

ASX ANNOUNCEMENT

23 January 2025

IMPRESSIVE GOLD RESULTS FROM BRIGHTSTAR'S MAIDEN DRILLING CAMPAIGNS AT MONTAGUE-BOULDER AND WHISTLER DEPOSITS

HIGHLIGHTS

- Brightstar has received final results from a ~6,000m Reverse Circulation (RC) drilling program completed in Q4 2024, targeting depth extensions and infill resource drilling at the Whistler and Montague-Boulder deposits located 70km north-east of Sandstone
- Final assay results from the Whistler deposit include:
 - WHRC24006:
 - 4m @ 59.0 g/t Au from 24m
 - 5m @ 7.64 g/t Au from 182m
 - WHRC24002:
 - 9m @ 7.16 g/t Au from 123m
- All assay results from the Montague-Boulder deposit are also now returned, significant intercepts include:
 - MBRC24024:
 - 2m @ 33.7 g/t Au from 100m, including 1m @ 66.1 g/t Au from 101m
 - MBRC24012:
 - 1m @ 66.7 g/t Au from 130m
 - MBRC24014:
 - 7m @ 5.39 g/t Au from 127m including 1m @ 16.4 g/t from 131m
 - **MBRC24022:**
 - 3m @ 8.27 g/t Au from 93m including 1m @11.6 g/t from 94m
 - **MBRC24007:**
 - 4m @ 4.95 g/t Au from 0m
 - **MBRC24016:**
 - 2m @ 7.98 g/t Au from 117m including 1m @ 14.2 g/t from 117m
- Results have confirmed material high-grade extensions to known mineralisation and bode well for planned follow up growth-focused programs targeting increases to the Mineral Resources
- The RC rig has re-commenced drilling at Lord Nelson, targeting along strike / down dip extensions and infilling key areas of the deposit
- The consolidated Sandstone Gold Project hosts 1.5Moz at 1.5 g/t Au from surface and the Company is undertaking an aggressive 55,000m RC drilling program to rapidly expand the existing Mineral Resource

Brightstar Resources Limited (ASX: BTR) (**Brightstar**) is pleased to announce final results from the inaugural Reverse Circulation (RC) drilling campaigns completed at the Montague-Boulder and Whistler deposits, located 70km NE of Sandstone. The deposits form part of the greater Sandstone Gold Project, which hosts a current Mineral Resource Estimate (**MRE**) of **1.5Moz @ 1.5g/t Au**.

The Montague-Boulder and Whistler deposits together host a combined gold resource of **4.7Mt at 1.8g/t Au, for 283koz Au**. The Whistler RC drilling program totalled ~3,300m and was designed to infill mineralisation beneath the existing open pit, ensuring sufficient drill spacing for future MRE updates to support indicated resource classification. Additionally, several extensional holes were drilled to explore the northern and southern extents of the mineralisation. The ~2,800m Montague-Boulder Program aimed to test areas at the extents of the current resource, as well as beneath the existing pit.

Brightstar's Managing Director, Alex Rovira, commented "The final results from the Whistler deposit are extremely encouraging, highlighting the broad, high-grade nature of the mineralisation. Similarly, the results from Montague-Boulder are particularly interesting as in the northern extents shallow dipping, high-grade mineralised shoots are observed to extend beyond previously defined lodes. We look forward to sharing further results as they become available, with assays still pending from our 2024 drill season at Sandstone and Laverton.

Drilling has recommenced, with the RC rig at the Lord Nelson deposit in Sandstone continuing from where the 2024 campaign paused before Christmas. This program includes Brightstar's first drill holes at Sandstone, initiated just days after the completion of the acquisition of Alto Metals, showcasing Brightstar's steadfast commitment to organic growth through exploration".

TECHNICAL DISCUSSION

The 120koz Au Whistler deposit and the 163koz Au Montague-Boulder deposit lie within the Montague zone of the Gum Creek Greenstone Belt. This belt consists of a northwest-trending sequence of metamorphosed basalts, banded iron formations, felsic volcanic rocks, and sedimentary units, intruded by concordant dolerite, gabbro, and granodiorite bodies.

The deposits are associated with the margins of a felsic intrusion, the Montague Granodiorite, with Whistler located at the northern tip, and Montague-Boulder on the western margin.

At Whistler, mineralisation is mostly within the granodiorite, close to the contact with a basalt unit. The site of the mineralisation appears to be related to an embayment in the granodiorite contact. Drilling encountered mineralisation hosted within strongly silica-pyrite-chlorite altered granodiorite, associated with quartz-carbonate veining.

