

ASX ANNOUNCEMENT

12 December 2024

ONGOING STRONG GOLD ASSAYS FROM BRIGHTSTAR'S EXPANDED PORTFOLIO AT SANDSTONE & JASPER HILLS

HIGHLIGHTS

- Brightstar has completed a ~6,000m Reverse Circulation (RC) drilling program at the Montague East project, targeting depth extensions and infill resource drilling at the Whistler and Montague-Boulder deposits.
- First assay results from Whistler include:
 - WHRC24011:
 - 11m @ 6.74g/t Au from 114m, including 1m @ 30.2g/t Au from 121m
 - 7m @ 1.69g/t Au from 142m
 - WHRC24005:
 - 21m @ 2.86 g/t Au from 145m, including 1m @ 26.4 g/t Au from 146m
 - 4m @ 6.10 g/t Au from 82m
 - WHRC24004:
 - 7m @ 5.78 g/t Au from 127m, including 1m @ 13.9g/t Au from 129m
 - WHRC24010:
 - 11m @ 3.31g/t Au from 177m, including 2m @ 11.3g/t Au from 185m
 - WHRC24007:
 - 17m @ 1.92g/t Au from 106m, including 1m @ 8.07g/t Au from 114m
 - WHRC24013:
 - 4m @ 6.40g/t Au from 194m
- Receipt of final assay results from the outstanding RC and diamond drill holes at the Fish deposit (part of the Jasper Hills Gold Project), with numerous high-grade intercepts returned from the following holes including:
 - FHRCD2418 (DD):
 - 3.45m @ 5.21 g/t Au from 288.25m
 - **FHRCD2410 (DD):**
 - 1.08m @ 13.61 g/t Au from 255.12m, including 0.3m @ 28.3g/t Au from 255.12m
 - FHRCD2406 (DD):
 - 3.03m @ 4.47 g/t Au from 272.4m
 - FHRCD2421 (RC):
 - 1m @ 16.0 g/t Au from 179m

0

- The reported holes at Jasper Hills targeted infill and extensional areas within the highgrade Fish orebody, predominantly beneath the proposed Stage 1 Underground mine design¹ targeting high grade mineralisation from a simple and shallow operation <150m from the surface.
- RC drilling has been completed at the Montague-Boulder prospect, with all assays being processed. The RC rig has been relocated to Lord Nelson deposit at the Sandstone project, acquired through the recently completed merger with Alto Metals².

Brightstar Resources Limited (ASX: BTR) (**Brightstar**) is pleased to announce initial results from the inaugural Reverse Circulation (RC) drilling campaign completed at the 0.5Moz Au Montague East Gold Project, located 70km NE of Sandstone, as well as further results from the Fish deposit, part of the 293koz Au Jasper Hills Gold Project.

The ~6,000m drilling program targeted the Montague-Boulder and Whistler deposits, which host the two largest resources at the Montague East project, with a combined gold resource of 4.7Mt at 1.8g/t Au for 283koz Au. The Whistler drilling program totalled 3,300m and was designed to infill the mineralisation beneath the existing open pit to achieve adequate drill spacing for indicated resource classification in future MRE updates. Several extensional holes were also drilled to test the northern and southern extents of the mineralisation.

Assay results have also been received, assessed and reported for RC and diamond drilling at the Fish deposit (Jasper Hills). This program was designed to infill and test extensions to gold mineralisation below and adjacent to the conceptual "Stage 1" underground mine design detailed in the Jasper Hills Scoping Study¹.

Brightstar's Managing Director, Alex Rovira, commented "The initial results from the Whistler deposit are hugely encouraging, highlighting the wide, high-grade nature of the mineralisation. We eagerly anticipate sharing further results as they become available, with assays still pending from the remaining phases of the Whistler, Montague-Boulder, and Lord Nelson programs in our 2024 drill season at Sandstone. We are already planning and looking forward to recommencing drilling in the Murchison during 2025 to build on these results.

The assay results from Fish continue to display the high-grade nature of the resource, below the area of the proposed Stage 1 underground mining operation. Drilling at the deposit in 2025 will be focused on delineating and extending this mineralisation at depth, with the aim of building information and mineral inventory to extend mine life.

Drilling continues with the RC rig now at the Lord Nelson deposit in Sandstone until the Christmas break. This program contains Brightstar's first holes at the Sandstone project, commencing days after the completion of the merger with Alto Metals Ltd² which highlights Brightstar's determined approach to organic growth via exploration".

TECHNICAL DISCUSSION

WHISTLER DEPOSIT (MONTAGUE EAST GOLD PROJECT)

The 120koz Whistler Gold deposit lies within the Montague zone of the Gum Creek Greenstone Belt. This belt consists of a northwest-trending sequence of metamorphosed basalts, banded iron formations, felsic volcanic rocks, and sedimentary units, intruded by concordant dolerite, gabbro, and granodiorite bodies.

The Whistler Deposit is located at the northern tip of a felsic intrusion, the Montague Granodiorite. The deposit is mostly within the granodiorite, close to the contact with a basalt unit. The site of the mineralisation appears to be related to an embayment in the granodiorite contact.

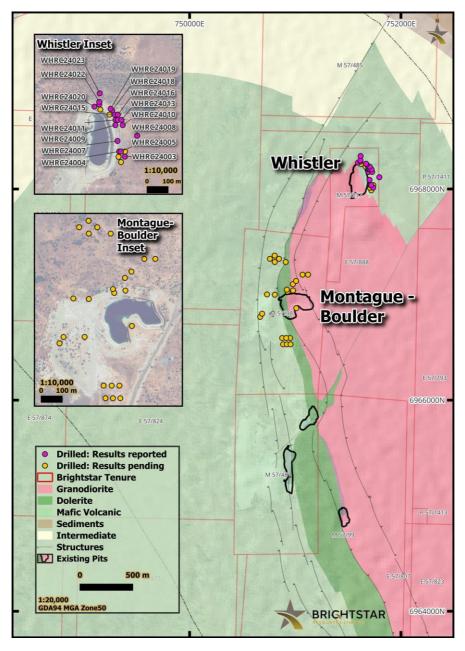


Figure 1 – Plan view map of Montague East drill collar locations

The drilling intersected mineralisation characterized by strongly silica-pyrite-chlorite altered granodiorite, associated with quartz-carbonate veins, transitioning into a more distal biotite-chlorite altered granodiorite. Numerous sub-vertical lodes were commonly intersected within the same drillhole, particularly within the central core of the deposit

