it is not possible to verify the raw data against the data provided. The majority of the historical drill data are archived in a secure storage facility at Tennant Creek. CuFe geologists visited the storage facility in December 2024 to check the records. Emmerson compiled a database of the historical drill holes from available digital data and against original hard copies. The data was uploaded via Datashed and exported to an Access database. Data was supplied by CuFe to MEC in the form of Excel spreadsheets. Data entry, verifications and storage protocols are unknown for the historic data. 	
	 Discuss any adjustment to assay data. 	No adjustment has been made to assay data.	
Location of data points	 Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 Collar Surveys 2.9% of drillholes, all from the2022 program, surveyed by DGPS. Survey method not recorded for 97.1%. Surveys by DGPS are accurate from a few cms to a m. No planned collar coordinates are available to verify against the drilled coordinates. Collars validated against the topographic surface and the majority deemed acceptable. 4 collars were >1.5m different but were not used as outside the model area. Remaining collars were adjusted to the topography. A number of collars showed discrepancies when compared to the underground workings. A model rating system of 0-5 was used to allow for varying levels of confidence of each drillhole, where drillholes rated 0 were excluded from the MRE. Drillholes rated 1 were used for modelling only, and drillholes rated 2 and above were used in the MRE. Sensitivity analysis was conducted to compared the inclusion/exclusion of holes rated 2. Drillholes show appropriate and reasonable clustering of splayed underground drilling, informing a relatively close precision. It is recommended that planned collar locations are stored in the database for validation purposes. 	

Criteria	JORC Code explanation	Commentary
		 Downhole surveys were conducted via compass, IQ Sprint, reflex, or single shot methods. Over 93% of drillholes have planned or not recorded survey methods. For the 2022 drillholes, downhole surveys were completed by single or multishot (reflex) every 30m in RC and every 5m for diamond tails. Review of the downhole surveys identified inconsistencies in the translation from MGA94 to local mine grid. CuFe identified the downhole surveys were based on an average downhole survey for the previous MRE updates. All downhole survey data were resubmitted to MEC with the correct azimuth measurements. Drill holes D1040-001 and D1040-004 were modified to remove dubious azimuth and/or dip values, but do not contain any mineralisation so have no material impact on the MRE.
	• Specification of the grid system used.	 The datum for the project is GDA94 with projection MGA94 Zone 53. Collar coordinates are provided in both MGA94 Zone53 and local Orlando mine grid. The grade control holes are only available in the local grid coordinates. Since the 1960's, modelling and spatial analysis has always been conducted using the local mine grid. The current MRE was conducted under the local mine grid.
	• Quality and adequacy of topographic control.	 A pre-mining topography and as-mined topography were supplied by CuFe as Vulcan files: ORL-premining_opencut_surface.00t and ORL_EOM_PIT_and_surface2022.00t respectively. The ORL_EOM_PIT_and_surface2022.00t surface was created with a 1997 as mined surface and combined with a 2022 pit exterior. The 1997 surface was created by Normandy using Leica non robotic total stations, and uploaded via Surpac to create the surface. In 2022, CuFe contracted Eagle Drones to conduct a LiDAR survey of the Orlando pit and surrounding area. CuFe the combined both surfaces from DXF format to Vulcan triangulations. This removed backfill and water in the pit following mining. The pre-open cut surface is based on a photogrammetric survey flown by Peko Mines NL in 1991. No associated metadata were available informing on the resolution and post-processing involved in the creation of these surfaces. No associated metadata were available informing on resolution and post-processing involved in the creation of these surfaces. Validation of the mine workings solid (ORL_UG_VOIDS_Complete.00t) revealed open, crossing and inconsistent triangles. These were resolved by CuFe and a new, validated solid ORL_UG_VOIDS_Complete_closed.00t was submitted to MEC.
Data spacing and distribution	• Data spacing for reporting of Exploration Results.	 The drill hole spacing is a combination of various localised coverage as follows: 1960's: predominantly underground holes at 15 mE by 3.5 mN by 40 mRL, or 15 mE by 3.5 mN by 60 mRL. 1980's holes are from surface at variable spacing with localised drilling at 60 mE by 20 mN, and 20 mE by 10 m. 1990's: generally 40 mE by 25 mN, 100 mE by 25 mN, and for underground holes 7.5 mE by 2.5 mN by 8 mRL. 2020's drilling is from surface with recent spacing localised to 8 mE by 2.5 mN. The majority of all samples (>50%) is at 1m intervals downhole.

Criteria	JORC Code explanation	Commentary		
		 Underground drillholes often consist of drillhole fans collared from the same/similar location. Sample spacing is therefore variable. 		
	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	The drillhole spacing is considered appropriate for supporting the MRE.		
	• Whether sample compositing has been applied.	 Mean sample length is 1 m with nominal various sample lengths up to 20 m. The data has been composited to 1 metre based on dominant sample length. The compositing method management of small residual lengths to be distributed across resulting sample lengths, ensured no residual lengths were excluded. 		
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of sampling is considered unbiased with respect to the orientation of the mineralisation. When viewed on the local mine grid, the copper and gold lodes dip steeply to the south, and the majority of the drillholes dip steeply to the north, thus drillholes are approximately perpendicular to the dip and strike of mineralisation. No degree of sampling bias is believed to have been introduced through the relationship between the orientation of the drilling and the orientation of the mineralised structures. 		
Sample security	• The measures taken to ensure sample security.	 For the 2022 drilling (undertaken by CuFe), samples were taken by site geologists then placed in secure containers for transport to the assay laboratory (North Australian Laboratories). The laboratory then confirmed receipt of samples. For the 20211- 2012 Emmerson drilling, samples were taken by geologists or field technicians in pre-numbered calico bags, then placed into polyweave bags (5 calicos per polyweave) and despatched to Genalysis Laboratories by Tennant Creek Freight Lines. The lab provided reconciliation updates and maintained the sample tracker. Sample security protocol is unknown for drilling programs prior to 2011. 		
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Snowden Optiro reviewed ERM's standard operating procedures for RC and diamond core sampling used in 2013 and concluded they were in accordance with good industry practice. CuFe carried out due diligence reviews of sampling and data quality prior to acquisition of the Tennant Creek projects. In July 2024, CuFe engaged MEC to complete an audit of the 2023 Orlando Mineral Resource Estimate by Snowden Optiro. Results from the audit found some discrepancies in drillhole identifiers, overlapping assay interval depths and collar locations. It was recommended that the logging data be validated, and that a complete void model for the underground workings to be validated. It was noted that the mineralisation was not closed off at depth and that there were infill and extension targets to be tested. It was recommended that sensitivity analyses be conducted to test the removal/inclusion of drillholes with uncertain collar locations. 		

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Orlando project is located on Mining Licence ML29919 which is held by CuFe Tennant Creek Pty Ltd (55%) and Gecko Mining Company Pty Ltd (45%). The tenure is in good standing. There are two royalty agreements applicable to the tenure: The Evolution agreement contains a royalty of 5% of gross revenue royalty of the first 80,000t of copper sold and 1.5% for sales beyond that and 5% of gross revenue for the first 60,000 Oz of gold sold and 1.5% beyond that. The Franco Nevada agreement contains a historical gold royalty of \$30/Oz which may apply to gold production from certain of the tenements subject to timing restrictions.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 The underground workings were started by Peko Mines NL in the 1960s and closed in 1975 due to low copper prices and poor ground conditions, however resource drilling continued until the 1990's. Open pit mining followed in 1996-1997 under the ownership of Normandy Mining Limited, with drilling continuing until 1998. Emmerson completed drilling programs in 2011-2012. CuFe acquired the project in 2021 and conducted drilling in 2022. This was the most recent round of drilling. Mineral Resource Estimates were completed in 2013, 2022 and 2023 by Sowden Optiro. The 2013 MRE was reported under the JORC 2004 reporting code. The 2022 MRE was the same MRE but updated such that it could be re-reported under the JORC 2012 reporting code.
Geology	Deposit type, geological setting and style of mineralisation	 The project lies in the Tennant Creek Mineral Field of the Palaeoproterozoic Warramunga Formation, a deformed sequence of sediments intruded by syn- orogenic bodies. Structural complexity from the Barramundi Orogeny enabled hydrothermal fluid interaction, making it a key source of gold, copper, and bismuth. The orebody lies within a localised shear zone of the Warramunga Geosyncline. It is a conformable, pipe-like structure with multiple phases of mineralisation, the most significant being copper-gold associated with chlorite, magnetite, chalcopyrite, and gold. The local geology includes ironstones, siltstones, shales, and minor dolerite and diorite intrusions, with alteration features such as sericitisation, chloritisation, and silicification. Oxidation reaches depths of up to 120 metres, forming a hematite- goethite-quartz-clay assemblage in the ironstones. The Orlando deposit is an iron oxide copper-gold (IOCG) system, characterised by structurally controlled mineralisation within shear zones. Gold-copper mineralisation occurs in small to medium lenses hosted in sheared ironstone, with two main lenses striking east-west and dipping steeply south. These lenses are stacked and

Criteria	JORC Code explanation	Commentary
		continuous along strike, located near fold hinge zones. Chalcopyrite is the primary copper mineral, with oxidation forming malachite, chalcocite, and covellite, alongside elevated arsenic, cobalt, and bismuth levels.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Exploration results are not being reported at this time as this in a Mineral Resource Estimate, however a summary of the drillholes used in the Orlando MRE is given in Section 1 of this Table.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Mineral Resources have been defined for the project therefore exploration results are not being reported. High grades were top cut prior to estimation, this is detailed in Section 3 of this Table. The resource was reported using a gold equivalent cut off. The details of this are given in Section 3 of this Table.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The relationships between mineralisation widths and intercept lengths is not relevant as the deposit has been exposed in open pit and underground. The geometry of the mineralisation is steeply dipping and the majority of drillholes are perpendicular to this.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views 	Maps and sections are included in the main body of the report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Exploration results are not being reported at this time as this is a Mineral Resource estimate.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances 	 Exploration results are not being reported at this time. Metallurgical testwork has been extensive from as early as 1990 and more recently 2022. Test work has been predominantly on oxide and transitional ores for both copper and gold with a focus on conventional flotation and CIL flow sheets. Downhole magnetic susceptibility readings are available for a total of 16 holes. There is insufficient data to inform on a geological model at this stage.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further drilling is planned to test extensions of open mineralisation and to increase the confidence in the resource classification. Further drilling is planned to provide for geotechnical testwork. Further metallurgical testwork is planned for existing core.

Section 3: Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. 	 Data is managed by CuFe using Microsoft Access software, and supplied to MEC in the form of Excel spreadsheets. Procedural documents for the 2012 drilling are available and state that data was collected by site geologists or field technicians and managed/loaded into Datashed by a database administrator. A comprehensive database management system is recommended to manage the storage of all geological data associated with the project.
Database integrity	Data validation procedures used.	 Data validation procedures included checking the data in Vulcan software or Excel spreadsheets. Checks included: Overlapping intervals Duplicate collar locations Duplicate sample and drillhole IDs Collars without associated downhole information such as assays Collars without co-ordinates or orientation/inclination information EOH (End of Hole) depth matches depths of downhole information Downhole surveys Collar coordinates Incorrect units, for example assay results in ppm when the recorded unit is % Management of erroneous assays Data were cleaned or excluded depending on the material impact to the MRE. For example, severe discrepancies between underground workings and collar locations resulted in those drillholes being excluded from the MRE. All data needs to be cleaned, validated and standardised (for example, standardisation of logging codes). Lookup tables should also be sourced and stored in the database.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 The Competent Person, Michelle Smith, visited the Orlando project on 4th December 2024. The Competent Person, Michelle Smith, visited CuFe core farm in Welshpool to inspect mineralised zones within historic and recent (2022) drill core. It was not possible to enter the pit or historic workings due to safety concerns. The visit included: Inspection of the open pit Inspection of the surface expression of the underground workings Verification of outcropping mineralisation and ironstone Validation of 2022 drill collars and spoils.

Criteria	JORC Code explanation	Commentary			
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The gold and copper lodes were modelled using implicit modelling in Maptek Geology Core software, with manual controls and adjustments where appropriate to enable the optimum interpretation. The mineralisation is hosted in east-west trending lenses, controlled by shear zones, and steepen and narrow with depth. There is some pinch and swell. 15 gold lodes and 7 copper lodes were modelled. The lodes follow the same general trend and often overlap, however there is no numeric correlation between Cu and Au. The mineralisation interpretation was guided by a nominal cut-off grade of 0.5 ppm Au and 0.5% Cu and is consistent with current orebody knowledge. There is a reasonable level of confidence in the mineralisation interpretation based on the approach and informing drillholes. Sensitivity analysis was also conducted by removing low confidence drillholes – the inclusion/exclusion of these holes had little material effect. 			
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 The Orlando deposit strike length is approximately 850m east/west. The mineralisation consists of a series of stacked, steeply dipping lodes, averaging a combined width in plan of approximately 160m. The lodes have a variable thickness. They pinch and swell and narrow with depth. They extend from near surface to a maximum depth of approximately 320m. Copper lodes vary in thickness from approximately 2-20m. Gold lodes vary in thickness from approximately 2-15m. 			
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. 	 The Orlando Mineral Resource Estimate was completed using Maptek Vulcan software, version 2024.3. 2 elements (Au and Cu) were estimated using Ordinary Kriging in mineralised domains, with estimates into parent blocks. Sample data was composited to a 1.0 m downhole length and flagged with the relevant domain. Quantitative Kriging Neighbourhood Analysis was performed in Supervisor software order to optimise estimation parameters (details in subsequent sections of this table). Nominal density values were assigned using a script based on density information compiled by Snowden from 1,953 measurements of 33 diamond holes. Directional variograms were modelled using a normal scores transformation in Supervisor software and back-transformed prior to use in the estimation. Copper and gold were estimated independently in their respective domains. Where the domains overlapped, Cu was estimated in the mineralised Cu domain and Au in the mineralised Au domain. Waste was also estimated using OK and variograms defaulted from the mineralised domains. 			

Criteria	JORC Code explanation			C	ommenta	ary		
	• The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	Un-e neig The M Optirc Cu cu Note exten signif	estimated bl hbour value MRE was co b. Resource at off, and w this compart t ad include icantly grea	ocks at the for that do ompared to s were com ithin the 20 rison is the s only a po ter area.	end of the 3 main. the previous pared for ir 23 model a new MRE re rtion of the	3 rd pass we s (2023) MF n-situ mater rea only to a econciled to new MRE a	RE complete RE complete ial at a 1.0g allow direct the previous the new N	I the nearest ed by Snowden g/t Au and 1.0 % comparison. us MRE model MRE covers a
		Resource	Volum	e (bcm)	Tonne	s Au (t)	Au	(g/t)
		Category	2024 MRE	2023 MRE	2024 MRE	2023 MRE	2024 MRE	2023 MRE
		Measured	-	-	-	-	-	-
		Indicated	369,832	301,891	1,046,811	850,270	2.88	2.80
		Inferred	61,355	97,664	177,582	282,792	2.98	2.69
		Total	431,187	399,555	1,224,394	1,133,063	2.89	2.77
		Resource	Volum	e (bcm)	Tonr	ies (t)	Ci	u (%)
		Category	2024 MRE	2023 MRE	2024 MRE	2023 MRE	2024 MRE	2023 MRE
		Measured	-	-	-	-	-	-
		Indicated	537,371	291,855	1,516,030	818,381	1.83	1.79
		Inferred	110,715	85,844	317,485	245,982	1.65	1.52
		Total	648,086	377,699	1,833,515	1,064,363	1.80	1.73
	 The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). 	Signif chang An in comp techn No as No de	icant chang ges in wirefi verse distar are against iques did n sumptions eleterious el	jes are attri rame interprince estimati the OK est ot highlight have been ements we	buted to the retations. on was also imate. The any issues made regar re estimated	e use of add o completed comparison in the OK e ding the rec d.	itional drillh l as a basel between th stimate. covery of by	ine check to ne two /-products.