Figure 1 – Plan view map of Montague East drill collar locations

Figure 2 - Whistler cross section (A - A') showing results for RC drill holes WHRC24004 and WHRC24005 with mineralised >1g/t Au intercepts shown

Mineralisation at Montague-Boulder is observed in shallow WSW-dipping shear lodes, interpreted as thrust faults developed along flow boundaries within the basalt sequence, extending into the granodiorite. Near-surface mineralisation is significantly thicker, typically ranging from 15 to 30 metres, and likely due to in-situ supergene enrichment. In fresh rock, mineralisation generally measures 3 to 7 metres in thickness, with a high-grade zone of 1 to 3 metres wide.

The drilling intersected deeply weathered material hosting multiple intervals of quartz veining, with gold mineralisation associated with substantial quartz content. Extensional drilling to the north of the Montague-Boulder pit confirmed extensions to the mineralisation along strike, with shallow west-dipping lodes of similar character to those previously mined.

Figure 3 – Montague-Boulder cross section (B - B') showing results for RC drill holes WHRC24004 and WHRC24005 with mineralised >1g/t Au intercepts shown

Hole ID	From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram- metres
WHRC24001	28	32	4	1.64	4m @ 1.64g/t from 28m in WHRC24001	6.56
WHRC24002	123	132	9	7.16	9m @ 7.16g/t from 123m in WHRC24002	64.45
WHRC24002	154	158	4	2.02	4m @ 2.02g/t from 154m in WHRC24002	8.08
WHRC24006	24	28	4	59.0	4m @ 59.0g/t from 24m in WHRC24006	236
WHRC24006	176	179	3	1.35	3m @ 1.35g/t from 176m in WHRC24006	4.05
WHRC24006	182	187	5	7.64	5m @ 7.64g/t from 182m in WHRC24006	38.19

Table 1 – Significant Intercepts (>1.0g/t Au) for the Whistler RC drilling, +10 gram-metre intercepts highlighted.

Table 2 – Significant Intercepts (>1.0g/t Au) for the Montague-Boulder RC drilling, +10 gram-metre intercepts highlighted.

Hole ID		From (m)	To (m)	Drilled Interval	Au (g/t)	Interval	Gram- metres
MBRC24001				(m)		NSI	
MBRC24002		94	95	1	1.66	1m @ 1.66g/t from 94m in MBRC24002	1.66
MBRC24003						NSI	
MBRC24004		67	68	1	1.31	1m @ 1.31g/t from 67m in MBRC24004	1.31
MBRC24005						NSI	
MBRC24006		94	95	1	2.10	1m @ 2.10g/t from 94m in MBRC24006	2.1
MBRC24007		0	4	4	4.95	4m @ 4.95g/t from 0m in MBRC24007	19.8
MBRC24008		0	8	8	1.57	8m @ 1.57g/t from 0m in MBRC24008	12.52
WBRC24008	and	110	113	3	1.21	3m @ 1.21g/t from 110m in MBRC24008	3.64
MBRC24009		163	164	1	9.32	1m @ 9.32g/t from 163m in MBRC24009	9.32
		66	67	1	1.63	1m @ 1.63g/t from 66m in MBRC24011	1.63
MBRC24011		75	76	1	1.50	1m @ 1.50g/t from 75m in MBRC24011	1.5
		80	81	1	1.22	1m @ 1.22g/t from 80m in MBRC24011	1.22
		84	85	1	1.03	1m @ 1.03g/t from 84m in MBRC24011	1.03
MBRC24012		130	131	1	66.7	1m @ 66.7g/t from 130m in MBRC24012	66.7
MBRC24013		136	137	1	2.66	1m @ 2.66g/t from 136m in MBRC24013	2.66
		30	32	2	2.00	2m @ 2.00g/t from 30m in MBRC24014	4
MBRC24014	and	127	134	7	5.39	7m @ 5.39g/t from 127m in MBRC24014	37.75
	including	131	132	1	16.4	1m @ 16.4g/t from 131m in MBRC24014	16.4