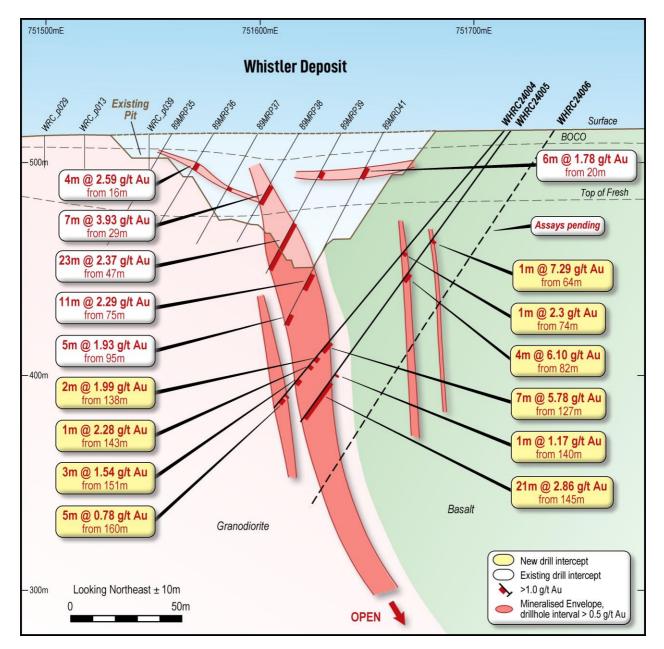


Figure 2 - Whistler Cross section showing results for RC drill holes WHRC24004 and WHRC24005 with mineralised >1g/t Au intercepts

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram- metres
WHRC24003		24	28	4	2.54	4m @ 2.54g/t from 24m	10.1
WHRC24003		169	174	5	1.80	5m @ 1.8g/t from 169m	9.0
WHRC24004		74	75	1	2.30	1m @ 2.3g/t from 74m	2.3
WHRC24004		127	134	7	5.78	7m @ 5.78g/t from 127m	40.5
WHRC24004	including	129	130	1	13.90	1m @ 13.9g/t from 129m	13.9
WHRC24004		138	140	2	1.99	2m @ 1.99g/t from 138m	4.0
WHRC24004		143	144	1	2.28	1m @ 2.28g/t from 143m	2.3
WHRC24004		151	154	3	1.54	3m @ 1.54g/t from 151m	4.6
WHRC24004		160	165	5	0.78	5m @ 0.78g/t from 160m	3.9
WHRC24005		64	65	1	7.29	1m @ 7.29g/t from 64m	7.3
WHRC24005		82	86	4	6.10	4m @ 6.1g/t from 82m	24.4
WHRC24005		140	141	1	1.17	1m @ 1.17g/t from 140m	1.2
WHRC24005		145	166	21	2.86	21m @ 2.86g/t from 145m	60.0
WHRC24005	including	146	147	1	26.40	1m @ 26.4g/t from 146m	26.4
WHRC24007		92	93	1	4.12	1m @ 4.12g/t from 92m	4.1
WHRC24007		99	100	1	3.20	1m @ 3.2g/t from 99m	3.2
WHRC24007		106	123	17	1.92	17m @ 1.92g/t from 106m	32.6
WHRC24007	including	114	115	1	8.07	1m @ 8.07g/t from 114m	8.1
WHRC24007		128	132	4	1.67	4m @ 1.67g/t from 128m	6.7
WHRC24007		135	136	1	1.55	1m @ 1.55g/t from 135m	1.5
WHRC24008		48	52	4	2.00	4m @ 2g/t from 48m	8.0
WHRC24009		44	48	4	2.13	4m @ 2.13g/t from 44m	8.5
WHRC24009		105	111	6	2.38	6m @ 2.38g/t from 105m	14.3
WHRC24009		115	116	1	8.62	1m @ 8.62g/t from 115m	8.6
WHRC24009		121	122	1	2.94	1m @ 2.94g/t from 121m	2.9
WHRC24009		127	128	1	9.09	1m @ 9.09g/t from 127m	9.1
WHRC24010		177	188	11	3.31	11m @ 3.31g/t from 177m	36.4
WHRC24010	including	185	187	2	11.30	2m @ 11.3g/t from 185m	22.6

Table 1 – Significant Intercepts (>1.0g/t Au) for the Whistler RC drilling, **+10 gram-metre intercepts highlighted**.

WHRC24010		215	221	6	1.27	6m @ 1.27g/t from 215m	7.6
						_	
WHRC24011		28	32	4	1.37	4m @ 1.37g/t from 28m	5.5
WHRC24011		40	44	4	2.59	4m @ 2.59g/t from 40m	10.4
WHRC24011		94	95	1	1.20	1m @ 1.2g/t from 94m	1.2
WHRC24011		102	103	1	8.70	1m @ 8.7g/t from 102m	8.7
WHRC24011		114	125	11	6.74	11m @ 6.74g/t from 114m	74.1
WHRC24011	including	121	122	1	30.20	1m @ 30.2g/t from 121m	30.2
WHRC24012		142	149	7	1.69	7m @ 1.69g/t from 142m	11.8
WHRC24012		154	155	1	1.68	1m @ 1.68g/t from 154m	1.7
WHRC24012		160	161	1	1.54	1m @ 1.54g/t from 160m	1.5
WHRC24012		170	171	1	2.72	1m @ 2.72g/t from 170m	2.7
WHRC24012		177	189	12	1.43	12m @ 1.43g/t from 177m	17.2
WHRC24013		60	64	4	4.18	4m @ 4.18g/t from 60m	16.7
WHRC24013		138	139	1	1.24	1m @ 1.24g/t from 138m	1.2
WHRC24013		189	190	1	1.77	1m @ 1.77g/t from 189m	1.8
WHRC24013		194	198	4	6.40	4m @ 6.4g/t from 194m	25.6
WHRC24013		204	205	1	1.07	1m @ 1.07g/t from 204m	1.1
WHRC24013		218	219	1	1.10	1m @ 1.1g/t from 218m	1.1
WHRC24013		224	228	4	3.91	4m @ 3.91g/t from 224m	15.6
WHRC24015		139	143	4	2.10	4m @ 2.1g/t from 139m	8.4
WHRC24015		150	154	4	2.20	4m @ 2.2g/t from 150m	8.8
WHRC24016		152	153	1	1.66	1m @ 1.66g/t from 152m	1.7
WHRC24016		161	162	1	1.61	1m @ 1.61g/t from 161m	1.6
WHRC24016		176	178	2	1.80	2m @ 1.8g/t from 176m	3.6
WHRC24016		200	202	2	1.81	2m @ 1.81g/t from 200m	3.6
WHRC24018		120	121	1	2.71	1m @ 2.71g/t from 120m	2.7
WHRC24018		146	148	2	1.89	2m @ 1.89g/t from 146m	3.8
WHRC24019		136	138	2	2.48	2m @ 2.48g/t from 136m	4.9
WHRC24019		109	115	6	1.09	6m @ 1.09g/t from 109m	6.5
WHRC24021		41	42	1	1.80	1m @ 1.8g/t from 41m	1.8
WHRC24021		78	79	1	1.05	1m @ 1.05g/t from 78m	1.0