Criteria	JORC Code explanation	Commentary			
	 In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. 	 Grade estimation was into parent blocks of 15 mE by 2.5 mN by 5m RL. Blocks are aligned orthogonal to the grid. Sub blocks are 1.25 mE by 1.25 mN by 2.5m RL. Block size and optimal search parameters were determined by QKNA in Supervisor software. The key parameters considered were drilling coverage, a slope of regression (between true and estimated grades) close to 1 and a high kriging efficiency. All mineralised domains were estimated using Ordinary Kriging in 3 estimation runs, with an ellipsoid search of 8 sectors, block discretisation of 10x5x2, and maximum 8 samples per drillhole. Search ellipse dimensions and orientations varied according to the variography. 			
	 Any assumptions behind modelling of selective mining units. 	 No assumptions were made regarding selective mining units. 			
	Any assumptions about correlation between variables	 No assumptions have been made with respect to correlation between variables. 			
	 Description of how the geological interpretation was used to control the resource estimates. 	 A geological model was not created for this MRE due to the quality and availability of the logging data. Mineralisation wireframes were used to control the estimates using hard boundaries between all domains. 			
	 Discussion of basis for using or not using grade cutting or capping. 	 Au and Cu are both positively skewed with a high coefficient of variation of >3 and 2 respectively. A global top cut was applied to each domain to manage the impact of the extreme grade outliers on the estimate. 			
	 The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available. 	 Visual comparison between blocks and samples showed a close correlation between the assays and estimated grades. Global means comparisons showed all domains had <10% difference between declustered composite vs block grades, except for Au domain 57300 with a difference of -10.9% (a small domain with only 122 samples). All estimations performed adequately based on this metric. Trend or swath plots were produced for each domain by easting, northing and RL and results were acceptable, showing the grade trends are preserved. 			
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	Tonnes have been estimated on a dry basis.			
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	 The Mineral Resources were reported above a 1.0 g/t gold equivalent cut-off grade as per previous MRE's for this deposit. This was calculated used the following formula: Au_Eq = Au g/t + (Cu % * 1.32) 			

Criteria	JORC Code explanation	Commentary
		 The calculation assumes a gold price of US\$2,200/oz for gold and US\$9,250/t for total copper based on an average of:
		- Consensus Broker June 2024 Long term forecasts
		- Macquarie Bank Dec 2024 Long term Forecast
		- January 2025 LME spot price
		- Calander year 2024 actual LME
		- LME forward curve (where applicable)
		A \$US exchange rate of \$0.67 has been assumed.
		Copper and Gold recoveries of 87.3% and 88.1% have been used in the calculation sourced from recent and historical metallurgical test work.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 No mining factors have been applied. No assumptions have been made regarding possible mining methods. A brief analysis of the remnant pillars was carried out by MEC to provide a quantitative measure of the proportion of the reported MRE within the historical underground working area immediately below the exiting open pit. A minimum 5 metre standoff from the voids was utilised, along with a 1.0% Au_Eq cutoff (Au g/t+(Cu % * 1.32). This returned 1.6 Mt at 4.9% Au_Eq that has been excluded from the Mineral Resource and is steralised to represent pillars that are likely to be needed to remain to provide safe and operable conditions.

Criteria	JORC Code explanation	Commentary			
	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not 	 Strategic Metallurgy in January 2025 have built metallurgical regressions to predict product recoveries based on an assumed feed grade based on 27 historical sets of Orlando testwork. The calculated recoveries used for the Au equivalent calculation are as follows: Table 0-3: Strategic Metallurgy - Au and Cu recovery calculations 			
	always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions	Recovery Au Recovery Cu			
	made.	Oxide 89.2 66.1			
Metallurgical		Transitional 88.2 90.1			
assumptions		Fresh 87 90			
		Weighted Average 88.1 87.3			
		 Studies show several potential processing options with a base case assumption of a standard flotation with CIL and potential gravity circuit to produce a copper concentrate and gold bullion. Further testing recommended and planned for fresh copper ore. Bismuth in historical production records from Orlando has been high and scenarios to treat / mitigate this impurity in a copper concentrate are being investigated. 			
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 Expansion of the existing Orlando mine would necessitate obtaining permits to ensure compliance with Northern Territory regulations under the Environment Protection Act (EP) 2019. There are no known documented environmental issues. It should be noted that there are no sulphur assays available, although chalcopyrite (CuFeS₂) is the most abundant form of copper ore that oxidises to malachite (Cu₂(CO₃)(OH₂), chalcocite (Cu₂S) and covellite (CuS). These are a significant concern regarding Acid Rock Drainage (ARD) related to water contamination, soil degradation, and management strategies such as neutralising low pH water, containment, waste management practices and monitoring. 			
Bulk density	• Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	 Nominal density values were assigned to oxide, transitional and fresh material based on the values used in the previous MRE, as no additional density data has been collected since. Density was assigned according to weathering profile and mineralised and waste lodes as below: 			

Criteria	JORC Code explanation	Weathering Outside Mineralised Domains Within Mineralised domains 0xide 2.5 2.7 Transitional 2.7 2.8 Fresh 2.8 2.9 • Density values were calculated by Optiro in 2013 from 33 diamond drillhol and 1,953 measurements. • • Density is dry bulk density. • • Orlando has been classified as Indicated and Inferred Mineral Resources reported in accordance with the JORC code (JORC 2012) • Classification was based on assessment of estimation and geological confidence using criteria such as data location uncertainty, drill spacing, sample quality, confidence in estimate and grade continuity. s • All relevant factors were considered in the classification. • The quantity and distribution of the data are sufficient for supporting the assigned Mineral Resource Classification. • The use of historical / legacy data over the long history of the project mea limits the classification of the Resource to inferred and indicated. • The Mineral Resource Classification accurately represents the Competent Person's view of the deposit. • The estimation parameters and resource model has been internally peer reviewed by MEC. • The 2024 MRE accuracy and confidence is commensurate with the applie </th					
	 The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	Weathering Outside Mineralised Domains Within Mineralised domains Oxide 2.5 2.7 Transitional 2.7 2.8 Fresh 2.8 2.9 • Density values were calculated by Optiro in 2013 from 33 diamond drillholes and 1,953 measurements. • • Density is dry bulk density. •					
	 The basis for the classification of the Mineral Resources into varying confidence categories. 	 Orlando has been classified as Indicated and Inferred Mineral Resources reported in accordance with the JORC code (JORC 2012) Classification was based on assessment of estimation and geological confidence using criteria such as data location uncertainty, drill spacing, sample quality, confidence in estimate and grade continuity. 					
Classification	 Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). 	 All relevant factors were considered in the classification. The quantity and distribution of the data are sufficient for supporting the assigned Mineral Resource Classification. The use of historical / legacy data over the long history of the project mean limits the classification of the Resource to inferred and indicated. 					
	 Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The Mineral Resource Classification accurately represents the Competent Person's view of the deposit. 					
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	The estimation parameters and resource model has been internally peer reviewed by MEC.					
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. 	 The 2024 MRE accuracy and confidence is commensurate with the applied Mineral Resource classification. Factors that could affect the relative accuracy and confidence in the estimate: lack of QAQC data for the historic drilling. Nominal density values applied Legacy data where raw data is no longer available for verification No quantitative test of the relative accuracy has been completed. There were no concerns with the block model validation checks which included global mean comparisons, visual checks of composite versus block grades, and swath plots by easting, northing and RL. Relative confidence in the underlying data, drillhole spacing, geological continuity and interpretations has been appropriately reflected by the CP in the Resource Classification. 					
	 The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. 	The 2024 MRE is considered a global estimate for the Orlando deposit.					
	 These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 Production data sourced from a 1997 Normandy report states that 341,449 tonnes of gold at 4.91g/t was mined over a 14 month period commencing in September 1996. This is equivalent to 53,894 ounces. 					

Criteria	JORC Code explanation	Commentary
		• The comparison with the mined data shows a 23 percent increase in tonnes, and lower grade by 5 percent for 18 percent more gold ounces. The production data does not include low grade material and Stage 1 material which was mined (ie a different cut off grade was used), it was therefore not possible to make a direct comparison. In summary, taking account of minor discrepancies, the performance of the MEC MRE block model to mined is considered reasonable.

APPENDIX 2 – DRILLHOLE COLLAR DETAILS

This table lists the holes used in the Orlando MRE. The co-ordinate system is MGA94 zone 53.

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
220RC02	347.99	202.145	998.887	83	-60.93	357.84	RC
220RC03	349.92	227.595	999.227	71	-60.32	358.85	RC
220RC04	386.402	192.191	999.307	110	-60.28	1.99	RC
22ORC05	384.935	217.42	999.097	101	-60.27	356.06	RC
220RC06	384.326	238.897	999.427	77	-60.33	1.91	RC
220RC07	383.382	263.691	999.477	59	-60.76	3.39	RC
22ORC08	390.081	172.24	998.957	119	-60.59	357.54	RC
220RC10	486.854	138.852	999.427	131	-59.99	352.46	RC
220RC17	684.196	172.161	1001.177	137	-60.75	357.17	RC
220RC18	732.642	170.386	1001.907	179	-60.95	356.04	RC
220RC19	770.733	147.528	1001.027	131	-61.26	0.72	RC
22ORC26	892.449	158.397	1001.307	113	-60.72	353.4	RC
220RC27	932.252	207.892	1002.847	53	-61.69	354.17	RC
22ORCDH09	411.211	152.819	998.567	120.1	-60.22	359.97	RCDH
22ORCDH11	527.656	135.672	999.847	133	-60.65	1.3	RCDH
22ORCDH12	554.922	146.469	1000.147	109.7	-60.24	8.46	RCDH
22ORCDH13	571.291	144.772	999.707	130.4	-60.63	0.33	RCDH
22ORCDH14	574.29	169.133	1000.897	115.7	-60.75	349.91	RCDH
22ORCDH15	615.735	145.542	999.587	125.8	-59.54	4.7	RCDH
22ORCDH16	652.8	173.904	1001.127	121.5	-58.96	6.29	RCDH
22ORCDH20	769.903	184.767	1002.017	165.1	-60.74	354.38	RCDH
22ORCDH22	828.239	151.144	1001.257	127.4	-65.01	359.59	RCDH
22ORCDH23	832.683	180.925	1002.007	162	-58.85	353.08	RCDH
22ORCDH24	850.406	171.057	1001.547	102	-58.06	350.53	RCDH
22ORCDH25	890.811	181.055	1002.427	86	-58.24	353.21	RCDH
ATH-001	523.15	247.01	1006.58	20	-44.9	348.7	PC
ATH-002	523.31	246.29	1006.16	20	-63.4	355.3	PC
ATH-003	545.91	251.28	1010.31	23	-48.2	353.9	PC
ATH-004	545.91	250.83	1010.14	20	-57.9	332	PC
ATH-005	508.36	246.24	1004.62	20	-38.4	8.7	PC
ATH-006	490.55	249.59	1004.34	20	-42.1	0.3	PC
ATH-007	478.51	253.09	1004.3	20	-43	348.9	PC
ATH-008	478.6	252.4	1004.03	20	-60	353.2	PC
ATH-009	568.75	247.9	1007.82	20	-46	355.5	PC
ATH-010	564.3	272.18	1013.05	20	-60	187.5	PC
ATH-011	564.33	272.47	1013.03	20	-90	0	PC
ATH-012	539.43	263.63	1013.27	6	-90	0	PC
ATH-013	539.21	263.38	1013.22	2	-64.4	174.1	PC