		52	56	4	1.54	1.54 4m @ 1.54g/t from 52m in MBRC24015	
	and	85	86	1	1.18	1m @ 1.18g/t from 85m in MBRC24015	1.18
WBRC24015	and 127 and 132		128	1	5.06	1m @ 5.06g/t from 127m in MBRC24015	5.06
			134	2	2.95	2m @ 2.95g/t from 132m in MBRC24015	5.89
MDDC24016		117	119	2	7.98	2m @ 7.98g/t from 117m in MBRC24016	15.95
WIDKC24010	including	117	118	1	14.2	1m @ 14.2g/t from 117m in MBRC24016	14.2
MRRC24017		39	40	1	1.30	1m @ 1.30g/t from 39m in MBRC24017	1.3
WBRC24017	and	86	87	1	2.06	1m @ 2.1g/t from 86m in MBRC24017	2.06
MBRC24018						NSI	
MBRC24019						NSI	
MBRC24020		73	77	4	1.28	4m @ 1.28g/t from 73m in MBRC24020	5.13
		79	80	1	1.55	1m @ 1.55g/t from 79m in MBRC24021	1.55
MBRC24021	and	88	89	1	1.22	1m @ 1.22g/t from 88m in MBRC24021	1.22
	and	93	94	1	1.93	1m @ 1.93g/t from 93m in MBRC24021	1.93
		93	96	3	8.27	3m @ 8.27g/t from 93m in MBRC24022	24.82
WIDRC24022	including	94	95	1	11.6	1m @11.6g/t from 94m in MBRC24022	11.6
MBRC24023		105	109	4	2.26	4m @ 2.26g/t from 105m in MBRC24023	9.02
		100	102	2	33.7	2m @ 33.7g/t from 100m in MBRC24024	67.37
WIDKC24024	including			1	66.1	1m @ 66.1g/t from 101m in MBRC24024	66.1

Table 3 – Whistler 2024 Reverse Circulation collar information.Holes located on tenements M57/217. Grid coordinates shown in MGA94 Zone 50.

Hole ID	Hole Type / EOH drill method	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)	Status
WHRC24001	RC	751720	6967987	514	270	-60	78	This ASX Announcement
WHRC24002	RC	751708	6968012	514	270	-55	162	This ASX Announcement
WHRC24003	RC	751738	6968013	514	270	-55	204	Previously Announced
WHRC24004	RC	751711	6968037	514	270	-50	168	Previously Announced
WHRC24005	RC	751719	6968037	514	270	-55	168	Previously Announced
WHRC24006	RC	751739	6968037	514	270	-55	210	This ASX Announcement
WHRC24007	RC	751703	6968087	514	270	-50	162	Previously Announced
WHRC24008	RC	751796	6968112	515	270	-60	156	Previously Announced
WHRC24009	RC	751693	6968162	514	270	-50	160	Previously Announced
WHRC24010	RC	751728	6968162	514	270	-60	240	Previously Announced
WHRC24011	RC	751694	6968187	514	270	-50	162	Previously Announced

WHRC24012	RC	751705	6968187	514	270	-60	210	Previously Announced
WHRC24013	RC	751722	6968187	514	270	-60	240	Previously Announced
WHRC24015	RC	751689	6968212	514	270	-60	192	Previously Announced
WHRC24016	RC	751705	6968212	514	270	-60	222	Previously Announced
WHRC24018	RC	751678	6968232	514	270	-60	174	Previously Announced
WHRC24019	RC	751671	6968240	514	270	-57	150	Previously Announced
WHRC24021	RC	751617	6968260	514	230	-50	84	Previously Announced
WHRC24022	RC	751617	6968272	514	250	-55	78	Previously Announced
WHRC24023	RC	751619	6968313	515	270	-60	84	Previously Announced

Table 4 – Montague-Boulder 2024 Reverse Circulation collar information.Holes located on tenements M57/98. Grid coordinates shown in MGA94 Zone 50.

Hole ID	Hole Type / EOH drill method	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)	Status
MBRC24001	RC	750955	6966529	506	90	-60	90	This ASX announcement
MBRC24002	RC	750920	6966529	506	90	-60	110	This ASX announcement
MBRC24003	RC	750885	6966529	506	90	-60	130	This ASX announcement
MBRC24004	RC	750951	6966589	506	90	-60	90	This ASX announcement
MBRC24005	RC	750915	6966589	506	90	-60	105	This ASX announcement
MBRC24006	RC	750876	6966589	506	90	-60	125	This ASX announcement
MBRC24007	RC	750668	6966789	512	90	-50	210	This ASX announcement
MBRC24008	RC	750786	6966819	515	90	-60	125	This ASX announcement
MBRC24009	RC	750687	6966819	514	90	-50	195	This ASX announcement
MBRC24011	RC	750806	6966999	509	130	-60	110	This ASX announcement
MBRC24012	RC	750733	6967001	507	110	-60	155	This ASX announcement
MBRC24013	RC	750927	6967028	508	100	-59	175	This ASX announcement
MBRC24014	RC	750980	6967039	508	90	-60	150	This ASX announcement
MBRC24015	RC	750921	6967046	508	97	-65	165	This ASX announcement
MBRC24016	RC	750978	6967099	508	90	-60	135	This ASX announcement
MBRC24017	RC	751008	6967129	508	90	-60	90	This ASX announcement
MBRC24018	RC	751121	6967189	509	90	-60	30	This ASX announcement

MBRC24019	RC	751069	6967189	509	90	-60	50	This ASX announcement
MBRC24020	RC	750910	6967309	509	90	-60	90	This ASX announcement
MBRC24021	RC	750806	6967309	509	90	-60	120	This ASX announcement
MBRC24022	RC	750846	6967339	509	90	-60	120	This ASX announcement
MBRC24023	RC	750761	6967339	509	90	-60	130	This ASX announcement
MBRC24024	RC	750805	6967369	509	90	-60	125	This ASX announcement

This ASX announcement has been approved by the Managing Director on behalf of the board of Brightstar.