WHRC24022	31	32	1	1.06	1m @ 1.06g/t from 31m	1.1
WHRC24023	80	81	1	2.38	1m @ 2.38g/t from 80m	2.4

Table 2 – Whistler 2024 Reverse Circulation collar information.Holes located on tenements M57/217. Grid coordinates shown in MGA94 Zone 50.

Hole ID	Hole Type / EOH drill method	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)	Status
WHRC24001	RC	751720	6967987	514	270	-60	78	Results pending
WHRC24002	RC	751708	6968012	514	270	-55	162	Results pending
WHRC24003	RC	751738	6968013	514	270	-55	204	This ASX Announcement
WHRC24004	RC	751711	6968037	514	270	-50	168	This ASX Announcement
WHRC24005	RC	751719	6968037	514	270	-55	168	This ASX Announcement
WHRC24006	RC	751739	6968037	514	270	-55	210	Results pending
WHRC24007	RC	751703	6968087	514	270	-50	162	This ASX Announcement
WHRC24008	RC	751796	6968112	515	270	-60	156	This ASX Announcement
WHRC24009	RC	751693	6968162	514	270	-50	160	This ASX Announcement
WHRC24010	RC	751728	6968162	514	270	-60	240	This ASX Announcement
WHRC24011	RC	751694	6968187	514	270	-50	162	This ASX Announcement
WHRC24012	RC	751705	6968187	514	270	-60	210	This ASX Announcement
WHRC24013	RC	751722	6968187	514	270	-60	240	This ASX Announcement
WHRC24015	RC	751689	6968212	514	270	-60	192	This ASX Announcement
WHRC24016	RC	751705	6968212	514	270	-60	222	This ASX Announcement
WHRC24018	RC	751678	6968232	514	270	-60	174	This ASX Announcement
WHRC24019	RC	751671	6968240	514	270	-57	150	This ASX Announcement
WHRC24021	RC	751617	6968260	514	230	-50	84	This ASX Announcement
WHRC24022	RC	751617	6968272	514	250	-55	78	This ASX Announcement
WHRC24023	RC	751619	6968313	515	270	-60	84	This ASX Announcement

FISH DEPOSIT (JASPER HILLS)

The Fish deposit ceased open-pit mining operations in 2012, with Crescent Gold Ltd mining 350kt at 3.83g/t Au from a single open pit. Mineralisation in mined-out material was mainly hosted in a BIF unit, which generally dips steeply to the southeast. This unit is described as an interflow sediment with siliceous and magnetite banding.

The purpose of the combined RC/DD program was to infill the resource within and adjacent to the Stage 1 underground design, generate sufficient mass for metallurgical testwork, and to test for depth extensions to interpreted fault-offset mineralised lodes.

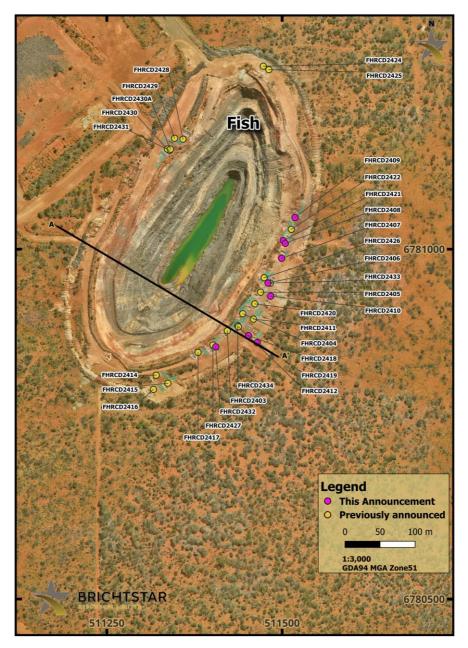
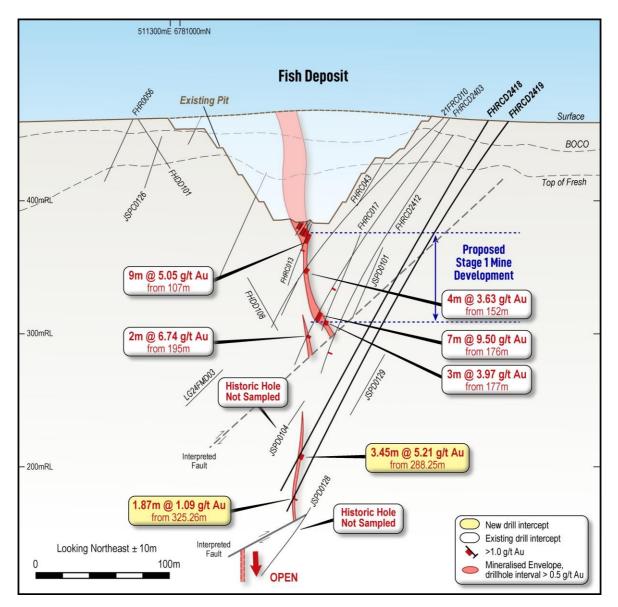



Figure 3 - Plan view map of Fish drill collar locations

Throughout the drilling program, mineralization was confirmed to be marginally offset to the west at depth, with high-grade gold mineralization structurally associated with abundant pyrrhotite serving as a key indicator. Quartz veins range in width from several centimetres to 0.5 metres, accompanied by broad zones of alteration and mineralisation halos that provide clear visual vectors. At depth, gold mineralization is closely associated with significant pyrrhotite and pyrite, alongside deformed veining with milled quartz textures. To refine targeting of these sulphide-rich fault offsets, downhole electromagnetic (EM) surveys have been conducted to identify off-hole conductors and guide exploration for further mineralization at depth.