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
ATH-014	546.48	251.25	1010.31	25	-90	0	PC
ATH-015	539.06	255.68	1010.65	20	-43.4	349.7	PC
ATH-016	540.61	252.48	1010.21	20	-58.2	346.4	PC
ATH-017	540.98	252.8	1010.4	25	-90	0	PC
ATH-018	555.06	255.58	1010.99	20	-44	348.1	PC
ATH-019	555.25	253.38	1009.96	20	-64.5	7.6	PC
D1+	445.23	126.26	999.34	62.6	-60	347.5	DD
D10	853.49	243.81	1003.5	89	-90	360	DD
D1005-001	336.81	218.54	693.68	136.86	-12	171	DD
D1005-002	336.81	218.54	690.63	124.97	-12	188	DD
D1010-003	336.81	218.54	692.15	136.25	-12	203	DD
D1010-005	335.28	217.63	692.15	131.37	-3	182	DD
D1010-006	335.28	217.63	691.54	150.57	-3	161	DD
D1040-001	333.15	152.4	683.01	306.32	-40	180	DD
D1040-003	330.72	150.87	683.01	181.05	-50	230	DD
D1040-004	333.76	150.87	683.01	178.61	-50	151	DD
D1040-005	333.76	153.61	684.23	213.36	-50	106	DD
D11	121.96	259.22	999.34	92.1	-90	0	DD
D12	609.65	210.02	1002.33	123.8	-90	0	DD
D13	813.83	155.39	1001.34	113.99	-60	3	DD
D16	830.37	146.88	1001.34	152.4	-60	2	DD
D16A	830.38	146.93	1001.34	137.2	-60	2	DD
D17	634.02	68.62	1000.01	235	-60	3	DD
D18	832.08	155.37	1001.34	125.6	-57.5	3	DD
D19	797.13	155.48	1001.34	137.5	-60	3	DD
D1A	443.98	130.5	999.33	198.7	-60	347.5	DD
D2	126.04	87.61	998.34	204.2	-60	344	DD
D20	813.86	192	1001.88	97.8	-60	3	DD
D21	147.84	117.81	998.04	176.2	-60	4	DD
D22	185.33	117.81	998.34	174.7	-60	4	DD
D23	548.65	227.43	1004.24	97.2	-65	360	DD
D24	557.84	193.58	1000.34	128	-70	360	DD
D25	548.63	143.33	999.72	161.8	-65	360	DD
D26	609.65	219.57	1003.34	97.5	-65	360	DD
D260-001	424.39	200.65	923.45	32.31	-30	360	DD
D260-002	396.64	208.17	923.45	29.87	-30	360	DD
D260-003	451.56	197.51	924.7	51.82	-25	7	DD
D260-004	472.45	207.26	924.6	42.29	-35	360	DD
D260-005	495.62	211.23	924.7	42.82	-35	15	DD
D260-006	406.91	205.13	923.4	15.24	-30	360	DD
D260-008	497.44	210.92	924.65	48.77	-30	42	DD
D260-009	451.1	197.2	926.7	54.87	2	360	DD
D260-010	493.78	210.92	926.95	39.62	2	360	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
D260-013	335.28	213.06	923.9	18.29	0	180	DD
D260-016	365.76	215.8	923.9	12.2	0	360	DD
D260-017	365.88	211.23	923.9	18.4	0	180	DD
D260-018	381	213.36	923.9	12.2	0	360	DD
D260-019	381	208.47	923.8	11.2	0	180	DD
D260-020	395.02	202.38	924.7	18.9	0	180	DD
D260-022	426.73	197.82	923	15.24	0	180	DD
D260-023	441.96	197.46	923	15.24	0	180	DD
D260-024	441.96	198.12	923	36.6	0	360	DD
D260-026	472.44	208.18	923	36.58	0	360	DD
D260-027A	472.44	203.3	923	27.43	0	180	DD
D260-028	487.69	206.05	925	30.48	0	180	DD
D260-031	518.16	213.36	926	30.5	0	180	DD
D260-032	518.16	217.02	926	27.6	0	360	DD
D260-033	533.41	213.45	926	30.5	0	180	DD
D260-034	533.1	218.85	926	27.43	0	360	DD
D260-035	543.46	220.98	926	30.1	0	360	DD
D260-036	543.47	217.03	926	24.5	0	180	DD
D260-037	563.89	217.93	926	18.9	0	180	DD
D260-038	563.88	222.81	926	31.3	0	360	DD
D260-039	578.52	214.27	926	23	0	182	DD
D260-040	577.91	219.46	926	31.7	0	360	DD
D260-041	595.12	211.84	926.5	19.2	0	180	DD
D260-042	487.07	209.4	925	34.14	0	360	DD
D260-043	497.13	210.92	925	21.34	-21	141	DD
D260-044	457.2	201.77	923	36.58	0	360	DD
D260-045	670.56	203.61	926.2	16.8	0	360	DD
D260-046	655.33	200.25	926.2	7.62	0	180	DD
D260-047	655.32	203.91	926.2	45.9	0	360	DD
D260-048	640.09	201.17	925	7.9	0	180	DD
D260-049	640.08	205.14	925.1	12.2	0	360	DD
D260-050	624.84	204.83	926.3	11.89	0	180	DD
D260-051	624.81	208.51	926.3	9.3	0	360	DD
D260-052	609.6	208.48	925	18.3	0	180	DD
D260-053	609.6	211.84	920	31.1	0	360	DD
D260-054	594.97	216.71	926.5	27.6	0	360	DD
D260-059	487.68	209.7	925	30.5	0	360	DD
D260-061	427.72	201.17	925	26	0	360	DD
D260-062	411.48	204.52	925.1	31.3	0	360	DD
D260-064	396.24	208.18	925	24.38	0	360	DD
D260-067	494.69	208.18	925	30.48	0	180	DD
D260-PLT	548.64	224.03	920	9.75	-54	180	DD
D27	609.64	189.21	1001.34	108.5	-65	360	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
D28	670.65	217.9	1003.11	55.2	-65	360	DD
D29	670.64	189.31	1001.34	92.1	-65	360	DD
D3	486.14	178.34	999.34	122	-60	2	DD
D30	487.75	230.09	1002.29	83.4	-65	360	DD
D31	426.8	226.15	999.34	86.3	-65	360	DD
D32	426.74	163.51	999.33	120.1	-62.5	360	DD
D320-001	438	192.63	902.46	12.19	0	210	DD
D320-002	438	193.54	902.46	15.24	0	330	DD
D320-003	442.58	193.55	902.46	15.24	0	30	DD
D320-006	439.22	188.67	902.46	43.89	0	270	DD
D33	670.64	153.91	1000.63	154.8	-65	360	DD
D34	670.63	115.86	1000.34	178.3	-65	360	DD
D35	670.62	83.81	1000.34	209	-65	360	DD
D350-001	434.34	188.37	893.32	18.59	0	210	DD
D350-002	437.39	188.06	893.32	18.29	0	150	DD
D36	731.55	213.94	1002.74	72.5	-65	360	DD
D37	716.34	184.65	1001.51	84.4	-65	360	DD
D38	746.83	155.45	1001.34	133.2	-65	360	DD
D380-001	332.87	213.81	884.8	49.07	0	222.9	DD
D380-003	431.9	189	886.6	16.15	0	360	DD
D380-004	433.43	183.8	886.6	60.66	0	92	DD
D380-005	432.81	182	886	17.68	0	132	DD
D380-006	398.7	191	884.5	14.94	0	360	DD
D380-007	399.9	168.2	885.7	38.41	0	180	DD
D380-009	399	188.1	884.8	49.68	-35	180	DD
D380-010	431.9	188.97	886.6	43.59	-30	180	DD
D380-011	493.78	180.44	886.6	16.76	0	135	DD
D380-012	492.56	180.44	886.6	33.53	0	180	DD
D380-013	492.87	185.32	886.6	99.97	0	360	DD
D380-014	482.49	181.36	886.7	18.59	0	180	DD
D380-015	482.2	185.32	886.6	10.67	0	360	DD
D380-016	472.14	181.36	886.5	10.67	0	155	DD
D380-017	411.48	183.19	885.6	10.67	0	330	DD
D380-018	412.4	183.19	885.4	10.7	0	30	DD
D380-019	451.71	185.32	886.5	10.67	0	330	DD
D380-020	452.63	185.3	886.6	10.8	0	30	DD
D380-021	430.68	187.45	886.8	10.7	0	330	DD
D380-022	432.83	187	889.1	10.7	0	30	DD
D380-023	471.53	185.93	886.7	10.7	0	330	DD
D380-024	472.45	185.93	886.8	18.6	0	30	DD
D380-025	428.86	184.85	886.7	10.67	0	328	DD
D380-026	434.95	184.4	886.6	9.14	0	32	DD
D380-027	470.92	181.36	886.8	13.72	0	200	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
D380-028	385.89	177.39	884.8	71.63	-54.5	237	DD
D380-029	451.71	181.66	886.7	18.29	0	180	DD
D380-031	492.87	185.32	886.6	60.96	22	355	DD
D380-032	492.87	185.32	886.6	91.44	22	25	DD
D380-033	493.18	185.32	886.6	63.09	0	45	DD
D380-034	336.2	202.08	884.8	51.82	-23	158	DD
D380-035	398.08	188.67	884.8	45.72	-33	204	DD
D380-036	333.45	202.07	884.8	36.27	-23	203	DD
D380-037	492.26	182.27	888.1	121.92	0.5	73	DD
D380-038	492.56	182.58	886.7	78.33	0	88.5	DD
D380-039	398.37	170.38	886.9	43.3	32	325	DD
D380-040	399.01	170.4	886.9	36.58	35	360	DD
D380-041	441.35	186.23	888.1	66.14	-49	229	DD
D380-041A	492.86	183.79	886.6	115.82	0	60	DD
D380-044	412.39	180.14	885.4	30.5	0	180	DD
D380-045	412.41	183.2	885.4	30.6	0	360	DD
D380-046	426.72	182.88	886.6	30.5	0	180	DD
D380-047	442.42	189.43	889.1	24.4	0	360	DD
D380-048	441.97	182.58	889.1	30.5	0	180	DD
D380-050	472.14	181.36	886.8	30.8	0	180	DD
D380-050A	461.8	181.1	886.8	30.5	0	180	DD
D380-051	472.41	185.9	886.7	30.5	0	360	DD
D380-051A	461.91	194.2	886.6	21.64	0	360	DD
D380-052	486.2	177.4	886.4	16.8	0	180	DD
D380-053	487.4	182.6	886.4	27.43	0	360	DD
D380-054	426.7	190.49	886.6	24.1	0	360	DD
D380-055	344.07	199.03	886.5	35.1	0	215	DD
D380-058	441	191.4	886.9	49.07	20	360	DD
D380-059	461.8	175.3	885.7	29.3	-34	180	DD
D380-060	461.8	194.2	886.9	42.67	12	360	DD
D380-061	461.8	175.3	888.7	30.18	50	180	DD
D380-062	487.71	203.6	887.5	33.53	42	180	DD
D380-063	487.71	203.6	886.3	42.67	-24	180	DD
D380-064	502.9	207.3	886.9	36.57	0	360	DD
D380-065	502.9	202.7	886.9	33.53	0	180	DD
D380-066	502.9	207.3	887.5	45.72	30	360	DD
D380-067	502.9	202.7	888.1	30.5	45	180	DD
D380-068	502.9	202.7	886.6	60.96	-29	180	DD
D380-069	518.21	203.6	886.9	36.6	0	180	DD
D380-070	518.2	207.6	886.9	42.82	0	360	DD
D380-071	517.3	203.7	888.8	27.43	45	180	DD
D380-072	517.3	203.7	886.2	61.57	-26	180	DD
D380-073	533.2	203.27	886.8	36.6	0	180	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
D380-074	533.2	203.29	889	30.5	45	180	DD
D380-076	551.41	195.8	887.1	30.48	2	180	DD
D380-077	552.41	206.7	886.8	58.83	0	360	DD
D380-078	563.41	203.3	887.8	30.48	45	180	DD
D380-079	563.61	203.3	887	36.88	2	180	DD
D380-081	578.2	203.3	886.9	55.5	-1	180	DD
D380-082	578.2	203.3	888.9	28.04	45	180	DD
D380-083	594.1	203.6	887.2	28.7	0	180	DD
D380-084	594.1	203.6	889.4	23.5	45	180	DD
D380-085	609.3	203.3	887.2	32.31	0	180	DD
D380-086	609.3	203.3	889.4	28.7	45	180	DD
D380-087	624.6	203.6	887.2	25.6	0	180	DD
D380-088	624.5	203.61	889.4	27.43	45	180	DD
D380-090	640.1	203.8	887.4	33.53	0	179	DD
D380-096	518.2	207.6	887.8	46.94	30	360	DD
D380-097	533.41	207.9	887.8	49.07	35	360	DD
D39	746.82	124.34	1001.34	171.6	-65	360	DD
D4	431.19	152.41	999.31	132.6	-60	2	DD
D40	731.52	95	1000.68	215	-65	360	DD
D41	792.55	230.33	1002.54	54	-65	360	DD
D42	792.54	201.14	1002.21	104.5	-70	360	DD
D420-001	335.28	217.32	873.51	58.06	-7	181.5	DD
D420-002	335.28	217.32	871.98	80.16	-30	181.5	DD
D420-003	336.8	217.32	871.98	100.89	-30	137.5	DD
D420-004	333.76	217.32	871.98	97.54	-28	225.5	DD
D43	792.53	112.74	1001.27	197.2	-65	360	DD
D44	853.55	249.02	1004.34	77.1	-65	360	DD
D45	853.54	161.42	1001.34	155	-65	360	DD
D450-005	552.3	180.14	865.28	36.6	0	180	DD
D450-006	563.9	175	865.1	30.5	0	180	DD
D450-007	579.1	174.65	864.97	30.8	0	180	DD
D450-008	594.7	154.8	864.7	30.5	0	175	DD
D450-009	609.31	175.31	864.4	30.48	0	180	DD
D450-010	609.6	175.3	864.4	29	-27	180	DD
D450-011	610.2	175.6	865	30.5	0	132	DD
D450-013	552.01	179.2	865.3	39.62	0	230	DD
D46	853.57	129.23	1001.34	151.8	-65	0	DD
D47	853.52	100.42	1001.34	205.1	-65	350	DD
D48	914.44	223.99	1003.09	76.5	-65	360	DD
D49	914.44	190.41	1002.34	110	-65	360	DD
D5	451.73	122.91	998.99	152.4	-62	2	DD
D50	914.43	159.61	1002.02	150	-65	360	DD
D54	975.43	159.95	1002.64	143.9	-65	360	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
D550-001	336	167.4	832.4	32	0	180	DD
D550-002	335.71	167.5	832.4	19.81	0	210	DD
D550-003	336.8	167.29	832.4	19.81	0	150	DD
D550-004	356.32	171.3	832.4	22.9	0	190	DD
D550-005	364.54	166.54	832.4	18.3	0	195.5	DD
D550-006	366.15	166.44	832.4	18.29	-45	167	DD
D550-007	375.5	162.3	832.4	13.72	0	180	DD
D550-008	384.4	156.55	832.4	9.14	0	180	DD
D550-009	394.91	152.09	832.4	6.1	0	180	DD
D550-010	394.91	153.6	832.4	6.1	0	1	DD
D550-011	405.4	152.7	832.4	12.2	0	180.5	DD
D550-012	405.4	153.9	832.4	7.62	0	360	DD
D550-013	416.11	152.7	832.4	7.62	0	180	DD
D550-014	416.11	154.3	832.4	7.62	0	360	DD
D550-015	422.3	152.9	832.4	61	0	85	DD
D550-016	422.6	151.3	832.4	49.38	0	142	DD
D550-017	320.8	157.58	832.36	12.2	0	169	DD
D550-018	320.04	157.57	832.36	15.24	0	204	DD
D550-019	321.26	160.02	832.36	9.14	0	360	DD
D550-020	309.38	157.57	832.36	12.19	0	205	DD
D550-021	308.76	154.5	832.36	12.19	0	270	DD
D550-022	309.8	159.25	832.4	18.29	0	328	DD
D550-023	425.2	154.8	832.4	54.86	0	360	DD
D550-024	593.8	160.3	832.4	18.29	0	360	DD
D550-025	315.63	157.58	832.36	67.1	-49	256.5	DD
D550-026	357.55	157.99	832.4	65.23	-51	240	DD
D550-027	331.02	73.91	832.36	96.32	-70	360	DD
D550-029	329.8	14.62	832.36	218.54	-61	35	DD
D550-030	298.09	166.87	832.36	10.97	0	330	DD
D550-031	298.1	159.87	832.36	7.62	0	225	DD
D550-032	329.8	14.62	832.36	213.67	-61	330	DD
D550-033	453.7	153.95	832.4	61.87	0	56.5	DD
D550-034	453.4	152.6	832.4	38.41	0	97.5	DD
D550-036	443.8	154.49	832.4	23.17	0	360	DD
D550-037	443.8	152.3	832.4	8.53	0	180	DD
D550-038	433.4	154.24	832.4	22.9	0	360	DD
D550-040	290.79	164.89	832.36	14.63	0	180	DD
D550-041	269.44	167.63	832.36	12.19	0	200	DD
D550-042	269.45	168.85	832.36	23.77	0	270	DD
D550-048	290.17	180.43	832.36	42.98	-30	180	DD
D550-049	289.26	178	832.36	26.82	30	180	DD
D550-050	290.17	180.43	832.36	30.48	30	150	DD
D550-051	290.17	180.43	832.36	74.68	-37	150	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
D550-052	290.17	180.43	832.36	49.99	-37	210	DD
D550-053	290.17	180.43	832.36	21.34	30	210	DD
D550-054	290.17	180.43	832.36	56.08	-45	180	DD
D550-055	399.3	152.69	832.4	59.44	-30.5	267	DD
D550-056	268.84	167.94	832.36	35.4	-61	235	DD
D550-057	409	152.39	832.4	67.1	-48	256.3	DD
D550-058	384.1	163.8	832.4	26.52	-54	170	DD
D550-059	481.6	150.3	832.4	137.16	0	62	DD
D550-060	481.6	150.3	832.4	151.79	0	82.5	DD
D550-061	481.6	150.3	832.4	100.3	0	90	DD
D550-062	481.6	150.3	832.4	27.43	0	110.25	DD
D550-063	287.89	180.89	832.36	137.47	0	270.5	DD
D550-064	287.89	180.74	832.36	152.71	0	266.25	DD
D550-065	287.89	180.59	832.36	136.11	0	264	DD
D550-088A	506.88	151.5	832.4	9.14	0	360	DD
D550-088B	509.9	153	832.4	13.11	0	360	DD
D550-089	510.25	153	832.4	13.11	44	360	DD
D550-090	510.24	153.01	832.4	12.5	-44	360	DD
D550-091	509.61	150	832.4	61.9	0	180	DD
D550-092	521.1	154.2	832.4	46.63	44	360	DD
D550-093	520.6	155.8	832.4	12.19	-44	360	DD
D550-094	521.2	151	832.4	62.2	0	180.5	DD
D550-095	536.51	155.5	832.4	68.28	53	360	DD
D550-096	536.1	152.6	832.4	56.08	0	180.5	DD
D550-097	557.8	158.2	832.4	15.24	0	0.5	DD
D550-098	557.81	158.5	832.4	65.84	53	360	DD
D550-099	557.8	158.2	832.4	18.29	-44	360	DD
D550-100	557.81	154.3	832.4	60.96	0	180.5	DD
D550-101	569.3	159.4	832.4	13.72	0	0.5	DD
D550-102	569.41	158.5	832.4	39.62	45	360	DD
D550-103	569.41	160.3	832.4	18.3	-44	360	DD
D550-104	569.4	154.8	832.4	55.78	0	180.5	DD
D550-108	536.51	155.5	832.4	19.2	0	1	DD
D550-109	536.51	155.5	832.4	18.9	-44	360	DD
D550-110A	611.73	159.11	832.36	43.9	-59	115	DD
D550-111	582.21	156.41	832.4	30.48	0	180.5	DD
D550-112	594.11	155.1	832.4	31.09	0	180.5	DD
D550-113	609.91	155.51	832.4	30.79	0	180.5	DD
D550-114	585.2	161.49	832.4	31.24	50	180	DD
D550-115	521.21	151.8	832.4	23.77	50	180	DD
D550-116	536.31	152.6	832.4	17.37	50	180	DD
D550-117	549.1	157.6	832.4	36.58	50	180	DD
D550-117A	549.1	157.6	832.36	21.95	50	180	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
D550-118	569.4	154.8	832.4	27.43	50	180	DD
D550-121	582.61	159.1	832.4	15.24	0	0.5	DD
D550-122	582.81	159.15	832.4	24.69	40	360	DD
D550-123	582.81	159.1	832.4	16.76	-45	360	DD
D550-124	594.22	159.11	832.36	18.29	0	0.5	DD
D550-125	594.4	159.1	832.4	24.38	40	360	DD
D550-126	594.4	159.1	832.4	15.55	-45	360	DD
D550-128	610.11	161.2	832.4	24.38	40	360	DD
D550-129	610.11	161.2	832.4	15.24	-45	360	DD
D550-131	594.4	155.1	832.4	27.43	50	180	DD
D550-133	583.71	152.7	832.4	61.57	61.5	180	DD
D550-134	573.6	152.45	832.4	28.96	57.5	215	DD
D550-138	585.2	161.49	832.4	31.7	-30	180	DD
D550-139	610.21	155.5	832.4	27.43	50	180	DD
D550-140	549.9	157.3	832.4	31.39	-58.5	116	DD
D56	548.65	214.88	1002.74	112.2	-65	360	DD
D57#	487.69	209.2	1000.43	123.1	-65	360	DD
D58	487.74	162.54	999.34	146	-65	0	DD
D59	365.85	221.07	999.51	58.8	-50	0	DD
D6	429.93	108.26	999.09	193.6	-68	2	DD
D60	365.85	216.47	999.46	91.1	-80	360	DD
D600-001	335.29	218.54	817.12	94.79	-9	180	DD
D600-002	335.29	218.54	817.12	115.21	-30	180	DD
D600-003	334.67	217.32	817.12	120.4	-24	150	DD
D600-004	334.67	217.32	817.12	110.95	-30	210	DD
D600-005	334.67	217.32	817.12	125.27	-9	197	DD
D600-006	334.67	217.32	817.12	135.64	-10	225	DD
D600-007	334.67	217.32	817.73	104.85	-10	161	DD
D61	609.69	219.87	1003.41	114.3	-37	360	DD
D613-001	579.12	142.04	813.16	31.7	45	180	DD
D613-002	579.12	142.04	813.16	30.48	0	180	DD
D613-003	548.64	137.77	813.16	8.84	45	180	DD
D613-004	557.18	138.38	813.16	30.48	0	180	DD
D613-005	556.57	141.12	813.16	30.79	0	360	DD
D613-006	579.13	145.08	813.16	22.25	0	360	DD
D613-011	569.98	143.26	813.16	35.05	-62	35	DD
D62	243.84	167.69	998.34	141.4	-65	0	DD
D63	121.94	152.52	998.34	169.8	-65	0	DD
D64	61.03	76.33	997.39	232.6	-65	0	DD
D65	61.05	152.53	997.86	158.2	-65	360	DD
D66	0.03	61.14	996.35	230.7	-65	360	DD
D665-007	355.4	152.7	799.14	43.59	42	84	DD
D665-009	355.4	152.7	798.83	51.82	25	92	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
D67	3.73E-02	137.34	997.51	149.35	-65	0	DD
D68	-60.88	45.85	996.34	121.9	-65	360	DD
D69	-60.86	122.06	996.35	91.4	-65	360	DD
D7	409.18	124.86	999.1	152.4	-62	2	DD
D70	594.4	169.8	1000.34	143.3	-90	0	DD
D71	100.04	139.12	998.11	138.3	-75	359	DD
D72	77.94	159.9	998.03	135.6	-75	352	DD
D720-000	307.09	162.14	780.54	22.25	0	180	DD
D720-001	326.44	186.23	780.54	139.29	-30	220	DD
D720-003	326.75	185.92	780.54	92.05	-32	202	DD
D720-005	284.69	144.01	780.54	9.14	0	0.5	DD
D720-006	284.47	141.27	780.54	15.24	0	179	DD
D720-007	274.47	142.64	780.54	9.14	0	0.5	DD
D720-008	274.63	140.35	780.54	14.63	0	180	DD
D720-009	304.5	138.07	780.54	11.89	0	180.5	DD
D720-010	322.18	142.95	780.54	12.5	0	0.25	DD
D720-011	322.18	139.75	780.54	21.34	0	180	DD
D720-012	312.12	137.47	780.54	9.14	0	180	DD
D720-013	329.65	142.8	780.54	12.5	0	187	DD
D720-014	330.11	146.76	780.54	13.11	0	15	DD
D720-015	263.5	146.91	780.54	15.24	0	180	DD
D720-016	263.51	149.65	780.54	9.14	0	0.5	DD
D720-017	253.14	150.87	780.54	18.29	0	180.5	DD
D720-018	253.29	154.52	780.54	9.14	0	0.5	DD
D720-019	345.19	150.72	781.89	56.08	0	108	DD
D720-021	333.6	144.32	780.54	65.53	0	121	DD
D720-022	220.07	152.24	780.54	71.32	0	221.75	DD
D720-023	219.76	153.31	780.54	137.16	0	268.5	DD
D720-024	296.88	150.72	780.54	61.27	-60	165	DD
D720-025	329.49	188.37	780.54	73.46	-32	181	DD
D720-026	228.45	149.81	780.54	42.37	0	206.5	DD
D720-027	219.77	152.7	780.54	75.29	0	243.75	DD
D720-028	220.37	152.69	780.54	33.22	40	221	DD
D720-029	220.37	152.69	780.54	51.51	-35	221	DD
D720-030	242.16	152.4	780.54	34.75	0	190	DD
D720-031	219.76	153.01	780.54	88.7	0	254.5	DD
D720-034	364.24	144.78	782.37	61.27	-10	117	DD
D720-035	376.28	144.47	782.28	101.8	0	102.75	DD
D720-036	376.28	144.47	782.28	120.09	0	93.75	DD
D720-037	232.87	162.15	780.54	91.44	-37	180	DD
D720-039	232.87	162.15	780.54	60.96	50	180	DD
D720-040	232.87	162.29	780.54	55.47	40	217	DD
D720-041	232.87	162.29	780.54	54.86	40	140	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
D720-043	232.87	162.29	780.54	91.75	-35	153	DD
D720-044	232.87	162.29	780.54	120.4	-18	121	DD
D720-045	245.98	158.27	780.54	17.68	0	20.5	DD
D720-047*	219.76	153.46	780.54	121.62	0	278	DD
D720-048	219.76	153.46	780.54	60.66	0	298	DD
D720-049	220.07	153.31	780.54	44.2	-30	277	DD
D720-050	220.07	153.31	780.54	31.39	30	277	DD
D720-051	227.38	153.92	780.54	30.48	30	304	DD
D720-052	227.38	153.92	780.54	30.18	-30	304	DD
D720-053	229.82	153.61	780.54	24.99	36	349	DD
D720-054	229.82	153.61	780.54	25.3	-36	349	DD
D720-055	235.62	153.92	780.54	26.82	36	5	DD
D720-056	235.62	153.92	780.54	24.69	-36	5	DD
D720-058	241.71	153.62	780.54	28.96	-48	134.5	DD
D720-059	228.61	152.09	780.54	51.21	-45	277	DD
D720-060	228.61	152.09	780.54	56.39	43	283	DD
D720-061	226.78	153.31	780.54	43.28	55	304	DD
D720-062	229.82	142.79	780.54	36.58	-60	334	DD
D720-063	231.65	142.64	780.54	37.49	-60	60	DD
D720-066	551.54	147.52	780.54	122.23	0	92	DD
D720-070	549.87	146.31	780.54	54.25	0	181	DD
D720-071	229.82	142.79	780.54	49.38	-80	334	DD
D720-072	210.77	142.03	780.54	35.05	10	315	DD
D720-073	210.77	142.03	780.54	34.44	-10	315	DD
D720-074	210.77	142.03	780.54	34.14	24	342	DD
D720-075	210.77	142.03	780.54	24.38	-24	342	DD
D720-076	456.9	141.73	783.44	62.48	0	215.5	DD
D720-077	457.2	141.12	783.44	60.96	0	198	DD
D720-078	457.05	141.42	780.54	76.2	0	181	DD
D720-080	487.23	144.16	783.77	61.56	0	194	DD
D720-081	487.45	144.02	780.54	76.2	0	182	DD
D720-082	487.84	144.01	783.47	52.12	0	167	DD
D720-083	488.14	144.17	783.47	42.37	0	144	DD
D720-085	518.77	144.63	783.9	76.81	0	181	DD
D720-087	520.14	144.47	783.9	37.19	0	142.25	DD
D720-088	520.3	145.24	783.9	45.72	0	121.5	DD
D720-089	209.25	138.53	780.54	33.53	32	338	DD
D720-090	209.25	138.53	780.54	33.83	34	358	DD
D720-091	209.25	138.53	780.54	39.62	45	358	DD
D720-092	209.25	138.53	780.54	33.53	34	14	DD
D720-093	202.39	156.97	780.54	21.95	0	301.5	DD
D720-094	197.8	156.7	780.5	21.3	0	289	DD
D720-095	188.41	154.09	780.5	15.8	0	290	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
D720-096	176.21	152.99	780.5	15.8	0	17.5	DD
D720-097	174	152.89	780.5	24.4	0	331.75	DD
D720-098	173.1	151.1	780.5	61	0	280.5	DD
D720-099	173.3	150.39	780.5	61	0	260.5	DD
D720-100	173.4	150.09	780	46.9	0	249.5	DD
D720-101	175.61	149.19	780.5	13.72	0	175.25	DD
D720-102	177.2	149.19	780.5	41.5	0	131	DD
D720-103	457.97	141.28	780.54	45.72	35	180	DD
D720-104	457.97	141.28	780.54	48.77	-32	180	DD
D720-105	458.27	140.97	780.54	45.72	33	155	DD
D720-106	458.27	140.97	780.54	50.29	-30	155	DD
D720-107	578.98	143.1	780.54	45.72	0	193	DD
D720-108	579.28	142.81	780.54	76.2	0	177.5	DD
D720-109	579.88	142.8	780.54	46.03	0	158.5	DD
D720-110	457.81	140.82	783.29	54.86	-23	171	DD
D720-114	487.68	144.48	782.98	48.77	-17	180	DD
D720-115	487.68	144.48	784.2	48.77	17	180	DD
D720-116	487.68	144.48	784.51	48.77	29	180	DD
D720-117	487.68	144.48	782.83	55.47	-35	180	DD
D720-118	487.68	144.48	782.68	67.06	-39	196	DD
D720-120	487.84	144.17	780.54	51.82	25	163	DD
D720-121	614.32	145.85	780.54	36.58	0	114	DD
D720-122	614.48	146.23	780.54	61.27	0	98	DD
D720-123	614.41	146.46	780.54	67.67	0	94	DD
D720-124	614.24	146.76	780.54	91.44	0	87	DD
D720-125	517.56	145.69	780.54	45.72	27	205	DD
D720-126	487.99	144.17	780.54	45.72	48	160	DD
D720-127	486.77	147.21	780.54	45.72	45	200	DD
D720-128	610.03	163.5	780.54	56.69	19	233	DD
D720-129	610.03	163.5	780.54	50.9	-19	233	DD
D720-130	609.91	163.2	780.54	39.93	25	219.5	DD
D720-131	609.91	163.2	780.54	37.19	-25	219.5	DD
D720-132	610.11	162.89	780.54	30.48	30	201	DD
D720-133	610.11	163.81	780.54	32	-30	201	DD
D720-134	612.65	160.94	780.54	31.39	25	150	DD
D720-135	612.65	160.94	780.54	36.58	-25	150	DD
D720-136	612.73	162.77	780.54	45.42	17.5	125	DD
D720-137	612.73	162.77	780.54	51.82	-17.5	125	DD
D720-138	609.6	163.68	785.12	30.48	62	206	DD
D720-139	609.61	164.9	784.51	43.89	29	245.5	DD
D720-140	609.61	164.9	785.12	42.67	57	245.5	DD
D720-141	612.96	163.07	785.12	33.53	50	159	DD
D720-142	613.26	163.68	784.81	46.94	32	139	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
D720-143	613.56	163.68	785.12	39.62	73	112	DD
D720-144	612.65	162.77	780.54	51.82	-36	146	DD
D720-145	609.91	163.22	780.54	53.65	-41	202	DD
D720-146	610.52	162.46	780.54	48.77	-43	188	DD
D720-147	611.58	162.77	780.54	76.2	-43	166.5	DD
D720-148	668.58	148.44	780.54	122.23	0	91	DD
D720-150	668.43	148.3	780.54	121.92	0	101	DD
D720-151	609.6	163.68	780.54	54.9	-38	215	DD
D720-152	610.82	163.98	780.54	68.89	-54	188	DD
D720-153	611.44	163.98	784.81	59.13	-46	158	DD
D720-155	610.82	151.79	780.54	13.72	-32	204	DD
D720-156	611.44	151.79	780.54	15.24	-32	162	DD
D720-157	611.44	151.79	786.03	16.76	43	162	DD
D720-158	612.04	179.22	780.54	82.3	-51	180	DD
D720-159A	612.5	179.23	780.54	91.44	-48	165	DD
D720-160	579.73	142.96	780.54	22.25	48	180	DD
D720-161	579.73	142.96	780.54	27.43	-25	180	DD
D720-162	550.16	146.61	780.54	30.48	48	180	DD
D720-163	550.16	146.61	780.54	35.36	-25	180	DD
D720-164	612.95	178.46	780.54	71.63	-30	149	DD
D720-165	610.83	178.46	780.54	80.77	-35	203	DD
D720-166	610.82	177.09	780.54	81.7	-33	218	DD
D720-167	579.73	142.96	780.54	22.25	25	180	DD
D720-168	550.16	146.61	780.54	30.48	25	180	DD
D720-169	533.1	144.63	780.54	32.6	0	181	DD
D720-170	533.41	144.78	780.54	31.4	25	180	DD
D720-171	533.41	144.78	780.54	35.97	48	180	DD
D720-172	533.41	144.78	780.54	35.97	-30	181	DD
D720-173	563.43	143.56	780.54	24.99	0	181	DD
D720-174	563.28	143.56	780.54	26.52	25	181	DD
D720-175	563.28	143.56	780.54	28	48	181	DD
D720-176	563.28	143.56	780.54	27.43	-22	181	DD
D720-177	563.28	143.56	780.54	30.48	-44	181	DD
D720-178	595.66	140.81	780.54	18.29	0	181.5	DD
D720-179	595.59	140.82	780.54	18.29	30	181	DD
D720-180	595.59	140.82	780.54	18.59	-30	180	DD
D720-181	238.2	151.48	780.54	24.99	60	181	DD
D720-182	238.2	151.48	780.54	19.81	35	181	DD
D720-183	238.2	151.48	780.54	30.48	-20	181	DD
D720-184	238.2	151.48	780.54	33.83	-38	181	DD
D720-185	228.9	150.87	780.54	24.38	60	181	DD
D720-186	228.9	150.87	780.54	18.29	30	181	DD
D720-187	228.9	149.65	780.54	21.34	-24	181	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
D720-188	228.91	150.26	780.54	27.28	-40	181	DD
D720-189	213.05	152.4	780.54	21.34	60	180	DD
D720-190	213.05	152.4	780.54	28.65	33	181	DD
D720-191	213.05	152.4	780.54	33.53	-39	180	DD
D720-191A	213.05	152.4	780.54	28.35	-25	181	DD
D720-192	202.69	154.83	780.54	38.71	0	181	DD
D720-193	202.7	155.14	780.54	32.92	29	181	DD
D720-194	203.01	159.71	780.54	40.23	-24	180	DD
D720-195	577.9	159.11	780.54	45.72	-30	181	DD
D720-196	577.9	159.41	780.54	60.96	-45	180	DD
D720-197	578.97	159.11	780.54	39.62	38	181	DD
D720-198	577.6	162.16	780.54	51.21	55	213	DD
D720-198A	578.97	159.41	780.54	44.2	56	180	DD
D720-200	547.12	160.93	780.54	57.61	-31	181	DD
D720-202	547.42	160.94	780.54	47.55	44	181	DD
D720-203	547.42	161.54	780.54	59.44	60	181	DD
D720-204	238.05	154.22	780.54	21.34	-60	1	DD
D720-205	228.6	153.92	782.68	32.61	40	1	DD
D720-206	228.6	153.92	781.15	16.76	-27	1	DD
D720-207	228.6	153.92	780.7	22.86	-60	1	DD
D720-208	213.36	155.74	781.76	18.29	0	1	DD
D720-209	213.05	154.98	782.68	33.83	40	1	DD
D720-210	213.05	154.98	780.85	15.24	-33	1	DD
D720-211	213.05	154.98	780.54	18.29	-60	1	DD
D720-212	228.9	141.12	780.54	33.53	-55	1	DD
D720-213	197.81	157.27	781.76	13.72	0	1	DD
D720-214	197.81	157.27	782.68	22.86	35	1	DD
D720-215	197.81	157.27	780.54	13.72	-50	1	DD
D720-216	182.58	152.4	782.07	16.76	0	360	DD
D720-217	182.58	153.92	780.54	27.43	35	360	DD
D720-218	182.58	153.92	780.54	16.76	-50	360	DD
D720-219	212.45	142.33	780.54	33.53	-40	360	DD
D720-220	212.45	142.33	780.54	35.05	-60	360	DD
D720-221	212.14	138.98	780.54	57.91	42	360	DD
D720-222	228.61	136.54	780.54	12.8	-60	180	DD
D720-223	228.6	163.83	780.54	37.19	-61	180	DD
D720-224	182.8	150	781	40.5	30	181	DD
D720-225	182.9	149.99	780	41.5	-26	180	DD
D720-226	182.9	149.99	781.5	36.6	65	181	DD
D720-227	202.71	160.3	781.5	42.1	60	181	DD
D720-232	151.96	135.32	781	75.3	48	1	DD
D720-233	151.94	135.29	781	57	37	1	DD
D720-234	151.95	135.29	780.75	48.8	22	0	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
D720-235	151.96	135.32	780	36.6	33	1	DD
D720-236	151.95	135.29	780	33.5	-55	0	DD
D720-237	136.86	135.63	780.54	91.74	50	1	DD
D720-238	136.86	135.63	780.54	64	38	1	DD
D720-239	136.86	135.63	780.54	51.82	22	1	DD
D720-240	136.86	135.63	780.54	39.9	-30	1	DD
D720-242	182.88	138.07	780.54	49.68	33	1	DD
D720-243	182.88	138.07	780.54	67.06	45	1	DD
D720-244	182.88	138.07	780.54	38.56	-45	1	DD
D720-245	182.88	138.07	780.54	49.07	-70	1	DD
D720-246	198.12	137.77	780.54	51.82	30	1	DD
D720-247	198.12	137.77	780.54	85.04	45	1	DD
D720-248	198.12	137.77	780.54	34.44	-30	1	DD
D720-249	198.12	137.77	780.54	39.62	-60	1	DD
D720-250	151.9	135.29	780.5	46	0	1	DD
D720-251	167.3	135.59	780.5	45.1	1	0	DD
D720-253	595.28	156.67	780.54	46.33	60	180	DD
D720-254	594.37	156.97	780.54	39.62	40	180	DD
D720-255	594.37	156.97	780.54	39.62	25	180	DD
D720-256	595.28	154.54	780.54	45.72	-30	180	DD
D720-257	595.27	155.45	780.54	48.77	-45	180	DD
D720-258	198.12	137.77	780.54	91.44	60	1	DD
D720-259	136.86	135.32	780.54	76.2	50	1	DD
D720-260	537.06	125.58	780.54	57.3	-62	1	DD
D720-261	136.86	135.32	780.54	45.72	22	1	DD
D720-262	136.86	135.32	780.54	45.72	0	1	DD
D720-263	136.86	135.32	780.54	36.58	-30	1	DD
D720-264	136.86	135.32	780.54	36.58	-55	1	DD
D720-890	537.37	127.71	780.54	57.3	-62	297	DD
D73A	100.02	21.62	997.3	300	-70	0	DD
D74	490.5	216.34	1001.13	61	-65	356	DD
D75	481.1	219.5	1000.97	85.2	-65	356	DD
D759-001	304.8	140.2	768.66	55.17	0	253	DD
D759-002	304.8	140.2	768.66	30.48	0	228	DD
D759-003	304.8	140.2	768.66	89.61	-20	180	DD
D759-004	320.04	140.21	765.91	101.5	-20	140	DD
D76	470.49	208.2	999.74	65.3	-65	356	DD
D8	52.82	36.73	996.92	253.6	-60	4	DD
D860-001	334.98	216.71	737.87	100.89	-10	189	DD
D860-002	335.9	217.32	737.87	106.68	-10	208	DD
D890-001	331.62	184.7	728.73	96.32	-27	163	DD
D890-002	331.62	184.7	728.73	131.67	-27	216	DD
D890-003	331.62	186.84	728.73	97.54	-27	215	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
D890-004	330.71	184.71	728.73	121	-22	234	DD
D890-005	337.87	137.77	728.73	26.82	0	137	DD
D890-006	338.34	138.38	728.73	39.62	0	117	DD
D890-007	331.62	184.7	728.73	109.73	-24	145	DD
D890-008	282.25	128.92	728.73	28.35	0	270	DD
D890-009	281.95	129.54	728.73	21.34	0	283	DD
D890-010	281.95	128.32	728.73	24.69	0	253	DD
D890-011	298.4	128.01	728.73	24.38	0	243	DD
D890-012	298.41	129.39	728.73	18.29	0	289	DD
D890-013	368.05	128.01	730.25	46.33	0	120	DD
D890-018	368.06	129.53	730.25	16.46	0	150	DD
D890-020	368.05	128.01	728.73	62.79	0	180	DD
D890-021	368.05	128.01	728.73	61.57	0	215	DD
D890-024	367.89	130.15	730.25	121.92	0	97	DD
D890-025	367.89	130.15	730.25	104.24	0	88	DD
D890-027	271.28	128.31	728.73	121.92	0	265	DD
D890-028	271.27	128.77	728.73	121.92	0	269.5	DD
D890-029	331.02	131.48	728.73	37.19	-53	144.5	DD
D890-030	366.22	128.06	728.73	30.18	-55	216.5	DD
D890-032	469.09	128.63	731.78	131.67	0	90	DD
D890-033	469.09	128.01	731.78	121.92	0	95	DD
D890-034	466.96	125.88	728.73	60.96	0	180	DD
D890-035	468.48	127.41	731.17	60.96	0	209	DD
D890-036	469.09	127.24	731.17	61.27	0	125	DD
D890-037	305.41	134.56	728.73	41.15	-56	165	DD
D890-039	351.13	134.01	728.73	38.1	-37	149	DD
D890-040	351.74	133.8	728.73	35.36	-25	137	DD
D890-042	388.93	130.15	729.34	29.26	-40	170	DD
D890-043	388.93	130.15	729.95	28.04	40	170	DD
D890-044	367.59	129.54	728.73	26.52	-25	180	DD
D890-046	407.83	126.49	728.73	28.35	-30	180	DD
D890-047	368.2	129.84	728.73	25.91	-18	159	DD
D890-048	388.78	129.84	728.73	12.5	0	180	DD
D890-049	388.93	130.15	728.73	18.29	39	180	DD
D890-049B	388.62	136.55	728.73	18.29	39	180	DD
D890-050	388.62	136.55	728.73	31.7	-45	180	DD
D890-051	407.37	126.49	728.73	9.14	0	180	DD
D890-052	407.83	131.36	728.73	27.43	-48	180	DD
D890-053	407.83	131.36	728.73	12.8	39	180	DD
D890-054	424.13	126.18	728.73	12.19	0	180	DD
D890-055	423.98	128.63	728.73	18.29	45	180	DD
D890-056	423.98	126.49	728.73	18.29	-45	180	DD
D890-057	441.2	127.71	728.73	12.19	0	180	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
D890-058	441.05	127.71	728.73	20.12	45	180	DD
D890-059	441.05	127.71	728.73	17.68	-45	180	DD
D890-060	454.61	127.41	728.73	21.34	0	180	DD
D890-061	454.46	127.71	728.73	18.29	45	180	DD
D890-062	454.46	127.71	728.73	21.34	-45	180	DD
D890-063	467.42	126.5	728.73	19.81	-45	180	DD
D890-065	388.63	137.77	728.73	21.03	63	180	DD
D890-066	408.13	133.81	728.73	15.85	65	180	DD
D890-067	467.42	126.8	728.73	12.5	45	180	DD
D890-068	454.01	143.11	728.73	43.59	-35	192	DD
D890-069	454.01	143.11	728.73	44.5	-34	153	DD
D890-070	454.01	143.11	728.73	53.34	-42.5	203	DD
D890-071	453.85	127.1	728.73	48.76	-45	180	DD
D890-072	454.01	143.11	728.73	57.3	-41	153	DD
D890-073	469.39	127.71	728.73	25.91	-39	121	DD
D890-074	454.46	141.42	728.73	62.48	-40	138	DD
D890-075	454.46	141.42	728.73	28.96	28	138	DD
D890-076	454.46	140.51	728.73	64.01	-50	154	DD
D890-077	424.59	128.32	728.73	28.96	-59	180	DD
D890-078	280.72	128.47	728.73	18.29	-21	100	DD
D890-079	496.22	139.6	728.73	24.38	46	229	DD
D890-080	496.22	139.6	728.73	24.38	20	229	DD
D890-081	496.22	139.6	728.73	36.58	-13	229	DD
D890-082	496.52	138.07	728.73	34.14	-14	213	DD
D890-083	496.83	138.99	728.73	34.75	-20	213	DD
D890-084	498.04	138.68	728.73	18.29	30	195	DD
D890-085	496.83	138.68	728.73	24.69	-20	195	DD
D890-086	496.83	138.68	728.73	30.48	-33	195	DD
D890-087	498.35	138.99	728.73	18.29	30	180	DD
D890-088	498.35	138.99	728.73	21.34	51	180	DD
D890-089	498.35	138.99	728.73	21.34	-29	180	DD
D890-090	498.35	138.99	728.73	33.83	-36	180	DD
D890-091	498.66	139.29	728.73	47.24	-50	180	DD
D890-092	498.35	138.99	728.73	24.99	-20	164	DD
D890-093	498.35	138.99	728.73	33.53	-32	164	DD
D890-094	498.96	139.59	728.73	18.29	57	144	DD
D890-095	498.96	139.59	728.73	18.29	28	144	DD
D890-096	498.96	139.59	728.73	27.43	-19	144	DD
D890-097	498.96	139.59	728.73	33.53	-31	144	DD
D890-098	528.23	140.21	728.73	39.62	-50	180	DD
D890-099	527.31	139.9	728.73	22.86	-29	180	DD
D890-100	527.01	141.73	728.73	38.1	-36	200	DD
D890-101	526.69	141.73	728.73	60.35	-51	200	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
D890-102	529.14	141.73	728.73	30.79	-38	154	DD
D890-103	529.14	141.73	728.73	48.77	-52	154	DD
D890-104	529.14	141.73	731.78	28.65	0	138	DD
D890-105	529.75	142.34	728.73	46.33	0	115	DD
D890-106	453.86	144.17	728.73	33.53	60	180	DD
D890-107	243.54	158.18	728.73	45.72	30	180	DD
D890-108	243.54	158.18	728.73	30.48	60	180	DD
D890-109	243.54	158.8	728.73	45.72	0	180	DD
D890-111A	258.77	160.32	728.73	30.48	30	180	DD
D890-112	258.77	160.32	728.73	30.48	60	180	DD
D890-113	454.01	143.11	728.73	76.2	-53	138	DD
D890-114	547.57	145.39	728.73	36.58	-34	180	DD
D890-115	547.57	145.39	728.73	33.5	29	180	DD
D890-116	562.97	145.7	728.73	35.36	0	180	DD
D890-117	563.12	145.09	728.73	29.26	25	180	DD
D890-118	563.12	145.09	728.73	32.31	-33	180	DD
D890-119	563.12	145.09	728.73	36.58	44	180	DD
D890-120	576.07	145.09	728.73	36.88	0	180	DD
D890-121	577.6	145.24	728.73	27.43	29	180	DD
D890-122	578.52	145.7	728.73	35.05	-33	180	DD
D890-123	593.45	146.31	728.73	30.48	0	180	DD
D890-124	593.45	146	728.73	25.91	32	180	DD
D890-125	593.45	146	728.73	37.49	-30	180	DD
D890-127	547.12	145.69	728.73	30.18	0	180	DD
D890-128	563.12	144.48	728.73	54.86	-55	180	DD
D890-129	577.6	145.24	728.73	54.86	-55	180	DD
D890-130	593.45	146	728.73	54.86	-55	180	DD
D890-131	547.89	145.39	728.73	57.3	55	180	DD
D890-132	563.13	145.7	728.73	45.42	-45	180	DD
D890-133	366.37	152.09	728.73	42.67	38	180	DD
D890-134	366.37	152.09	728.73	57.91	60	180	DD
D890-135	380.54	151.94	728.73	40.23	45	180	DD
D890-136	380.54	151.94	728.73	52.12	55	180	DD
D890-137	395.79	151.94	728.73	39.62	45	180	DD
D890-139	410.88	151.79	728.73	39.93	45	180	DD
D890-140	410.88	151.79	728.73	51.82	65	180	DD
D890-141	426.42	151.48	728.73	40.54	45	180	DD
D890-142	425.82	147.82	728.73	52.73	65	180	DD
D890-143	441.66	151.48	728.73	39.32	45	180	DD
D890-144	441.66	151.48	728.73	51.82	65	180	DD
D890-145	441.66	151.48	728.73	42.98	-25	180	DD
D890-146	441.67	148.43	728.73	61.27	-45	180	DD
D9	139.78	62.11	997.45	214.9	-60	4	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
H001+	100.93	195.13	998.34	55	-80	0	RC
H002	101.37	164.73	998.32	131.8	-75	0	RCDH
H113	840.2	230.33	1003.17	103	-65	360	DD
H114	880.11	242.53	1004.08	73	-60	360	RC
H115	880.13	230.7	1003.26	109	-65	360	DD
H116	920.16	249.37	1004.34	73	-65	360	RC
H117	960.17	250.01	1003.34	85	-65	360	RC
H118	1000.17	260.2	1004.34	97	-65	360	RCDH
H119	756.27	290.74	1004.34	31	-60	360	DD
H120	760.35	271.79	1003.34	61	-60	360	DD
H121	760.18	249.77	1003.31	79	-60	360	DD
H122	804.23	284.17	1004.34	31	-60	360	DD
H123	804.18	265.02	1003.34	61	-60	360	RC
H124	840.14	255.8	1004.34	70	-60	360	RC
H125	900.24	220.46	1002.98	61	-60	360	RC
H126	960.2	284.42	1004.79	31	-60	360	RC
H127	700.54	245.56	1004.35	88	-60	360	RC
H128	660.37	230.08	1004.34	88	-60	360	RC
H129	595.02	267.03	1011.84	80	-60	360	RC
H130	623.58	253.25	1009.26	85	-60	360	RC
H131	641.55	263.36	1010.78	70	-60	360	RC
H132	643.6	278.76	1012.34	40	-60	360	RC
H133	660	264.64	1010.02	70	-60	360	RC
H134	659.99	280.72	1012.34	43	-60	360	RC
H135	680.52	260.68	1008.79	73	-60	360	RC
H136	699.9	260.86	1006.32	73	-60	360	RC
H137	700.31	280.02	1010.12	46	-60	360	RC
H138	728.55	272.1	1005.61	82	-60	360	RC
H139	641.54	237.49	1005.86	100	-60	360	DD
H140	680.38	240.93	1004.59	100.7	-60	360	DD
H141	660.2	240.75	1005.96	119	-60	360	DD
H142	760.11	230.02	1002.77	115	-60	360	DD
H143	725.4	250.18	1003.45	100	-60	360	DD
H144	725.33	230.48	1003.21	118	-60	360	DD
H145	700.23	225.12	1003.16	124	-60	360	DD
H146	680.29	219.91	1002.99	136	-60	360	DD
H147	640.21	221.06	1003.93	124	-60	360	DD
H148	620.24	234.85	1005.46	112	-60	360	DD
H149	1120.14	200.45	1005.07	70	-60	360	RC
H150	1239.68	274.57	1003.8	82	-60	180	RC
H151	450.04	193.05	999.34	94.7	-60	360	DD
H152	460.04	190.99	999.34	100	-60	360	DD
H153	500.04	194.09	999.6	104	-60	360	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
H154	509.99	223.19	1002.47	53	-60	360	RC
H155	560.04	216.08	1000.34	71.7	-60	360	DD
H156	600.06	300.02	1010.17	73	-60	360	RC
H157	600.07	320.02	1008.5	67	-60	360	RC
H158	600.07	340.02	1007.42	67	-60	360	RC
H159	760.06	309.99	1003.67	67	-60	360	RC
H160	760.06	329.99	1004.34	73	-60	360	RC
H161	760.07	349.99	1004.34	61	-60	360	RC
H162	400.02	40.07	998.34	97	-60	360	RC
H163	400.06	260.06	999.51	67	-60	360	RC
H164	400.07	280.06	1000.14	61	-60	360	RC
H165	400.08	410.06	1001.34	67	-60	360	RC
H166	200.05	200.09	998.79	85	-60	360	RC
H167	4.66E-02	150.14	997.62	85	-60	360	RC
H168	0.07	280.14	998.34	67	-60	360	RC
H169	-199.96	110.17	995.52	79	-60	360	RC
H170	-199.94	220.18	995.7	67	-60	360	RC
H171	980.06	349.95	1006.32	67	-60	360	RC
H172	980.07	369.94	1007.06	67	-60	360	RC
H173	1120.01	220.01	1003	67	-60	360	RC
H174	1240.01	180.01	1000	67	-60	360	RC
H175	1240.01	210.01	1000	73	-60	360	RC
H176	1240.01	320.02	1007.76	73	-60	360	RC
H177	1400.01	230.02	1023	73	-60	360	RC
H178	40	-110.86	995.65	402	-70	360	DD
H200	761.75	264.96	1003.34	69	-58	355	DD
H201	725.35	246.27	1003.34	104	-54	7.3	DD
H202	700.11	262.65	1006.34	85	-59	2	DD
H203	699.56	277.92	1009.85	70	-58.4	0.32	DD
H204	679.8	261.85	1008.96	85	-58.52	340.29	DD
H205	678.61	278.52	1011.21	65	-58.1	352.23	DD
H206	660.3	261.83	1009.76	81	-58.38	7.43	DD
H207	640	236.17	1005.7	100.5	-57.96	353.5	DD
H208	620.15	227.53	1004.34	95.5	-54.05	359.39	DD
H209	540.11	206.94	1000.93	80	-59.9	1.7	DD
H210	510.05	182.21	999.76	110	-59.46	5.79	DD
H211	500.15	173.12	999.42	109	-58.28	9.93	DD
H212	490.24	193.81	999.69	86	-60.02	7.93	DD
H213	470.02	195.06	999.46	99	-59.18	3.78	DD
H214	450.12	182.23	999.02	99	-60.72	358.75	DD
H215	439.94	200.13	999.24	92	-60.57	3.19	DD
H216	430.06	187.14	999.55	105	-58.54	356.92	DD
H217	420	195.39	999.67	94	-58.59	4.42	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
H218	820.13	179.06	1001.48	109.5	-60	360	DD
H219	860.16	203.53	1002.49	138.4	-58.98	358.35	DD
H51	914.42	126.46	1001.53	115.9	-65	360	DD
H52	975.4	219.41	1003.34	21.34	-65	360	DD
H53	975.4	188.93	1003.1	46	-65	360	RC
H55	1040.04	213.93	1003.34	21	-65	360	RC
OPDH1	519.61	242.99	1004.99	45	-65	329	PC
OPDH2	519.55	242.59	1004.85	42	-85	329	PC
OPDH3	547.1	237.09	1006.15	42	-60	349	PC
OPDH4	547.25	235.48	1005.46	51	-75	349	PC
OPDH5	577	236.07	1005.3	48	-65	354	PC
OPDH6	577.05	235.53	1005.23	60	-80	354	PC
OPRB-001	619.83	267.3	1012.11	24	-70	0	RAB
OPRB-002	630.25	275.06	1012.34	27	-70	0	RAB
OPRB-003	630.74	265.59	1011.28	21	-70	0	RAB
OPRB-004	640.11	280.11	1012.34	16	-70	0	RAB
OPRB-005	640.13	275.14	1012.05	18	-70	0	RAB
OPRB-006	650.28	283.76	1012.34	12	-70	0	RAB
OPRB-007	650.13	272.74	1011.54	24	-70	0	RAB
OPRB-008	660.52	275.92	1011.61	18	-70	0	RAB
OPRB-009	660.11	267.09	1010.17	21	-70	0	RAB
OPRB-010	670.12	282.13	1012.34	21	-70	0	RAB
OPRB-011	670.21	275.1	1011.07	21	-70	0	RAB
OPRB-012	680.21	288.87	1013.4	12	-70	0	RAB
OPRB-013	679.72	281.6	1011.66	24	-70	0	RAB
OPRB-014	680.52	275.02	1010.55	21	-70	0	RAB
OPRB-015	690.09	288.07	1012.34	12	-70	0	RAB
OPRB-016	690.4	276.58	1009.97	24	-70	0	RAB
OPRB-017	700.01	285.04	1010.98	21	-70	0	RAB
OPRB-018	700.2	276.95	1009.63	24	-70	0	RAB
OPRB-019	709.96	286.01	1010.98	21	-70	0	RAB
OPRB-020	710.16	279.11	1009.59	24	-70	0	RAB
OPRB-021	720.13	286.88	1011.34	21	-70	0	RAB
OPRB-022	730.02	290.8	1009.56	12	-70	0	RAB
OPRB-023	730.17	274.99	1006.04	21	-70	0	RAB
OPRB-024	739.32	278.62	1005.48	21	-70	0	RAB
ORC012	398	353.927	1000.527	98	-65	88.606	RC
ORC013	401.138	348.624	1000.547	365	-60	106.606	RC
ORC014	-46.013	556.693	998.277	503	-60	107.706	RC
ORC1	563.65	253.43	1009.33	25	-68	360	RC
ORC10	529.96	267.98	1011.87	30	-60	360	RC
ORC11	530.46	252.74	1008.94	30	-64	360	RC
ORC2	562.55	248.58	1008.56	42	-60	360	RC