FOR FURTHER INFORMATION, PLEASE CONTACT:

Alex Rovira Managing Director Email: alex@brightstarresources.com.au

Investor Relations Lucas Robinson Phone: +61 408 228 889 Email: <u>lucas@corporatestorytime.com</u>

ABOUT BRIGHTSTAR RESOURCES

Brightstar Resources Limited is a Perthbased gold development company listed on the Australian Securities Exchange (ASX: BTR).

The Company hosts a portfolio of high quality assets hosted in the prolific Goldfields and Murchison regions of Western Australia, which are ideally located proximal to significant regional infrastructure and suppliers.

The company currently operates the underground Second Fortune Gold Mine south of Laverton, and recently completed the Selkirk Mining JV at Menzies pouring first gold in March 2024.

In August 2024, Brightstar announced the consolidation of the Sandstone district with the integration of the Sandstone and Montague East Gold Project into Brightstar resulting in a total combined JORC Mineral Resource of **3.0Moz Au at 1.5g/t Au.** The resource is spread across three geographically separate hubs, providing excellent optionality for a staged development of all assets to build to a meaningful ASX-listed gold producer.

Brightstar Consolidated JORC Mineral Resources

Location		Me	easured		In	dicated	I		Inferred			Total	
	Au Cut-off (g/t)	Kt	g/t Au	Ko z	Kt	g/t Au	Koz	Kt	g/t Au	Koz	Kt	g/t Au	Koz
Alpha	0.5	623	1.6	33	374	2.1	25	455	3.3	48	1,452	2.3	106
Beta	0.5	345	1.7	19	576	1.6	29	961	1.7	54	1,882	1.7	102
Cork Tree Well	0.5	-	-	-	3,036	1.6	157	3,501	1.3	146	6,537	1.4	303
Lord Byron	0.5	453	1.8	26	1,141	1.6	58	2,929	1.7	160	4,523	1.7	244
Fish	0.6	26	7.7	6	149	5.8	28	51	4.3	7	226	5.7	41
Gilt Key	0.5	-	-	-	15	2.2	1	153	1.3	6	168	1.3	8
Second Fortune (UG)	2.5	17	16.9	9	78	8.2	21	71	12.3	28	165	10.9	58
Total – Laverton		1,464	2.0	93	5,369	1.8	319	8,121	1.7	449	14,953	1.8	862
Lady Shenton System	0.5	-	-	-	2,770	1.3	119	4,200	1.3	171	6,970	1.2	287
Yunndaga	0.5	-	-	-	1,270	1.3	53	2,050	1.4	90	3,320	1.3	144
Yunndaga (UG)	2.0	-	-	-	-	-	-	110	3.3	12	110	3.3	12
Aspacia	0.5	-	-	-	137	1.7	7	1,238	1.6	62	1,375	1.6	70
Lady Harriet System	0.5	-	-	-	520	1.3	22	590	1.1	21	1,110	1.2	43
Link Zone	0.5	-	-	-	145	1.2	6	470	1.0	16	615	1.1	21
Selkirk	0.5	-	-	-	30	6.3	6	140	1.2	5	170	2.1	12
Lady Irene	0.5	-	-	-	-	-	-	100	1.7	6	100	1.7	6
Total – Menzies		-	-	-	4,872	1.4	214	8,898	1.3	383	13,770	1.3	595
Montague-Boulder	0.6	-	-	-	522	4.0	67	2,556	1.2	96	3,078	1.7	163
Whistler (OP) / Whistler (UG)	0.5 / 2.0	-	-	-	-	-	-	1,700	2.2	120	1,700	2.2	120
Evermore	0.6	-	-	-	-	-	-	1,319	1.6	67	1,319	1.6	67
Achilles Nth / Airport	0.6	-	-	-	221	2.0	14	1,847	1.4	85	2,068	1,5	99
Julias ¹ (Resource)	0.6	-	-	-	1,405	1.4	61	503	1.0	16	1,908	1.3	77
Julias ² (Attributable)	0.6	-	-	-							1,431	1.3	58
Total – Montague	(Global)	-	-	-	2,148	2.1	142	7,925	1.5	384	10,073	1.6	526
Total – Montague	(BTR) ^{1,2}	-	-	-	2,148	2.1	142	7,925	1.5	384	9,596	1.6	502
Lord Nelson	0.5	-	-	-	1,500	2.1	100	4,100	1.4	191	5,600	1.6	291
Lord Henry	0.5	-	-	-	1,600	1.5	78	600	1.1	20	2,200	1.4	98
Vanguard Camp	0.5	-	-	-	400	2.0	26	3,400	1.4	191	3,800	4.5	217
Havilah Camp	0.5	-	-	-	-	-	-	1,200	1.3	54	1,200	1.3	54
Indomitable Camp	0.5	-	-	-	800	0.9	23	7,300	0.9	265	8,100	0.9	288
Bull Oak	0.5	-	-	-	-	-	-	2,500	1.1	90	2,500	1.1	90
Ladybird	0.5	-	-	-	-	-	-	100	1.9	8	100	1.9	8
Total – Sandst	one	-	-	-	4,300	1.6	227	19,200	1.3	819	23,500	1.4	1,046
Total – BTR (Attrik	outable)	1,464	2.0	93	16,689	1.7	902	44,144	1.4	2,035	61,819	1.5	3,005