Figure 4 - Cross section A-A' showing results for released holes (FHRCD2418, FHRCD2419)

Hole ID	From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram- metres
FHRCD2406	241.2	241.52	0.32	1.01	0.32m @ 1.01g/t from 241.2m	0.3
	272.4	275.43	3.03	4.47	3.03m @ 4.47g/t from 272.4m	13.5
	251.2	252.4	1.2	6.56	1.2m @ 6.56g/t from 251.2m	7.9
FHRCD2407	256.65	257	0.35	1.45	0.35m @ 1.45g/t from 256.65m	0.5
	258.8	259.1	0.3	1.77	0.3m @ 1.77g/t from 258.8m	0.5
FHRCD2408	240.15	241.95	1.8	1.91	1.8m @ 1.91g/t from 240.15m	3.4
FHRCD2409	234.9	235.2	0.3	2.02	0.3m @ 2.02g/t from 234.9m	0.6
	242.8	243.55	0.75	3.05	0.75m @ 3.05g/t from 242.8m	2.3
FHRCD2410	255.12	256.2	1.08	13.6	1.08m @ 13.6g/t from 255.12m	14.7
FHRCD2418	288.25	291.7	3.45	5.21	3.45m @ 5.21g/t from 288.25m	18.0
FHRCD2419	325.26	327.13	1.87	1.09	1.87m @ 1.09g/t from 325.26m	2.0
FHDD2432	86.73	87.73	1	2.77	1m @ 2.77g/t from 86.73m	2.8
	174.45	177.55	3.1	2.53	3.1m @ 2.53g/t from 174.45m	7.8
FHRCD2421	179	180	1	16	1m @ 16g/t from 179m	16.0
	187	188	1	1.72	1m @ 1.72g/t from 187m	1.7

Table 3 – Significant Intercepts (>1.0g/t Au) for the Fish DD and RC drilling, +10 gram-metre intercepts highlighted.

Table 4 – Fish 2024 RC/Diamond collar information.Holes located on tenements M39/139. Grid coordinates shown in MGA94 Zone 51.

Hole ID	Hole Type / EOH drill method	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)	Status
FHRCD2403	RC	511421	6780883	462.4	300	-60	200	Previously announced
FHRCD2404	RC	511443	6780907	463.0	300	-60	200	Previously announced
FHRCD2405	RC	511469	6780938	462.9	300	-60	200	Previously announced
FHRCD2406	RC with DD tail	511479	6780951	463.0	300	-60	275	This ASX Announcement

Hole ID	Hole Type / EOH drill method	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)	Status
FHRCD2407	RC with DD tail	511499	6780986	462.6	300	-60	270	This ASX Announcement
FHRCD2408	RC with DD tail	511504	6781008	462.5	300	-60	250	This ASX Announcement
FHRCD2409	RC with DD tail	511518	6781045	462.2	300	-56	275	This ASX Announcement
FHRCD2410	RC with DD tail	511483	6780932	462.1	300	-60	220	This ASX Announcement
FHRCD2411	RC	511458	6780900	462.1	300	-60	215	Previously announced
FHRCD2412	RC	511437	6780889	462.1	300	-60	210	Previously announced
FHRCD2414	RC	511320	6780819	461.1	300	-60	200	Previously announced
FHRCD2415	RC	511337	6780808	460.3	300	-60	200	Previously announced
FHRCD2416	RC	511316	6780799	460.1	300	-60	160	Previously announced
FHRCD2417	RC	511380	6780852	461.9	300	-60	180	Previously announced
FHRCD2418	RC with DD tail	511452	6780876	461.0	300	-60	185	This ASX Announcement
FHRCD2419	RC with DD tail	511464	6780866	460.2	300	-60	225	This ASX Announcement
FHRCD2420	RC	511461	6780921	462.6	300	-60	300	Previously announced
FHRCD2421	RC	511501	6781012	462.4	300	-60	250	This ASX Announcement
FHRCD2422	RC	511513	6781028	462.4	300	-52	195	Previously announced
FHRCD2424	RC	511473	6781261	466.4	300	-55	200	Previously announced
FHRCD2425	RC	511481	6781256	467.0	300	-55	80	Previously announced
FHRCD2426	RC	511474	6780959	463.4	300	-60	100	Previously announced
FHRCD2427	RC	511401	6780862	461.8	300	-55	180	Previously announced
FHRCD2428	RC	511358	6781157	463.3	300	-57	170	Previously announced
FHRCD2429	RC	511346	6781158	463.0	120	-50	138	Previously announced
FHRCD2430	RC	511336	6781143	463.1	120	-53	170	Previously announced
FHRCD2430A	RC	511340	6781142	463.2	120	-50	160	Previously announced

Hole ID	Hole Type / EOH drill method	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)	Status
FHRC2431	RC	511341	6781142	463	118	-50	192	Previously announced
FHDD2432	DD	511400	6780866	461	311	-55	190	This ASX Announcement
FHRC2433	RC	511482	6780957	462	310	-51	204	Previously announced
FHRC2434	RC	511441	6780889	462	309	-53	216	Previously announced

Next Steps

Brightstar will announce drilling information and assay results as they are received. Results remain outstanding from the Lord Byron diamond drilling (Jasper Hills), Montague-Boulder RC (Montague East) and Lord Nelson RC (Sandstone) drilling programs.

Concurrently with these drilling programs, work continues on the Definitive Feasibility Study and near-term development of mining operations at the Jasper Hills project.