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
ORC3	556.66	252.93	1009.55	25	-52	360	RC
ORC4	556.85	252.37	1009.34	40	-60	360	RC
ORC5	540.76	246.48	1007.3	40	-59	360	RC
ORC6	530.96	261.78	1011.34	45	-60	360	RC
ORC7	537.95	255.29	1010.29	40	-60	360	RC
ORC8	556.06	246.88	1008.58	45	-62	360	RC
ORC9	540.15	253.63	1010.44	25	-50	360	RC
ORDD-226	880.11	119.63	1001.34	181.5	-70	357.8	DD
ORDD-229	729.65	19.88	999.7	290	-70	1	DD
ORDD-282	740.19	225.93	1003	129.5	-58.6	5.4	DD
ORDD-283	749.94	225.64	1002.86	129.5	-61.1	1.9	DD
ORDD-287	770.25	222.79	1002.48	120	-61.2	4.8	DD
ORDD-290	789.14	232.33	1002.57	104	-59.8	2.7	DD
ORDD-295	780.7	263.26	1003.34	75.1	-59.8	5.5	DD
ORDD-318	821.86	234.07	1002.96	110.6	-62.1	359.9	DD
ORDD-325	620	265.64	1011.84	40	-58.3	0.8	DD
ORDD-336	719.95	264.8	1005.08	75.5	-59	1.1	DD
ORDD-337	689.85	242.94	1004.46	109.8	-58	358.8	DD
ORDD-338	569.86	208.29	1000.21	75.2	-59	359.3	DD
ORDD-349	800.22	184.91	1001.79	204.12	-70	356.4	DD
ORDD-351	830.37	109.61	1001.31	252	-70	355.4	DD
ORDD-352	859.73	147.89	1001.34	225	-70	354.2	DD
ORDD-353	891.36	143.34	1001.54	240	-70	4.2	DD
ORDD-354	100.86	29.95	997.62	243.3	-70	353.6	DD
ORDD-374	949.94	92.72	1001.53	219.5	-70	355	DD
ORDD-378	814.98	81.76	1000.87	219.5	-72	355	DD
ORDD-381	855.08	41.06	1000.77	236.7	-72	355.8	DD
ORDD-382	911.29	28	1001.34	261.5	-75	356.1	DD
ORDD-383	942.62	48.28	1001.34	333.5	-70	355	DD
ORDD-389	49.91	-44.88	996.34	400	-70	357	DD
ORDD-407A	815.22	44.49	1000.44	342.8	-77	359.7	DD
ORDD-418	835	0.38	1000.23	297.1	-65	355	DD
ORDD-433	670.01	-64.76	999.34	403	-65	355	DD
ORDD-434	780.09	9.61	999.99	289	-65	355	DD
ORDD-436	80	-149.85	995.34	408.5	-70	357	DD
ORDD-437	300.12	-59.75	996.22	328.6	-60	357	DD
ORDD-438	249.99	-99.9	996.46	389	-60	357	
ORDD-439	150.02	-49.82	996.34	332.3	-60	0	DD
ORDD-442	100.04	-42.59	996.34	439.3	-78	0	DD
ORDD-444	695	7 23	999.37	282.5	-63	0.5	DD
ORI 100	480.24	200.25	999.86	77	-65	357.5	BC
ORI 101	420.5	180.11	999.3/	98.3	-60	.357	RC
0	4711.1			00.0	00	00/	