Note some rounding discrepancies may occur.

Pericles, Lady Shenton & Stirling consolidated into Lady Shenton System; Warrior, Lady Harriet & Bellenger consolidated into Lady Harriet System. Julias is located on M57/427, which is owned 75% by Brightstar and 25% by Estuary Resources Pty Ltd.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Brightstar Resources Limited's planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Brightstar believes that its expectations reflected in these forward- looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that further exploration will result in the estimation of a Mineral Resource.

Competent Person Statement – Exploration

The information presented here relating to exploration of the Menzies, Laverton and Sandstone Gold Project areas are based on information compiled by Mr Edward Keys, MAIG. Mr Keys is a Member of the Australasian Institute of Geoscientists (AIG) and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a "Competent Person" as that term is defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)". Mr Keys is a fulltime employee of the Company in the position of Exploration Manager and has provided written consent approving the inclusion of the Exploration Results in the form and context in which they appear.

Competent Person Statement – Mineral Resource Estimates

This Announcement contains references to Brightstar's JORC Mineral Resource estimates, extracted from the ASX announcements titled "Cork Tree Well Resource Upgrade Delivers 1Moz Group MRE" dated 23 June 2023, "Maiden Link Zone Mineral Resource" dated 15 November 2023, "Aspacia deposit records maiden Mineral Resource at the Menzies Gold Project" dated 17 April 2024, "Brightstar Makes Recommended Bid for Linden Gold", dated 25 March 2024, "Brightstar to drive consolidation of Sandstone Gold District" dated 1 August 2024 and "Scheme Booklet Registered by ASIC" dated 14 October 2024.

Brightstar confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the Mineral Resource estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Compliance Statement

With reference to previously reported Exploration Results and Mineral Resources, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

APPENDIX 1: JORC CODE, 2012 EDITION – TABLE 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections)

Brightstar Resources Drilling

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Industry standard RC drilling and sampling protocols for lode and supergene gold deposits have been utilised throughout the BTR campaign. BTR RC holes were sampled using 4m composite spear samples or 1 metre cone-split samples. RC drilling techniques are used to obtain samples of the entire downhole length. RC samples were taken using a 10:1 Sandvik static cone splitter mounted under a polyurethane cyclone to obtain 1m samples. Approximately 2kg samples were submitted to the laboratory. Brightstar samples were submitted to Bureau Veritas Laboratory in Kalgoorlie where the entire sample was crushed, pulverised, split and assayed by fire assay using a 50-gram charge. Sample spoils from selected RC drill holes were placed into green bags for possible future use when required.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard	• BTR RC holes were drilled utilising a 5.5 inch face sampling hammer and surveyed using a Axis Champ true-North-seeking gyroscopic survey tool. Drilling was conducted by Topdrill using a Schramm C685 drill rig with a booster compressor.