References

1. Refer Brightstar Resources ASX announcement 25 March 2024 "Jasper Hills Scoping Study"

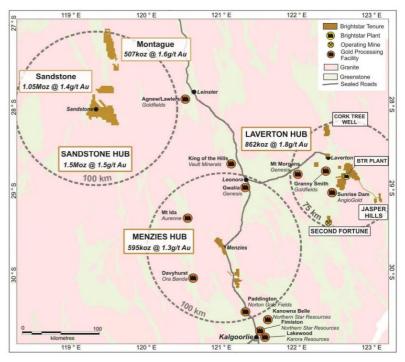
2. Refer Brightstar Resources ASX announcement 9 December 2024 "Implementation of Scheme and Board Update"

This ASX announcement has been approved by the Managing Director on behalf of the board of Brightstar.

FOR FURTHER INFORMATION, PLEASE CONTACT:

Alex Rovira Managing Director Email: alex@brightstarresources.com.au

Investor Relations Lucas Robinson Phone: +61 408 228 889 Email: <u>lucas@corporatestorytime.com</u>



ABOUT BRIGHTSTAR RESOURCES

Brightstar Resources Limited is a Perthbased gold development company listed on the Australian Securities Exchange (ASX: BTR).

The Company hosts a portfolio of high quality assets hosted in the prolific Goldfields and Murchison regions of Western Australia, which are ideally located proximal to significant regional infrastructure and suppliers.

The company currently operates the underground Second Fortune Gold Mine south of Laverton, and recently completed the Selkirk Mining JV at Menzies pouring first gold in March 2024.

In August 2024, Brightstar announced the consolidation of the Sandstone district with the integration of the Sandstone and Montague East Gold Project into Brightstar resulting in a total combined JORC Mineral Resource of **3.0Moz Au at 1.5g/t Au.** The resource is spread across three geographically separate hubs, providing excellent optionality for a staged development of all assets to build to a meaningful ASX-listed gold producer.

Location			Measured	i		Indicated			Inferred			Total	
	Au Cut-off (g/t)	kt	g/t Au	koz	kt	g/t Au	koz	kt	g/t Au	koz	kt	g/t Au	koz
Alpha	0.5	623	1.6	33	374	2.1	25	455	3.3	48	1,452	2.3	106
Beta	0.5	345	1.7	19	576	1.6	29	961	1.7	54	1,882	1.7	102
Cork Tree Well	0.5	-	-	-	3,036	1.6	157	3,501	1.3	146	6,537	1.4	303
Lord Byron	0.5	453	1.8	26	1,141	1.6	58	2,929	1.7	160	4,523	1.7	244
Fish	0.6	26	7.7	6	149	5.8	28	51	4.3	7	226	5.7	41
Gilt Key	0.5	-	-	-	15	2.2	1	153	1.3	6	168	1.3	8
Second Fortune (UG)	2.5	17	16.9	9	78	8.2	21	71	12.3	28	165	10.9	58
Total – Laverton		1,464	2.0	93	5,369	1.8	319	8,121	1.7	449	14,953	1.8	862
Lady Shenton System (Pericles, Lady Shenton, Stirling)	0.5	-	-	-	2,770	1.3	119	4,200	1.3	171	6,970	1.2	287
Yunndaga	0.5	-	-	-	1,270	1.3	53	2,050	1.4	90	3,320	1.3	144
Yunndaga (UG)	2	-	-	-	-	-	-	110	3.3	12	110	3.3	12
Aspacia	0.5	-	-	-	137	1.7	7	1,238	1.6	62	1,375	1.6	70
Lady Harriet System (Warrior, Lady Harriet, Bellenger)	0.5	-	-	-	520	1.3	22	590	1.1	21	1,110	1.2	43
Link Zone	0.5	-	-	-	145	1.2	6	470	1.0	16	615	1.1	21
Selkirk	0.5	-	-	-	30	6.3	6	140	1.2	5	170	2.1	12
Lady Irene	0.5	-	-	-	-	-	-	100	1.7	6	100	1.7	6
Total – Menzies		-	-	-	4,872	1.4	214	8,898	1.3	383	13,770	1.3	595
Montague-Boulder	0.6	-	-	-	522	4.0	67	2,556	1.2	96	3,078	1.7	163
Whistler (OP) / Whistler (UG)	0.5 / 2.0	-	-	-	-	-	-	1,700	2.2	120	1,700	2.2	120
Evermore	0.6	-	-	-	-	-	-	1,319	1.6	67	1,319	1.6	67
Achilles Nth / Airport	0.6	-	-	-	221	2.0	14	1,847	1.4	85	2,068	1,5	99
Julias ¹ (Resource)	0.6	-	-	-	1,405	1.4	61	503	1.0	16	1,908	1.3	77
Julias ² (Attributable)	0.6	-	-	-							1,431	1.3	58
Total – Montague (Global)	•	-	-	-	2,148	2.1	142	7,925	1.5	384	10,073	1.6	526
Total – Montague (BTR) ^{1,2}					2,148	2.1	142	7,925	1.5	384	9,596	1.6	502
Lord Nelson	0.5	-	-	-	1,500	2.1	100	4,100	1.4	191	5,600	1.6	291
Lord Henry	0.5	-	-	-	1,600	1.5	78	600	1.1	20	2,200	1.4	98
Vanguard Camp	0.5	-	-	-	400	2.0	26	3,400	1.4	191	3,800	4.5	217
Havilah Camp	0.5	-	-	-	-	-	-	1,200	1.3	54	1,200	1.3	54
Indomitable Camp	0.5	-	-	-	800	0.9	23	7,300	0.9	265	8,100	0.9	288
Bull Oak	0.5	-	-	-	-	-	-	2,500	1.1	90	2,500	1.1	90
Ladybird	0.5				-	-	-	100	1.9	8	100	1.9	8
Total – Sandstone	-	-	-	-	4,300	1.6	227	19,200	1.3	819	23,500	1.4	1,046
Total – BTR (Attributable)		1.464	2.0	93	16,689	1.7	902	44,144	1.4	2.035	61,819	1.5	3,005

Table 5 - Consolidated JORC Resources of Laverton & Menzies Hubs

Pericles, Lady Shenton & Stirling consolidated into Lady Shenton System; Warrior, Lady Harriet & Bellenger consolidated into Lady Harriet System.

Note 1: Julias is located on M57/427, which is owned 75% by Brightstar and 25% by Estuary Resources Pty Ltd

Note 2: Attributable gold ounces to Brightstar include 75% of resources of Julias as referenced in Note 1.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Brightstar Resources Limited's planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Brightstar believes that its expectations reflected in these forward- looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that further exploration will result in the estimation of a Mineral Resource.