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
ORL103	459.99	159.65	999.34	123	-70	358	RC
ORL104	460.19	180	999.34	81	-65	357.5	RC
ORL105	460.29	200.14	999.34	69	-65	355.5	RC
ORL106	499.74	160.24	999.34	123	-70	359	RC
ORL107	500.14	180.84	999.34	105.4	-65	353	RC
ORL108	520.58	160.09	999.48	126	-70	356	RC
ORL109	520.49	181.03	999.77	87	-65	356	RC
ORL110	539.24	160.39	999.96	123	-70	359	RC
ORL111	539.54	179.99	1000.19	103.7	-65	357.5	RC
ORL112	440.35	237.5	1000.23	68	-80	357	RC
ORL80	490.6	216.49	1001.15	70	-60	355	RC
ORL81	479.6	232	1001.71	30	-60	355.5	RC
ORL82	480.31	240.75	1002.86	30	-60	356	RC
ORL83	460.8	220.69	1000.16	40	-60	358	RC
ORL84	460.45	230.65	1000.71	40	-60	355.5	RC
ORL85	440.1	211.1	999.34	47	-60	355	RC
ORL86	440.31	241.76	1000.47	61	-60	357	RC
ORL87	420.25	221.35	999.34	45	-60	358	RC
ORL88	420.45	232.2	999.35	27.7	-60	355.5	RC
ORL89	420.55	240.76	999.66	29	-60	355.5	RC
ORL90	399.74	160.11	999.31	104.7	-60	5.5	RC
ORL91	400.5	202.36	999.1	78	-65	358.5	RC
ORL92	400	220.96	999.62	63	-65	354	RC
ORL93	400.15	231.16	999.44	80.9	-60	354.5	RC
ORL94	439.34	159.11	998.79	105	-70	355.5	RC
ORL95	440.04	180.25	999.11	80	-60	354	RC
ORL96	439.74	194.41	999.1	93	-65	357.5	RC
ORL97	400.5	241.66	999.36	80	-65	358	RC
ORL98	480.29	160.34	998.99	123.7	-70	358	RC
ORL99	480.39	180.15	999.23	104	-65	357	RC
ORLRL77	540.8	230.14	1004.25	34	-58	3	RC
ORLRL78	540.3	213.63	1001.34	55	-60	359.5	RC
ORLRL79	519.9	211.29	1001.4	54	-60	358.5	RC
ORPC-001	79.48	170.17	998.15	25.2	-60	10.5	PC
ORPC-002	79.63	179.8	998.26	22.8	-60	6.5	PC
ORPC-003	79.66	189.99	998.34	25.3	-60	0.5	PC
ORPC-004	79.9	199.36	998.34	25.3	-60	359.5	PC
ORPC-005	30.46	169.88	997.93	25.2	-60	351.5	PC
ORPC-006	30.09	179.69	998.03	25.2	-60	3.5	PC
ORPC-007	30.08	189.93	998.13	25.2	-60	5.5	PC
ORPC-008	90.32	175.48	998.28	25	-60	0	PC
ORPC-009	69.47	175.69	998.15	25	-60	0	PC
ORPC-010	70.01	184.83	998.25	25	-60	0	PC