is oriented and if so, by what method, etc).	Gyro Compass true-North-seeking).
Drill sample recovery Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Interview Interview	RC sample recovery was qualitatively assessed and recorded by comparing drill chip volumes (sample bags) for individual meters. Sample depths were cross-checked every rod (6m). The cyclone was regularly cleaned to ensure no material build up and sample material was checked for any potential downhole contamination. Wet samples were recorded, although the majority of the samples were dry. In the CP's opinion the drilling sample recoveries/quality are acceptable and are appropriately representative for the style of mineralisation. Sample recoveries are recorded on sample registers with sample recovery and moisture content estimated. Good sample recovery was standard in reported programs. No grade versus sample recovery biases, or biases relating the loss or gain of fines have been identified in BTR's drilling. All samples are weighed at the laboratory and reported as a part of standard preparation protocols. No water compromised samples were reported in this program. Drilling is carried out orthogonal to the mineralisation to get representative samples of the mineralisation. RC samples are collected through a cyclone and cone splitter. The sample required for the assay is collected directly into a calico sample bag at a designed 2kg sample mass which is optimal for full sample crushing and pulverisation at the assay laboratory
Logging • Whether core and chip samples have been geologically and geotechnically • logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. •	RC holes were logged on one metre intervals at the rig by the geologist from drill chips. Logging was recorded directly into LogChief computer software.

	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Detailed geological logging includes the lithology, alteration, veining and mineralisation of the drill chips or core. Logging is both quantitative and qualitative in nature, depending on the feature. 100% of BTR drilling is geologically logged.
Sub-sampling techniques and	• If core, whether cut or sawn and whether quarter, half or all core taken.	• RC drilling single 1 metre splits were automatically taken at the
sample preparation	• If non-core, whether riffled, tube sampled, rotary split, etc and whether	time of drilling by a cone splitter attached to the cyclone.
	 sampled wet or ary. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to 	 For interpreted non-mineralised areas, 4 metre composite samples were collected from the drill rig by spearing each 1m collection bag. The 4 metre composites were submitted for assay.
	 maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second- 	• Composite samples returning grade >0.1 g/t Au were resampled as 1m cone-split samples with samples having been collected for upcoming laboratory analyses.
	 half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 For interpreted mineralised areas, the 1 metre splits were bagged on the static cyclone splitter on the RC rig. QAQC samples (blanks and standards) were submitted for all samples at a rate between 1:10 and 1:20
		 Duplicate samples were taken over selected interpreted mineralised intervals to determine if sampling is representative.
		 Sample preparation comprised industry standard oven drying, crushing, and pulverisation to less than 75 microns. Homogenised pulp material was used for assaying.
		 Internal certified laboratory QAQC is undertaken including check samples, blanks and internal standards. Samples volumes were typically 1.0-4.0 kg and are considered to be of suitable size for the style of mineralisation.

Quality of assay data and	• The nature, quality and appropriateness of the assaying and laboratory	• 1m and 4m composite samples were assayed by 50g Fire Assay
laboratory tests	procedures used and whether the technique is considered partial or total.	by Bureau Veritas Laboratory, Kalgoorlie for gold. Additional
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make	elemental analyses are conducted by Bureau Veritas, Perth.
	and model, reading times, calibrations factors applied and their derivation,	certified reference material, blanks, splits and replicates. QC
	etc.	results (blanks, coarse reject duplicates, bulk pulverised,
	• Nature of quality control procedures adopted (eg standards, blanks,	standards) are monitored and were within acceptable limits.
	duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	~5-10% standards were inserted to check on precision of laboratory results.
		Brightstar uses a lead collection Fire Assay, with an ICP-AAS
		(atomic absorption spectroscopy) finish. The lower detection
		limit for this technique is 0.01ppm Au and the upper limit is
		and mineralisation and is industry standard for this type of
		sample. In addition to standards, duplicates and blanks
		previously discussed, Bureau Veritas conducted internal lab
		checks using standards and blanks.
		No geophysical measurements were collected.
Verification of sampling and	• The verification of significant intersections by either independent or	 Significant intersections have been reviewed by several
assaying	alternative company personnel.	company personnel.
	• The use of twinned holes.	Data storage was captured electronically onsite using a
	• Documentation of primary data, data entry procedures, data verification,	standard set of templates, before uploading to a cloud-based
	data storage (physical and electronic) protocols.	server and imported into an externally managed Datashed
	 Discuss any adjustment to assay data. 	geological database.
		Security is set through both SQL and the DataShed configuration software. Prightstar has an external consultant
		Database Administrator with expertise in programming and
		SOL database administration. Access to the database by the
		geoscience staff is controlled through security groups where