Competent Person Statement – Exploration

The information presented here relating to exploration of the Menzies, Laverton and Sandstone Gold Project areas are based on information compiled by Mr Edward Keys, MAIG. Mr Keys is a Member of the Australasian Institute of Geoscientists (AIG) and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a "Competent Person" as

that term is defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)". Mr Keys is a fulltime employee of the Company in the position of Exploration Manager and has provided written consent approving the inclusion of the Exploration Results in the form and context in which they appear.

Competent Person Statement – Mineral Resource Estimates

This Announcement contains references to Brightstar's JORC Mineral Resource estimates, extracted from the ASX announcements titled "Cork Tree Well Resource Upgrade Delivers 1Moz Group MRE" dated 23 June 2023, "Maiden Link Zone Mineral Resource" dated 15 November 2023, "Aspacia deposit records maiden Mineral Resource at the Menzies Gold Project" dated 17 April 2024, "Brightstar Makes Recommended Bid for Linden Gold", dated 25 March 2024, "Brightstar to drive consolidation of Sandstone Gold District" dated 1 August 2024 and "Scheme Booklet Registered by ASIC" dated 14 October 2024.

Brightstar confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the Mineral Resource estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Compliance Statement

With reference to previously reported Exploration Results and Mineral Resources, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

APPENDIX 1: JORC CODE, 2012 EDITION – TABLE 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections)

Brightstar Resources Drilling

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Industry standard RC drilling and sampling protocols for lode and supergene gold deposits have been utilised throughout the BTR campaign. BTR RC holes were sampled using 4m composite spear samples or 1 metre cone-split samples. RC drilling techniques are used to obtain samples of the entire downhole length. RC samples were taken using a 10:1 Sandvik static cone splitter mounted under a polyurethane cyclone to obtain 1m samples. Approximately 2kg samples were submitted to the laboratory. Diamond samples are selected for and collected at geologically defined intervals and cut using an automated core saw. Quarter and Half core samples are submitted for analysis. Brightstar samples were submitted to Bureau Veritas Laboratory in Kalgoorlie where the entire sample was crushed, pulverised, split and assayed by fire assay using a 50-gram charge. Sample spoils from selected RC drill holes were placed into green bags for possible future use.

Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 BTR RC holes were drilled utilising a 5.5 inch face sampling hammer and surveyed using a Axis Champ true-North-seeking gyroscopic survey tool. Drilling was conducted by Topdrill using a Schramm C685 drill rig with a booster compressor. An Azi aligner was used on all holes drilled from surface (TN14 Gyro Compass true-North-seeking). BTR Diamond drilling is drilled by Topdrill utilising a Sandvik DE840 drill rig. HQ and NQ diameter drill core was obtained. In areas of unconsolidated ground, triple tube configuration was used to maximise core recovery. All drill core was oriented (where possible), using the Axis Champ Ori system.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC sample recovery was qualitatively assessed and recorded by comparing drill chip volumes (sample bags) for individual meters. Sample depths were cross-checked every rod (6m). The cyclone was regularly cleaned to ensure no material build up and sample material was checked for any potential downhole contamination. Wet samples were recorded, although the majority of the samples were dry. In the CP's opinion the drilling sample recoveries/quality are acceptable and are appropriately representative for the style of mineralisation. Sample recovery and moisture content estimated. Good sample recovery was standard in reported programs. No grade versus sample recovery biases, or biases relating the loss or gain of fines have been identified in BTR's drilling. All samples are weighed at the laboratory and reported as a part of standard preparation protocols. No water compromised samples were reported in this program. For diamond core, sample recovery is recorded for every drill run, with intervals of core loss accurately logged.

		 Drilling is carried out orthogonal to the mineralisation to get representative samples of the mineralisation. RC samples are collected through a cyclone and cone splitter. The sample required for the assay is collected directly into a calico sample bag at a designed 2kg sample mass which is optimal for full sample crushing and pulverisation at the assay laboratory
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 RC holes were logged on one metre intervals at the rig by the geologist from drill chips. Logging was recorded directly into LogChief computer software. Diamond core is logged to specific geological intervals. Detailed geological logging includes the lithology, alteration, veining and mineralisation of the drill chips or core. Structural measurements are also taken from oriented drill core. Logging is both quantitative and qualitative in nature, depending on the feature. 100% of BTR drilling is geologically logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC drilling single 1 metre splits were automatically taken at the time of drilling by a cone splitter attached to the cyclone. For interpreted non-mineralised areas, 4 metre composite samples were collected from the drill rig by spearing each 1m collection bag. The 4 metre composites were submitted for assay. Composite samples returning grade >0.1 g/t Au were resampled as 1m cone-split samples. For interpreted mineralised areas, the 1 metre splits were bagged on the static cyclone splitter on the RC rig. QAQC samples (blanks and standards) were submitted for all samples at a rate between 1:10 and 1:25

		 Duplicate samples were taken over selected interpreted mineralised intervals to determine if sampling is representative. Sample preparation comprised industry standard oven drying, crushing, and pulverisation to less than 75 microns. Homogenised pulp material was used for assaying. Internal certified laboratory QAQC is undertaken including check samples, blanks and internal standards. Samples volumes were typically 1.0-4.0 kg and are considered to be of suitable size for the style of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 and are between 0.3m and 1.3m. Laboratory QC involves the use of internal lab standards, certified reference material, blanks, splits and replicates. QC results (blanks, coarse reject duplicates, bulk pulverised,

Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections have been reviewed by several company personnel. Data storage was captured electronically onsite using a standard set of templates, before uploading to a cloud-based server and imported into an externally managed Datashed geological database. Security is set through both SQL and the DataShed configuration software. Brightstar has an external consultant Database Administrator with expertise in programming and SQL database administration. Access to the database by the geoscience staff is controlled through security groups where they can export and imported by the Database Administrator. The database administrator. The database assay management system records all metadata within the MDS, providing full audit trails to meet industry best practice. No data was adjusted. No transformations or alterations are made to assay data stored in the database. The lab's primary Au field is the one used for plotting purposes. No averaging of results for individual samples is employed. No top cuts are applied to the assays when calculating intercepts.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill collar locations were initially surveyed using a handheld GPS, accurate to within 3-5m. All RC and DD holes are routinely surveyed by differential GPS (DGPS) once drilling is complete, although this has not yet occurred for recently completed holes at Sandstone given that the program has not been finished (Reported Fish holes have been DGPS surveyed). Some historic drill collars have existing DGPS surveys