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
ORPC-011	40.18	175.17	997.99	25	-60	0	PC
ORPC-012	39.71	184.91	998.1	20	-60	0	PC
ORPC-013	20.18	182.77	998.01	15	-60	0	PC
ORRB-001	-501.39	111.29	993.4	60	-60	360	RAB
ORRB-002	-501.27	86.05	993.33	66	-60	360	RAB
ORRB-003	-501.31	61.3	993.16	66	-60	360	RAB
ORRB-004	-501.51	36.34	993	60	-60	360	RAB
ORRB-005	-501.41	11.17	992.74	60	-60	360	RAB
ORRB-006	-400.25	112.28	994.04	69	-60	360	RAB
ORRB-007	-400.2	86.29	994.21	60	-60	360	RAB
ORRB-008	-400.37	60.19	994.05	66	-60	360	RAB
ORRB-009	-400.29	33.84	993.85	60	-60	360	RAB
ORRB-010	-400.6	7.66	993.65	63	-60	360	RAB
ORRB-011	-299.99	138.83	995.15	63	-60	360	RAB
ORRB-012	-299.77	114.2	994.85	63	-60	360	RAB
ORRB-013	-299.74	88.66	994.71	60	-60	360	RAB
ORRB-014	-299.95	63.25	994.53	60	-60	360	RAB
ORRB-015	-299.8	37.16	994.34	66	-60	360	RAB
ORRB-016	-249.55	308.47	995.75	63	-60	360	RAB
ORRB-017	-249.63	282.75	995.63	63	-60	360	RAB
ORRB-018	-250.16	257.2	995.98	60	-60	360	RAB
ORRB-019	-249.77	231.88	995.92	60	-60	360	RAB
ORRB-020	-249.93	205.76	995.74	63	-60	360	RAB
ORRB-021	-199.82	159.85	996.19	63	-60	360	RAB
ORRB-022	-199.73	135.02	996	63	-60	360	RAB
ORRB-023	-199.59	108.87	995.49	60	-60	360	RAB
ORRB-024	-199.86	82.92	995.32	66	-60	360	RAB
ORRB-025	-100	184.43	996.98	66	-60	360	RAB
ORRB-026	-99.94	159.24	996.56	63	-60	360	RAB
ORRB-027	-99.81	132.69	996.34	60	-60	360	RAB
ORRB-028	-98.17	106.68	996.34	60	-60	360	RAB
ORRB-029	-100.1	81.94	996.34	60	-60	360	RAB
ORRB-030	-0.23	205.89	998.05	63	-60	360	RAB
ORRB-031	-0.06	179.99	997.86	66	-60	360	RAB
ORRB-032	-0.03	155.64	997.67	63	-60	360	RAB
ORRB-033	-0.24	129.89	997.44	60	-60	360	RAB
ORRB-034	1.69	105.78	997.08	63	-60	360	RAB
ORRB-035	-0.08	411.98	997.93	63	-60	360	RAB
ORRB-036	-0.13	391.83	997.9	60	-60	360	RAB
ORRB-037	-0.09	356.4	998.02	72	-60	360	RAB
ORRB-038	1.94	336.26	998.02	60	-60	360	RAB
ORRB-039	2.14	310.28	998.05	60	-60	360	RAB
ORRB-040	200.41	325.09	999.49	69	-60	360	RAB