		 they can export and import data with the interface providing full audit trails. Assay data is provided in MaxGEO format from the laboratories and imported by the Database Administrator. The database assay management system records all metadata within the MDS, providing full audit trails to meet industry best practice. No data was adjusted. No transformations or alterations are made to assay data stored in the database. The lab's primary Au field is the one used for plotting purposes. No averaging of results for individual samples is employed. No top cuts are applied to the assays when calculating intercepts.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill collar locations were initially surveyed using a handheld GPS, accurate to within 3-5m. All RC and DD holes are routinely surveyed by differential GPS (DGPS) once drilling is complete, although this has not yet occurred for recently completed holes at Montague-East or Sandstone Some historic drill collars have existing DGPS surveys The grid system used is MGA94 Zone 51 (Fish) and MGA94 Zone 50 (Whistler). All reported coordinates are referenced to these grids. The site topography utilised DTM imagery from 2020-2024 with accuracy <1m.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Holes are variably spaced. The current Whistler RC and Montague-Boulder RC is planned to infill the spacing to approximately 20m x 20m Results will be used to update previously reported Mineral Resources at Whistler and Montague-Boulder. No sample compositing of field samples has been applied.

Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The relationship between the drilling orientation and the orientation of mineralised structures is not considered to have introduced a sampling bias. Most holes have been drilled perpendicular to the main orientation of mineralisation. The drill holes were designed to best test the interpreted geology in relation to known mineralisation trends, regional structure and lithological contacts. Drilling was all inclined with orientation based on predicted geological constraints. No drilling orientation related sampling bias has been identified at the project.
Sample security	• The measures taken to ensure sample security.	• Samples were collected on site under supervision of the geologist. Visitors needed permission to visit site. Once collected samples were bagged, they were transported to Kalgoorlie by company personnel or trusted contractors for assaying with Bureau Veritas. Despatch and consignment notes were delivered and checked for discrepancies.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• Sampling techniques and data has been reviewed internally by company personnel.

SECTION 2 REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land	• Type, reference name/number, location and ownership including	The Whistler Project is located within Mining Lease M57/217
tenure status	agreements or material issues with third parties such as joint ventures,	(34.45 Ha).
	partnerships, overriding royalties, native title interests, historical sites,	The Montague-Boulder project is located within Mining lease
	wilderness or national park and environmental settings.	M57/98 (121.15 Ha)

		1	
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	•	All are granted tenements with gold rights owned 100% by Brightstar Resources Limited held in good standing with no known impediments.
		•	Brightstar, via its wholly-owned subsidiary Montague Gold Project Pty Ltd (MGP), has acquired the interests held by Gateway (including Whistler & Montague-Boulder) and its wholly owned subsidiary Gateway Projects Pty Ltd (GPWA) in certain mining tenements in respect of Gateway's Montague Gold Project, with Brightstar obtaining 100% of the gold mineral rights and Gateway retaining all other mineral rights.
			E57/1060 are subject to a joint venture agreement, whereby the Company holds an 80% interest and Element 25 Limited holds the remaining 20% interest. M57/429, M57/485 and E57/793 are subject to a joint venture agreement, whereby the Company holds a 75% interest and Estuary Resources holds the remaining 25% interest. E57/405, E57/687, E57/793, E57/793, E57/823, E57/824, E57/875, E57/888, M57/217, M57/48, M57/485, M57/98, M57/99, P57/1409, P57,1410, P57/1411 and P57/1413 are subject to a farm-in joint venture agreement with Premier 1 Lithium Limited (ASX:PLC), whereby PLC will the right to acquire an 80% interest in the lithium rights (and related by-products). The Company retains the precious metals rights.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	•	Montague East Gold was discovered in the district during the gold rush era, first records of gold won from small-scale, high-grade workings include the Montague Mining Centre (1904-13). Renewed interest in the late 1960's included base metal exploration carried out within exposed stratigraphy of the Montague Ranges (Bungarra Ranges), exploration interest that broadened with the release of the

	Sandstone 1:250,000 aeromagnetic sheet in 1970 resulting in the staking of favourable magnetic anomalies by exploration companies.
	Early explorers in the Montague Ranges included Anaconda Australia Inc. (1966-67), followed by International Nickel Australia (1971-75) evaluating a Gabbro - banded differentiated basic complex believed prospective for copper and/or nickel such as the Dulith Gabbro, USA. Strong geophysical and mineralised anomalism was encountered, however, copper-zinc enrichment was also encountered in adjacent felsic stratigraphy at Ed's Bore prospect, which was followed-up by CRA Exploration (1983-1990) to intersect polymetallic VMS enrichments at Bevan prospect (not substantively pursued).
	At Montague, Western Mining Corporation (1976) conducted investigations for copper and gold including soil sampling and IP surveying, which was followed by CRA Exploration (1984-89) working concurrently with AMOCO Minerals Australia Company (1984) and Clackline Refractories Ltd (from 1985 - to later become Herald Resources) assessing/purchasing historic mine areas from Mr W.J. Griffiths of Sandstone. RAB drilling penetrating transported cover resulted in the virgin discoveries of NE Pit by AMOCO and Whistler deposit by CRA. Later noted explorers included Dalrymple Resources NL (1987-1990) intersecting gold at the Armada (Twister) prospect, and Arimco Mining (1990- 98) intersecting gold at Lyle prospect, Victory West prospect, and copper at The Cup prospect (not substantively pursued).
	 The Montague Mining Centre produced approximately 150,000oz of gold commencing in 1986 at Caledonian and NE Pits (Clackline),