Data spacing and distribution	Data spacing for reporting of Exploration Results.	 The grid system used is MGA94 Zone 51 (Fish) and MGA94 Zone 50 (Whistler). All reported coordinates are referenced to these grids. The site topography utilised DTM imagery from 2020-2024 with accuracy <1m. Holes are variably spaced. The current Whistler RC and Fish RC
	 Whether the data spacing of distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 and diamond program is planned to infill the spacing to approximately 20m x 20m Results will be used to update previously reported Mineral Resources at Fish and Whistler. No sample compositing of field samples has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The relationship between the drilling orientation and the orientation of mineralised structures is not considered to have introduced a sampling bias. Most holes have been drilled perpendicular to the main orientation of mineralisation. The drill holes were designed to best test the interpreted geology in relation to known mineralisation trends, regional structure and lithological contacts. Drilling was all inclined with orientation based on predicted geological constraints. No drilling orientation related sampling bias has been identified at the project.
Sample security	• The measures taken to ensure sample security.	 Samples were collected on site under supervision of the geologist. Visitors needed permission to visit site. Once collected samples were bagged, they were transported to Kalgoorlie by company personnel or trusted contractors for assaying with Bureau Veritas. Despatch and consignment notes were delivered and checked for discrepancies.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	Sampling techniques and data has been reviewed internally by company personnel.

SECTION 2 REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 M38/185 Lord Byron 987.45 Ha M38/162 Lord Byron 307.2 Ha M38/138 Fish 945.55 Ha

		E57/875, E57/888, M57/217, M57/48, M57/485, M57/98, M57/99, P57/1409, P57,1410, P57/1411 and P57/1413 are subject to a farm-in joint venture agreement with Premier 1 Lithium Limited (ASX:PLC), whereby PLC will the right to acquire an 80% interest in the lithium rights (and related by-products). The Company retains the precious metals rights.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Jasper Hills Project has had numerous drilling campaigns undertaken by third parties contributing to the 2022 MRE. Lord Byron AngloGold, 2001-2004 Crescent Gold, 2005-2012 Focus, 2013-2015 Sons of Gwalia, 1987, 1996-1999 Western Mining Corporation, 1988, 1989, 200 Fish Crescent Gold, 2005-2012 Western Mining Corporation, 1988, 1989, 200 Fish Crescent Gold, 2005-2012 Western Mining Corporation, 1988, 1989, 2000. Montague Gold was discovered in the district during the gold rush era, first records of gold won from small-scale, high-grade workings include the Montague Mining Centre (1904-13). Renewed interest in the late 1960's included base metal exploration carried out within exposed stratigraphy of the Montague Ranges (Bungarra Ranges), exploration interest that broadened with the release of the Sandstone 1:250,000 aeromagnetic sheet in 1970 resulting in the staking of favourable magnetic anomalies by exploration companies. Early explorers in the Montague Ranges included Anaconda Australia Inc. (1966-67), followed by International Nickel Australia

(1971-75) evaluating a Gabbro - banded differentiated basic complex believed prospective for copper and/or nickel such as the Dulith Gabbro, USA. Strong geophysical and mineralised anomalism was encountered, however, copper-zinc enrichment was also encountered in adjacent felsic stratigraphy at Ed's Bore prospect, which was followed-up by CRA Exploration (1983-1990) to intersect polymetallic VMS enrichments at Bevan prospect (not substantively pursued).
At Montague, Western Mining Corporation (1976) conducted investigations for copper and gold including soil sampling and IP surveying, which was followed by CRA Exploration (1984-89) working concurrently with AMOCO Minerals Australia Company (1984) and Clackline Refractories Ltd (from 1985 - to later become Herald Resources) assessing/purchasing historic mine areas from Mr W.J. Griffiths of Sandstone. RAB drilling penetrating transported cover resulted in the virgin discoveries of NE Pit by AMOCO and Whistler deposit by CRA. Later noted explorers included Dalrymple Resources NL (1987-1990) intersecting gold at the Armada (Twister) prospect, and Arimco Mining (1990- 98) intersecting gold at Lyle prospect, Victory West prospect, and copper at The Cup prospect (not substantively pursued).
• The Montague Mining Centre produced approximately 150,000oz of gold commencing in 1986 at Caledonian and NE Pits (Clackline), and continued at Montague Boulder from 1988 (Herald), and was to close in 1993 after completion of the Rosie Castle open cut (Herald). Whistler open cut was mined from November 1990 (Polaris Pacific NL) and ore toll treated through the Herald mill. Little attention was paid to mineralisation other than gold. Gateway Mining in joint venture with Herald Resources continued

		 exploration of the Montague Mining Centre, Gateway also targeting poly-metallic intrusion related - VMS models in the district from 2006. Airport, Airport Sth, S Bend, Rosie Nth, Rosie Sth mineralisation was discovered by Gateway Mining between 2007 and 2011 in RAB drilling and later defined by RC drilling.
Geology	Deposit type, geological setting and style of mineralisation.	 The Lord Byron deposit is hosted within a thick sequence of amphibolite and interbedded chert/BIF. There are 3 zones of mineralization, the supergene zones, the central zone with a North-West strike and southern zone with a North strike. The Fish deposit is an orogenic style Archaean lode gold deposit hosted by a series of narrow quartz-magnetite-amphibole BIFs with coarse granoblastic texture, interbedded with amphibolite derived from basalt and dolerite. The Gilt Key deposit is an orogenic style Archaean lode gold deposit. The stratigraphy is mafic volcanic rock (greenstone) with interbedded banded iron formation. The Montague Project is located in the Gidgee district in the Archean Yilgarn Craton of Western Australia approximately 630km NE of Perth and 70km north from the township of Sandstone on the eastern central portion of the Gum Creek Greenstone Belt, of the Southern Cross Province. Metamorphic grade of the Gum Creek Greenstone Belt is estimated to be low grade greenschist facies. Project lithology includes basalt/ash tuff/dolerite/gabbro, the Montague Granodiorite sub-volcanic intrusion (calc-alkaline - FI), dacite volcanic flow/s (FI), volcaniclastic sequences of felsic composition and epiclastic conglomerates, ultramafic intrusives and external orogenic granite plutons. Key regional characteristics

Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain 	 of a Volcanic Arc Extensional Basin include calc-alkaline bimodal volcanic sequences associated with extensive iron formations. Later ENE-WSW orogenic compression event is characterised by NNW regional scale faults/unconformities, NNW shearing and folding, slaty cleavage has developed within sediments near a tight syncline fold closure within the NE area of the project. The relevant data for drillholes reported in this announcement is provided in the body of the announcement. Data for historical collars referenced in this announcement is provided in tables within the announcement.
Data aggregation methods	 why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Assay results reported here have been length weighted. Significant intercepts are reported above 1.0 g/t Au with a maximum consecutive interval of internal dilution (<0.5 g/t Au) of 2m. No metal equivalent calculations were applied.

Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). True widths are not confirmed at this time although all drilling is planned close to perpendicular to interpreted strike of the target lodes at the time of drilling.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Refer to figures in this report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. Results from all drill holes in the program have been reported and their context discussed.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. No other exploration data is reported here. No other exploration data is reported here.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. Additional drilling is being planned and if successful, further mineral resource estimates will be calculated.

APPENDIX 2: Historic Hole Details: Whistler

Hole ID	Hole Type	Easting	Northing	EOH (m)	RL	Dip	Azi	From (m)	To (m)	Drilled Interval (m)	Au (g/t)
WRC_p013	RC	751518	6968032	21	513	-90	0				NSI
WRC_p029	RC	751498	6968025	21	514	-90	0				NSI
WRC_p039	RC	751548	6968027	20	513	-90	0				NSI
89MRP35	RC	751559	6968037	60	514	-59	273				NSI
89MRP36	RC	751579	6968037	60	514	-59	272	16	20	4	2.59
89MRP37	RC	751600	6968037	60	514	-60	271	30	31	1	3.12
89MRP38	RC	751619	6968037	60	514	-61	271	29	36	7	3.93
00140020	DC	751620	000007	75	F14	61	271	21	23	2	2.14
89MRP39	RC	751639	6968037	75	514	-61	271	47	70	23	2.37
								20	26	6	1.78
89MRD41	DD	751659	6968037	102	514	-60	269	75	86	11	2.29
								95	100	5	1.13

APPENDIX 3: Historic Hole Details: Fish

Hole ID	Hole Type	Easting	Northing	EOH (m)	RL	Dip	Azi	From (m)	To (m)	Drilled Interval (m)	Au (g/t)
511280001		F11220	6780000	15.0	270.0	00	0	0	4	4	2.2
FH380001	GC	511338	6780960	15.0	379.8	-90	0	13	15	2	4.1
FH380002	GC	511341	6780958	20.0	380.0	-90	0	9	20	11	8.51
FH380003	GC	511346	6780968	9.0	379.7	-80	296	0	8	8	3.9
FH380004	GC	511347	6780967	13.0	379.8	-90	0	9	13	4	12.82
FH380005	GC	511350	6780965	15.0	379.8	-90	0				NSI
FH380006	GC	511358	6780962	22.0	381.0	-80	296				NSI
FHDD001	DDH	511320	6781000	50.0	440.3	-90	0				NSI
FHDD101	DDH	511226	6781011	331.0	461.0	-50	90	185.2	185.6	0.4	0.9
FHDD102	DDH	511246	6781049	259.5	461.2	-50	90				NSI
FHDD103	DDH	511276	6781087	255.1	462.08	-48	90	238.6	23.9	0.3	1.55
FHDD108	DDH	511191	6780965	360.4	460.1	-48	90	270.15	270.65	0.5	1.5
FURGOOM	5		6700060	120.0	100.0		200	83	87	4	5.38
FHRC001	RC	511389	6780968	120.0	469.0	-60	290	106	107	1	1.43
								107	116	9	5.05
FHRC013	RC	511394	6780947	150.0	468.3	-60	280	120	121	1	3.95
								129	132	3	0.94
FHRC017	RC	511427	6780933	186.0	465.6	-60	269	177	180	3	3.97
FUDCO42	DC		6700045	100.0		F 7	277	164	168	4	2.32
FHRC042	RC	511434	6780945	186.0	465.7	-57	277	176	77	1	1

FHRC043	RC	511404	6780910	126.0	464.5	-58	278				NSI
FHRC100	RC	511438	6780889	150.0	462.0	-48	570				NSI
FHRC400054	RC	511345	6780980	18.0	400.0	-60	296	1	3	2	2.74
FHKC400054	ΝC	511545	0780980	18.0	400.0	-00	290	12	13	1	2.19
FHRC400061	RC	511355	6780963	33.0	400.3	-60	296	20	25	5	3.79
FHRC400061	ĸc	511355	0780903	33.0	400.3	-60	290	27	28	1	2.11
FHRC400070	RC	511345	6780945	30.0	400.0	-60	296	23	30	7	6.38
JSPC0066	RC	511318	6781011	60.0	465.3	-60	270				NSI
JSPC1026	RC	511297	6781051	60.0	463.3	-60	270				NSI
JSPC1027	RC	511278	6781051	60.0	462.3	-60	270				NSI
JSPC1028	RC	511258	6781051	60.0	461.6	-60	270				NSI
JSPD0101	DDH	511440	6780930	349.0	464.1	-60	260				NSI
JSPD0104	DDH	511497	6780971	288.5	462.0	-51.5	270	204	207.5	3.5	4.61
JSPD0128	DDH	511545	6780970	423.0	460.4	-60	272	313	315	2	4.61
JSPD0128	DDH	511545	6780970	423.0	400.4	-60	272	314.5	315	0.5	9.87
JSPD0129	DDH	511496	6780930	400.0	461.1	-61	271	329.5	331.5	4	4.31
JSPD0133	DDH	511447	6780970	190.0	466.4	-60	273	143.5	148.5	10	6.35
21FRC010	RC	511414	6780882	204	462	-46	311	152	156	4	3.63
	DC.	544477	6700040	216	100	E 4	205	172	180	8	1.52
LG24FMD03	RC	511477	6780949	316	469	-54	285	231	232	1	1.16