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
ORRB-041	199.87	299.78	999.56	60	-60	360	RAB
ORRB-042	200.23	272.93	999.4	60	-60	360	RAB
ORRB-043	204.3	250.7	999.34	63	-60	360	RAB
ORRB-044	200.14	226.4	999.34	63	-60	360	RAB
ORRB-045	200.32	200.92	998.82	75	-60	360	RAB
ORRB-046	200.16	174.46	998.34	63	-60	360	RAB
ORRB-047	200.34	150.02	998.34	60	-60	360	RAB
ORRB-048	350.03	326.41	1001.34	69	-60	360	RAB
ORRB-049	349.93	300.21	1000.95	60	-60	360	RAB
ORRB-050	349.69	274.34	1000.34	66	-60	360	RAB
ORRB-051	349.63	248.51	1000.07	63	-60	360	RAB
ORRB-052	1000.14	184.33	1003.13	63	-60	360	RAB
ORRB-053	999.82	210.81	1003.34	63	-60	360	RAB
ORRB-054	999.92	236.33	1003.34	66	-60	360	RAB
ORRB-055	1049.8	200.28	1003.34	60	-60	360	RAB
ORRB-056	1049.95	225.47	1003.34	60	-60	360	RAB
ORRB-057	1049.96	250.09	1003.97	63	-60	360	RAB
ORRB-058	1049.87	275	1004.34	60	-60	360	RAB
ORRB-059	1099.85	184.36	1003.34	69	-60	360	RAB
ORRB-060	1099.96	211.18	1003.8	63	-60	360	RAB
ORRB-061	1100.14	236.46	1004.34	66	-60	360	RAB
ORRB-062	1100.05	262.17	1004.91	66	-60	360	RAB
ORRB-063	1199.94	184.96	1004.34	60	-60	360	RAB
ORRB-064	1200.17	210.66	1004.7	60	-60	360	RAB
ORRB-065	1200.07	237.18	1005.5	60	-60	360	RAB
ORRB-066	1199.94	261.89	1006.34	63	-60	360	RAB
ORRB-070	900.15	460.3	1008.34	60	-60	360	RAB
ORRB-071	900.38	435.44	1008.34	60	-60	360	RAB
ORRB-072	901.36	411.11	1008.34	60	-60	360	RAB
ORRB-073	899.84	388.6	1009.34	60	-60	360	RAB
ORRB-074	899.47	335.55	1008.13	60	-60	360	RAB
ORRB-075	800.36	450.45	1006.18	60	-60	360	RAB
ORRB-076	800.3	426.01	1005.68	60	-60	360	RAB
ORRB-077	800.6	400.37	1005.44	60	-60	360	RAB
ORRB-078	800.19	375.09	1004.97	60	-60	360	RAB
ORRB-079	800.22	350.13	1004.58	63	-60	360	RAB
ORRB-080	700.08	485.13	1004.4	60	-60	360	RAB
ORRB-081	700.24	460.35	1005.05	60	-60	360	RAB
ORRB-082	700.16	435.13	1006.34	60	-60	360	RAB
ORRB-083	699.93	410.53	1006.71	60	-60	360	RAB
ORRB-084	700.13	385.46	1006.77	60	-60	360	RAB
ORRB-085	600.22	451.01	1003.49	60	-60	360	RAB
ORRB-086	600.17	415.63	1004.34	72	-60	360	RAB

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
ORRB-087	599.85	388.68	1005.78	63	-60	360	RAB
ORRB-088	599.93	365.43	1006.41	60	-60	360	RAB
ORRB-089	950.25	515.12	1008.14	60	-60	360	RAB
ORRB-090	950.06	490.46	1008.34	60	-60	360	RAB
ORRB-091	1098.77	590.25	1008.79	60	-60	360	RAB
ORRB-092	1099.08	565.28	1009.07	60	-60	360	RAB
ORRB-093	1099.43	540.72	1009.34	60	-60	360	RAB
ORRB-094	1100.02	515.53	1009.34	60	-60	360	RAB
ORRB-095	1100.93	490.39	1009.62	60	-60	360	RAB
ORRB-096	499.95	10.58	998.34	60	-60	360	RAB
ORRB-097	499.97	-14.46	998.34	60	-60	360	RAB
ORRB-098	500.13	-39.86	998.28	60	-60	360	RAB
ORRB-099	500.29	-64.41	998.09	60	-60	360	RAB
ORRB-100	830.1	259.63	1004.19	51	-60	360	RAB
ORRB-101	850.18	253.54	1004.68	72	-50	360	RAB
ORRB-102	870.09	250.51	1005.14	75	-50	360	RAB
ORRB-103	890.22	247.23	1004.49	75	-50	360	RAB
ORRB-104	909.49	244.75	1004.34	66	-50	360	RAB
ORRB-105	939.88	264.62	1004.82	60	-50	360	RAB
ORRB-106	939.96	244.65	1003.46	78	-60	360	RAB
ORRB-107	580.26	307.62	1009.27	60	-60	180	RAB
ORRB-108	449.25	260.35	1002.24	60	-60	360	RAB
ORRB-109	449.36	288.85	1002.42	60	-60	360	RAB
ORRB-110	450.97	320.55	1002.4	60	-60	360	RAB
ORRB-111	450.38	345.85	1002.14	60	-60	360	RAB
ORRB-112	494.86	262.34	1006.34	60	-60	360	RAB
ORRB-113	509.87	287.54	1006.93	60	-60	360	RAB
ORRB-114	509.17	321.64	1005.72	60	-60	360	RAB
ORRB-115	509.18	351.04	1004.4	60	-60	360	RAB
ORRB-116	-249.9	406.08	995.7	60	-60	360	RAB
ORRB-117	-250.01	380.29	995.7	60	-60	360	RAB
ORRB-118	-250.12	355.68	995.7	60	-60	360	RAB
ORRB-119	-250.11	330.58	995.8	60	-60	360	RAB
ORRB-120	-397.61	391.81	994.9	60	-60	360	RAB
ORRB-121	-398.1	366.31	994.7	60	-60	360	RAB
ORRB-122	-398.31	340.71	994.6	60	-60	360	RAB
ORRB-123	-398.52	316.02	994.6	60	-60	360	RAB
ORRB-124	-399.22	290.62	994.6	60	-60	360	RAB
ORRB-125	-546.81	357.25	994.1	60	-60	360	RAB
ORRB-126	-547.61	332.04	994	60	-60	360	RAB
ORRB-127	-547.92	305.54	993.9	60	-60	360	RAB
ORRB-128	-548.32	280.24	993.8	60	-60	360	RAB
ORRB-129	-599.93	266.35	993.4	60	-60	360	RAB

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
ORRB-130	-599.82	241.35	993.4	60	-60	360	RAB
ORRB-131	-599.73	216.06	993.2	66	-60	360	RAB
ORRB-132	-599.74	190.95	993.1	63	-60	360	RAB
ORRB-133	-599.55	165.66	993.1	66	-60	360	RAB
ORRB-135	750.18	374.19	1004.56	60	-60	0	RAB
ORRB-136	749.98	399.69	1005.15	60	-60	0	RAB
ORRB-137	750.58	425.09	1005.46	60	-60	0	RAB
ORRB-139	649.17	349	1007	60	-60	0	RAB
ORRB-140	649.58	373.21	1006.47	66	-60	0	RAB
ORRB-141	649.58	399.51	1006.34	60	-60	0	RAB
ORRB-142	650.28	422.91	1005.71	60	-60	0	RAB
ORRB-143	549.98	350.23	1006.31	60	-60	0	RAB
ORRB-144	550.08	374.73	1004.89	60	-60	0	RAB
ORRB-145	550.09	400.03	1004.34	60	-60	0	RAB
ORRB-146	550.19	424.73	1004.06	60	-60	0	RAB
ORRB-147	510.27	372.34	1004.34	60	-60	0	RAB
ORRB-148	510.18	395.94	1003.34	60	-60	0	RAB
ORRB-150	850.47	357.17	1006.17	60	-60	0	RAB
ORRB-151	1099.69	465.02	1010.58	60	-60	0	RAB
ORRB-152	1099.47	429.22	1011.62	60	-60	0	RAB
ORRB-153	1049.89	489.83	1009.34	60	-60	0	RAB
ORRB-154	1049.99	464.63	1011.11	60	-60	0	RAB
ORRB-155	450.02	549.85	1002.37	60	-60	0	RAB
ORRB-156	450.31	524.65	1002.34	60	-60	0	RAB
ORRB-157	450.4	500.55	1002.34	60	-60	0	RAB
ORRB-158	400.12	549.85	1001.7	60	-60	0	RAB
ORRB-159	399.81	524.66	1001.86	60	-60	0	RAB
ORRB-160	400.11	500.06	1001.34	60	-60	0	RAB
ORRB-161	400.1	449.36	1001.64	60	-60	0	RAB
ORRB-162	400.09	425.05	1001.38	60	-60	0	RAB
ORRB-163	350.32	549.76	1001.4	60	-60	0	RAB
ORRB-164	350.01	525.07	1001.3	60	-60	0	RAB
ORRB-165	350.31	500.37	1001.34	60	-60	0	RAB
ORRB-166	350.1	449.97	1001.34	60	-60	0	RAB
ORRB-167	350.29	425.47	1001.34	60	-60	0	RAB
ORRB-168	300	450.27	1001.34	60	-60	0	RAB
ORRB-169	299.99	424.78	1001.02	60	-60	0	RAB
ORRB-170	240.28	374.68	1000.4	60	-60	0	RAB
ORRB-171	240.08	349.89	1000.44	60	-60	0	RAB
ORRB-172	953.97	342.95	1007.53	60	-60	0	RAB
ORRB-173	999.97	374.64	1008.08	60	-60	0	RAB
ORRC-220	689.94	250.82	1006.66	99	-59	358.4	RC
ORRC-221	710.36	247.13	1004.34	105	-60	358.1	RC

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
ORRC-222	720.12	257.06	1004.34	91	-60.5	359.2	RC
ORRC-223	740.13	237.55	1003.22	115	-58.5	3.8	RC
ORRC-224	749.88	241.59	1003.16	110	-59.5	359.6	RC
ORRC-225	680.11	308.78	1009.08	30	-48	181	RC
ORRC-227	880.04	79.54	1001.34	228	-75	358.5	RC
ORRC-228	670.1	306.88	1009.59	30	-48.5	182.2	RC
ORRC-230	720.45	245.74	1003.59	127	-69.5	2	RC
ORRC-231	720.15	221.85	1002.93	127	-70	356.9	RC
ORRC-232	759.98	222.36	1002.64	170	-71.5	358	RC
ORRC-233	749.97	229.99	1002.94	146	-69.5	1.7	RC
ORRC-234	750.05	262.99	1003.34	80	-58.5	1.1	RC
ORRC-235	748.18	283.95	1004.44	40	-49.5	3	RC
ORRC-236	740.04	261.17	1004	80	-59	0.1	RC
ORRC-237	740.19	231.28	1003.11	140	-69	0.4	RC
ORRC-238	729.99	226.64	1003.11	129	-69	0.9	RC
ORRC-239	740.16	318.09	1004.83	45	-51	178.9	RC
ORRC-240	729.86	308.24	1006.23	31	-49.5	182.2	RC
ORRC-241	718.71	309.22	1006.87	43	-48.5	183	RC
ORRC-242	709.9	305.8	1007.93	35	-50	183.8	RC
ORRC-243	710.79	265.18	1006.04	68	-59	1.7	RC
ORRC-244	710.14	242.98	1004.34	133	-69	5.9	RC
ORRC-245	700.25	219.37	1002.87	163	-68	359.5	RC
ORRC-246	690.89	231.14	1003.34	121	-60	359.2	RC
ORRC-247	680.15	214.67	1002.71	156	-68	1.1	RC
ORRC-248	670.22	227.95	1003.35	115	-54	359.9	RC
ORRC-249	671.17	276.1	1011.14	18	-49	359.2	RC
ORRC-250	690.95	275.98	1009.78	70	-59.3	360	RC
ORRC-251	879.97	162.68	1001.66	165	-70	2.3	RC
ORRC-252	729.98	212.1	1002.67	217	-70	0.3	RC
ORRC-253	760.14	198.38	1002.21	84	-70	356.5	RC
ORRC-254	789.88	282.2	1003.34	70	-70	5.8	RC
ORRC-255	791.88	261.43	1003.34	120	-70	2.8	RC
ORRC-256	789.75	235.3	1002.66	201	-74.3	2.4	RC
ORRC-257	790.1	181.59	1001.76	231	-75	2.8	RC
ORRC-258	758.73	200.79	1002.28	223	-75	354.6	RC
ORRC-259	791.47	215.04	1002.34	200	-75	0	RC
ORRC-260	819.75	263.12	1003.56	120	-70	0	RC
ORRC-261	818.92	245.13	1003.15	150	-75	2.5	RC
ORRC-262	819.96	204.67	1002.28	201	-75	3	RC
ORRC-263	820.07	164.92	1001.34	151	-75	0.9	RC
ORRC-264	620.18	272.18	1012.34	30	-60	181.9	RC
ORRC-265	619.7	294.76	1010.69	51	-60	175.82	RC
ORRC-266	579.22	262.52	1012.08	50	-60	183.7	RC