			and continued at Montague Boulder from 1988 (Herald), and was
			to close in 1993 after completion of the Rosie Castle open cut
			(Herald). Whistler open cut was mined from November 1990
			(Polaris Pacific NL) and ore toll treated through the Herald mill.
			Little attention was paid to mineralisation other than gold.
			Gateway Mining in joint venture with Herald Resources continued
			exploration of the Montague Mining Centre, Gateway also
			targeting poly-metallic intrusion related - VMS models in the district from 2006.
		•	Airport, Airport Sth, S Bend, Rosie Nth, Rosie Sth mineralisation
			was discovered by Gateway Mining between 2007 and 2011 in RAB
		_	drilling and later defined by RC drilling.
Geology	• Deposit type, geological setting and style of mineralisation.	•	The Montague East Project is located in the Gidgee district in the
			Archean Yligarn Craton of Western Australia approximately 630km
			the eastern central portion of the Gum Creek Greenstone Belt of
			the Southern Cross Province. Metamorphic grade of the Gum
			Creek Greenstone Belt is estimated to be low grade greenschist
			facies.
		•	Project lithology includes basalt/ash tuff/dolerite/gabbro, the
			Montague Granodiorite sub-volcanic intrusion (calc-alkaline - FI),
			dacite volcanic flow/s (FI), volcaniclastic sequences of felsic
			composition and epiclastic conglomerates, ultramafic intrusives
			and external orogenic granite plutons. Key regional characteristics
			of a Volcanic Arc Extensional Basin include calc-alkaline bimodal
			volcanic sequences associated with extensive iron formations.
			Later ENE-WSW orogenic compression event is characterised by
			NNW regional scale faults/unconformities, NNW shearing and

	folding, slaty cleavage has developed within sediments near a tight syncline fold closure within the NE area of the project.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. Assay results reported here have been length weighted. Significant intercepts are reported above 1.0 g/t Au with a maximum consecutive interval of internal dilution (<0.5 g/t Au) of 2m. No metal equivalent calculations were applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. True widths are not confirmed at this time although all drilling is planned close to perpendicular to interpreted strike of the target lodes at the time of drilling.

	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Refer to figures in this report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. Results from all drill holes in the program have been reported and their context discussed.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. No other exploration data is reported here. No other exploration data is reported here.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. Additional drilling is being planned and if successful, further mineral resource estimates will be calculated.

APPENDIX 2: Historic Hole Details: Whistler

Hole ID	Hole Type	Easting	Northing	EOH (m)	RL	Dip	Azi	From (m)	To (m)	Drilled Interval (m)	Au (g/t)	
WRC_p013	RC	751518	6968032	21	513	-90	0		NSI			
WRC_p029	RC	751498	6968025	21	514	-90	0		NSI			
WRC_p039	RC	751548	6968027	20	513	-90	0		NSI			
89MRP35	RC	751559	6968037	60	514	-59	273		NSI			
89MRP36	RC	751579	6968037	60	514	-59	272	16	20	4	2.59	
89MRP37	RC	751600	6968037	60	514	-60	271	30	31	1	3.12	
89MRP38	RC	751619	6968037	60	514	-61	271	29	36	7	3.93	
	DC I	DC 75	751620	6068027	75	F14	61	271	21	23	2	2.14
891018259	ĸĊ	/21039	0908037	75	514	-01		47	70	23	2.37	
								20	26	6	1.78	
89MRD41	DD	751659	6968037	102	514	-60	269	75	86	11	2.29	
									95	100	5	1.13

APPENDIX 3: Historic Hole Details: Montague-Boulder

Hole ID	Hole Type	Easting	Northing	EOH (m)	RL	Dip	Azi	From (m)	To (m)	Drilled Interval (m)	Au (g/t)
HRC121	RC	751008	6967037	40	508.29	-60	90	NSI			
HRC122	RC	751003	6967037	39	508.47	-60	90	NSI			
HRC073	RC	751063	6967037	40	508.29	-60	90	NSI			
HRC074	RC	751048	6967037	40	508.47	-60	90	2	4	2	4.86
HRC075	RC	751033	6967037	40	507.78	-60	90	4	10	6	6.91