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
ORRC-267	579.94	276.42	1012.34	50	-60	181.6	RC
ORRC-268	579.85	291.87	1010.78	50	-60	175.7	RC
ORRC-269	781.29	276.57	1003.34	60	-60	359.6	RC
ORRC-270	770.05	279.11	1003.34	60	-60	2.3	RC
ORRC-271	809.95	262.63	1003.34	70	-59.4	0.2	RC
ORRC-272	809.92	247.32	1003.05	100	-59.1	2.9	RC
ORRC-273	809.72	234.08	1002.73	115	-60.2	4	RC
ORRC-274	770.1	238.98	1002.92	100	-58.9	3.3	RC
ORRC-275	718.04	245.34	1003.82	110	-58.3	5.7	RC
ORRC-276	708.24	239.02	1003.95	118	-60.8	359.3	RC
ORRC-277	809.53	287.77	1005.27	40	-57.5	1.2	RC
ORRC-278	800.16	253.69	1003.25	85	-57.7	0.5	RC
ORRC-279	800.15	238.98	1002.79	105	-59.1	1.2	RC
ORRC-280	760.17	283.24	1003.81	35	-58.2	14.5	RC
ORRC-281	750.51	274.21	1004.02	50	-58.1	4.4	RC
ORRC-284	770.18	287.47	1003.34	30	-58.2	2.9	RC
ORRC-285	770.32	268.43	1003.34	60	-58.6	3.4	RC
ORRC-286	770.19	253.77	1003.34	80	-58.9	4.4	RC
ORRC-288	790.22	287.93	1003.34	25	-57.3	3.2	RC
ORRC-289	790.14	263.8	1003.34	65	-57.5	359.1	RC
ORRC-291	739.77	279.32	1005.51	35	-57.9	1.7	RC
ORRC-292	729.64	263.4	1004.34	80	-58.9	4.6	RC
ORRC-293	700.19	238.84	1004.32	110	-58.6	359.4	RC
ORRC-294	780.71	290.89	1003.34	25	-57.8	0.6	RC
ORRC-296	780.45	246.13	1003.14	100	-58.1	0.5	RC
ORRC-297	780.31	230.22	1002.55	112	-59.3	1.2	RC
ORRC-298	650.57	277.65	1012.03	30	-58.6	3.9	RC
ORRC-299	629.04	273.79	1012.34	30	-59.7	1.2	RC
ORRC-300	611.25	264.86	1011.99	40	-58.5	0.1	RC
ORRC-301	649.4	245.28	1007.23	100	-59	357.8	RC
ORRC-302	630.24	242.68	1007.46	80	-58.8	0.2	RC
ORRC-303	679.73	251.12	1007.8	100	-60.5	1.8	RC
ORRC-304	690.14	264.86	1008.34	80	-60.7	0.6	RC
ORRC-305	670.15	248.18	1007.3	110	-60.5	359.9	RC
ORRC-306	641.35	252.49	1009.09	100	-61.5	359.8	RC
ORRC-307	629.82	253.31	1009.27	52	-61	0	RC
ORRC-308	621.25	243.1	1007.19	70	-60	359.5	RC
ORRC-309	599.65	257.81	1010.5	70	-59.5	356.2	RC
ORRC-310	589.97	253.53	1009.69	40	-59.5	359.1	RC
ORRC-311	570.03	262.97	1012.39	30	-62	355.6	RC
ORRC-312	470.02	222.08	1000.58	40	-62.3	4.7	RC
ORRC-313	469.02	175.12	999.34	100	-61.5	3.6	RC
ORRC-314+	530.52	220.58	1002.64	31	-60.5	3.7	RC

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
ORRC-315	519.77	193.86	1000.2	80	-62.5	0.2	RC
ORRC-316	819.24	264.76	1003.82	70	-66.5	0.5	RC
ORRC-317	819.99	236.84	1002.99	37	-60	1.6	RC
ORRC-319	499.3	221.01	1001.61	50	-60.8	0	RC
ORRC-320	530.78	224.42	1003.15	60	-61.1	4.8	RC
ORRC-321	549.93	240	1007.68	22	-60.8	4.2	RC
ORRC-322	810.06	274.61	1004.34	50	-60	358	RC
ORRC-323	630.44	226.71	1004.34	100	-61.5	1	RC
ORRC-324	570.25	213.02	1000.34	40	-60	2	RC
ORRC-326	600.12	224.34	1003.77	95	-60	4.2	RC
ORRC-327	609.42	224.6	1004.34	100	-61	358	RC
ORRC-328	650.43	263.32	1010.54	80	-62.5	0.8	RC
ORRC-329	669.8	267.96	1009.96	79	-60	357.9	RC
ORRC-330	820.06	290.48	1007.57	30	-58.7	0.5	RC
ORRC-331	560.15	230.85	1004.97	55	-61.5	359.6	RC
ORRC-332	600.06	239.87	1005.9	100	-60.5	3	RC
ORRC-333	648.72	231.11	1004.52	120	-61.2	3	RC
ORRC-334	661.19	252.03	1008.76	90	-61.2	2.6	RC
ORRC-335	719.74	277.41	1008.09	30	-56	1	RC
ORRC-339	571.06	230.02	1004.52	60	-59	2.7	RC
ORRC-340	819.96	275.66	1005.61	50	-58	357.5	RC
ORRC-341	840.18	244.96	1003.34	60	-60	4.2	RC
ORRC-342	830.15	255.35	1003.34	80	-60	2.8	RC
ORRC-343	610.24	195.88	1001.34	120	-62	359.1	RC
ORRC-344	590.27	194.77	1000.34	110	-62	0.3	RC
ORRC-345	554.26	190.51	1000.34	100	-62	358.3	RC
ORRC-346	470.15	239.82	1001.81	50	-60	0.1	RC
ORRC-347	450.05	220.23	999.88	60	-60	3.4	RC
ORRC-348	-399.96	-7.12	993.76	150	-60	2.3	RC
ORRC-350	830.11	112.02	1001.34	135	-65	353	RC
ORRC-355	899.45	310.11	1008.54	150	-70	0	RC
ORRC-356	790.08	309.94	1004.34	150	-60	0	RC
ORRC-357	919.99	104.7	1001.34	196	-70	355.5	RC
ORRC-358	869.86	236.44	1003.34	64	-60	4.9	RC
ORRC-359	859.94	229.63	1003.34	142	-60	4	RC
ORRC-360	949.92	249.44	1003.34	28	-55	2.2	RC
ORRC-361	970.13	241.99	1003.34	40	-59	4.2	RC
ORRC-362	929.96	233.08	1003.32	58	-60	2.5	RC
ORRC-363	970.17	226.42	1003.34	64	-59	4.4	RC
ORRC-364	950.1	220.03	1003.17	58	-60	0	RC
ORRC-365	969.96	205.22	1003.34	82	-59	3.6	RC
ORRC-366	850.01	165.96	1001.36	182	-60	357.8	RC
ORRC-367	6.09E-02	259.89	998.34	160	-60	358.1	RC

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
ORRC-368	200.22	279.28	999.44	154	-60	358.1	RC
ORRC-369	950.1	281.84	1005.76	34	-59	2.3	RC
ORRC-370	878.97	280.32	1012.59	52	-62	359.4	RC
ORRC-371	880.27	288.73	1013.34	34	-60	359.6	RC
ORRC-372	839.75	277.61	1010.01	52	-60	357.3	RC
ORRC-373	840.08	291.03	1012.75	40	-70	357.1	RC
ORRC-375	920.13	265.06	1007.33	64	-55	359.5	RC
ORRC-376	879.71	261.3	1007.68	70	-55	357.3	RC
ORRC-377	970.01	58.95	1001.46	226	-70	355	RC
ORRC-379	349.83	170.3	998.34	87	-60	358	RC
ORRC-380	349.64	180.53	999.24	124	-60	360	RC
ORRC-384	760.15	140.08	1001.34	160	-69.5	357	RC
ORRC-385	760.02	88.16	1000.87	200	-68.3	355	RC
ORRC-386+	639.86	143.45	1000.34	104	-72	355	RC
ORRC-387	650.08	186	1001.34	170	-70	357	RC
ORRC-388	759.8	78.74	1000.62	211	-71	355	RC
ORRC-390	900.2	229.59	1003.26	154	-60	354.5	RC
ORRC-391	597.41	322.29	1008.35	148	-59	358.4	RC
ORRC-392	645.16	143.67	1000.34	111	-71	0.5	RC
ORRC-393	460.06	209.65	999.71	64	-64.5	1	RC
ORRC-394	860.04	257.17	1005.92	52	-70	0.7	RC
ORRC-395	0.18	240.25	998.31	208	-70	357.9	RC
ORRC-396	850.85	326.34	1006.94	90	-74	355.7	RC
ORRC-397	950.76	313.81	1006.44	88	-72	2.2	RC
ORRC-398	200.15	360.18	1000.34	118	-60	357.3	RC
ORRC-399	140.18	334.99	999.34	70	-61	1.2	RC
ORRC-400	140.43	268.01	999.76	124	-60	359.6	RC
ORRC-401	0.18	45.4	996.34	220	-65	356.9	RC
ORRC-402	100	173.23	998.34	148	-62	357.2	RC
ORRC-403	49.94	183.45	998.11	100	-60	358.3	RC
ORRC-404	49.95	141.04	997.67	148	-60	354.3	RC
ORRC-405	139.86	182.27	998.34	148	-63	358.3	RC
ORRC-406	139.94	135.4	998.34	196	-63	352.5	RC
ORRC-407+	814.99	50.01	1000.51	76	-75	357	RC
ORRC-408	950.13	269.67	1004.34	136	-70	0.5	RC
ORRC-409	849.83	250.34	1004.34	160	-65	356	RC
ORRC-410	850.03	209.74	1003.04	198	-65	356	RC
ORRC-411	850.04	228.67	1003.34	60	-61	1	RC
ORRC-412	860.03	217.62	1003.23	70	-61	1.2	RC
ORRC-413	870.14	221.7	1003.05	60	-61	0.3	RC
ORRC-414	620.3	214.88	1003.34	95	-61	0.9	RC
ORRC-415	610.21	219.89	1003.47	85	-56	0.6	RC
ORRC-416	540.21	194.71	1000.34	90	-62	0.2	RC

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
ORRC-417	520.13	207.17	1001.34	65	-62	1.3	RC
ORRC-419	510.21	193.14	1000.14	90	-62	2.6	RC
ORRC-420	470.19	185.87	999.34	100	-62	1.3	RC
ORRC-421	710.07	343.45	1005.35	115	-56	182.4	RC
ORRC-422	720.15	343.13	1004.7	120	-57	180.5	RC
ORRC-423	730.23	343.25	1004.35	125	-57	178.9	RC
ORRC-424	900.19	184.19	1002.14	198	-60	356.2	RC
ORRC-425	949.65	214.26	1003.06	180	-70	358.3	RC
ORRC-426	800.03	279.84	1003.34	180	-69	358.4	RC
ORRC-427	170.11	139.67	998.34	174	-61	358	RC
ORRC-428	169.9	199.7	998.61	120	-58	359.2	RC
ORRC-429	120.02	200.13	998.34	114	-60	357.4	RC
ORRC-430	-249.76	234.95	996.05	156	-60	359	RC
ORRC-431	-249.89	150.02	995.42	160	-60	357.7	RC
ORRC-432	-599.93	110.37	993.1	174	-59	2.2	RC
ORRC-435	79.98	-179.88	995.14	90	-70	357	RC
ORRC-440	462.3	82.85	998.57	186	-65	360	RC
ORRC-441	255.94	107.76	998.29	168	-65	360	RC
ORRC-443	79.98	158.37	998.04	126	-60	360	RC
ORRC-445	50.05	168.09	997.95	72	-60	360	RC
ORRC-446	419.91	316.97	1001.05	238	-65	178	RC
ORRC-447	519.95	316.59	1006.85	238	-60	180	RC
ORRC-448	280.11	201.24	999.34	100	-60	0	RC
ORRC-449	280.14	230.51	999.49	80	-60	0	RC
ORRC-450	462.27	77.53	998.48	350	-65	0.5	RC
ORRC451	711.64	164.86	1001.54	35	-60	354.571	RC
ORRC452	712.19	162.74	1001.34	155	-65	354.571	RC
ORRC453	731.38	166.01	1001.94	261	-60	353.571	RC
ORRC454	772.6	176.42	1001.74	249	-60	356.571	RC
ORRC455	874.28	174.55	1002.24	251	-58	354.571	RC
ORRC456	921.09	203.09	1002.84	215	-59	358.571	RC
ORRC457	713.01	116.71	1000.74	293	-60	355.571	RC
ORRC458	733.69	122.84	1000.94	281	-60	354.571	RC
ORRC459	716.6	63.59	1001.34	359	-60	352.571	RC
ORRC460	798.46	42.1	1000.44	371	-60	350.571	RC
ORRC461	875.11	100.67	1001.34	125	-65	357.571	RC
ORRC462	876.19	97.83	1001.34	323	-65	353.071	RC
P1575_1	479.7	210.6	1000.3	65.6	-63.5	1.8	DD
P1600_1	487.7	245.7	1003.6	49.4	-57.9	0	DD
P1625_1	495.51	195	999.3	69.2	-51	356.3	DD
P1650_1	502.9	242	1004.1	40.8	-83.6	0	DD
P1650_2	502.91	242.9	1004.1	51.8	-63.3	0	DD
P1650_3	502.1	200.7	1000.3	85.3	-56.2	0	DD

HOLE_ID	LOCAL_EAST	LOCAL_NORTH	LOCAL_RL	MAX_DEPTH	COLLAR_DIP	COLLAR_AZI	HOLE_TYPE
P1675_1	510.41	210.3	1000.7	62.5	-62.8	3.9	DD
P1700	521.2	155.8	1000	134.1	-90	0	DD
P1700_1	518.51	240.5	1004.6	52.4	-85.1	0	DD
P1700_2	518.5	241.4	1004.7	33	-61.3	0	DD
P1700_3	516.61	190.51	1000.3	55.2	-53	0	DD
P1700_4	516.81	185.9	1000.4	61.7	-53	0	DD
P1750_2	533.1	239.9	1005.2	52.4	-54.9	0	DD
P1750_3	532.2	196.6	1000.1	91.4	-53.6	0	DD
P1800_1	548.9	157.9	1001.5	138.7	-90	0	DD
P1850_1	565.1	243.2	1007	51.2	-90	0	DD
P1850_2	565.1	244.16	1007	52.4	-61.3	0	DD
P1900_1	578.21	243.2	1007	52.43	-90	0	DD
P1900_2	578.2	244.1	1007	53.34	-60	0	DD
P1900_3	577.9	203.1	1000.4	85.3	-49.3	0	DD
P1950_1	592.81	237.4	1005.5	55.2	-61.3	0	DD
P1950_2	592.81	215.5	1003.4	76.8	-61.3	0	DD
P2000_1	609.61	276.81	1012.3	52.4	-90	0	DD
P2000_3	608.31	238.91	1005.3	54.9	-90	0	DD
P2000_4	608.5	240.21	1005.4	67	-61.3	0	DD
RCH1+	-990.93	323.8	991.79	115	-90	333.5	RCDH
RCH2	-996	314.98	992	25	-80	333.5	RCDH
RCH3	-992.41	308.65	991.41	31	-80	333.5	RCDH
RCH4	-1004.59	288.65	991.31	62.5	-60	18.5	RCDH
RCH5	-1019.8	269.63	991.07	75.5	-60	18.5	RCDH
RCH6	-985	270.97	991.9	68.5	-60	18.5	RCDH
RCH7	-945.01	274.97	992.2	50.5	-60	18.5	RCDH

About CuFe Ltd

CuFe Ltd (ASX: CUF) is an emerging copper and iron ore company. Our strategy is focused on near-term, high grade premium product iron ore projects and exposure to copper, a key strategic metal. The company has interests in various projects and tenements prospective for iron ore, copper and gold, all located in Australia.

Registered Office

32 Harrogate Street West Leederville WA

T: +61 8 6181 9793 E: admin@cufe.com.au

Share Registry

Link Market Services Ltd Level 12, QV1 Building 250 St Georges Terrace, Perth WA 6000 www.linkmarketservices.com.au

For further announcements please visit asx.com.au and cufe.com.au

For further information please contact:

Investor Relations

- **U** +61 8 6181 9793
- 🔀 ir@cufe.com.au

Follow us

- 🄰 @CuFeLtd
- in CuFeLtd